Zobrazit minimální záznam

Relační přístup k univerzální algebře
dc.contributor.advisorBarto, Libor
dc.creatorOpršal, Jakub
dc.date.accessioned2018-11-30T13:50:39Z
dc.date.available2018-11-30T13:50:39Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/78548
dc.description.abstractTitle: Relational Approach to Universal Algebra Author: Jakub Opršal Department: Department of Algebra Supervisor: doc. Libor Barto, Ph.D., Department of Algebra Abstract: We give some descriptions of certain algebraic properties using rela- tions and relational structures. In the first part, we focus on Neumann's lattice of interpretability types of varieties. First, we prove a characterization of vari- eties defined by linear identities, and we prove that some conditions cannot be characterized by linear identities. Next, we provide a partial result on Taylor's modularity conjecture, and we discuss several related problems. Namely, we show that the interpretability join of two idempotent varieties that are not congruence modular is not congruence modular either, and the analogue for idempotent va- rieties with a cube term. In the second part, we give a relational description of higher commutator operators, which were introduced by Bulatov, in varieties with a Mal'cev term. Furthermore, we use this result to prove that for every algebra with a Mal'cev term there exists a largest clone containing the Mal'cev operation and having the same congruence lattice and the same higher commu- tator operators as the original algebra, and to describe explicit (though infinite) set of identities describing supernilpotence...en_US
dc.description.abstractNázev práce: Relační přístup k universální algebře Autor: Jakub Opršal Katedra: Katedra algebry Vedoucí disertační práce: doc. Libor Barto, Ph.D., Katedra algebry Abstrakt: V této práci předkládáme popis některých algebraických vlastnostní pomocí relací a relačních struktur. V první části se zaměřujeme na Neumannův svaz interpretačních typů variet. Charakterizujeme variety definované lineárními rovnostmi a uvádíme příklad několika vlastností, které nejsou charakterizova- telné lineárními rovnostmi. Dále se věnujeme Taylorově domněnce o varietách s modulárními svazy kongruencí. Speciálně ukážeme, že interpretační spojení dvou idempotentních variet, které nemají modulární svazy kongruencí, samo nemá mo- dulární svazy kongruencí. Uvádíme i obdobný výsledek pro variety s krychlovým termem. V druhé části práce uvádíme popis Bulatovových vyšších komutátorů ve varietách s mal'cevským termem. Dále použijeme tento výsledek na to, abychom ukázali, že pro každou algebru s mal'cevskou operací existuje největší klon, který obsahuje tu samou mal'cevskou operaci, má stejný svaz kongruencí a jehož ko- mutátory se shodují s těmi v původní algebře. Nakonec uvádíme další aplikaci tohoto výsledku a to na...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectlinear varietiesen_US
dc.subjectcloneen_US
dc.subjectinterpretabilityen_US
dc.subjectMal'cev conditionen_US
dc.subjectMal'cev algebraen_US
dc.subjectcommutatoren_US
dc.subjectsupernilpotenceen_US
dc.subjectlineární varietacs_CZ
dc.subjectkloncs_CZ
dc.subjectinterpretabilitacs_CZ
dc.subjectmal'cevská podmínkacs_CZ
dc.subjectmal'cevská algebracs_CZ
dc.subjectkomutátorcs_CZ
dc.subjectsupernilpotencecs_CZ
dc.titleRelational Approach to Universal Algebraen_US
dc.typedizertační prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-02-29
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId113723
dc.title.translatedRelační přístup k univerzální algebřecs_CZ
dc.contributor.refereeRůžička, Pavel
dc.contributor.refereeMayr, Peter
dc.identifier.aleph002079914
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineAlgebra, teorie čísel a matematická logikacs_CZ
thesis.degree.disciplineAlgebra, Theory of Numbers and Mathematical Logicen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csAlgebra, teorie čísel a matematická logikacs_CZ
uk.degree-discipline.enAlgebra, Theory of Numbers and Mathematical Logicen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csNázev práce: Relační přístup k universální algebře Autor: Jakub Opršal Katedra: Katedra algebry Vedoucí disertační práce: doc. Libor Barto, Ph.D., Katedra algebry Abstrakt: V této práci předkládáme popis některých algebraických vlastnostní pomocí relací a relačních struktur. V první části se zaměřujeme na Neumannův svaz interpretačních typů variet. Charakterizujeme variety definované lineárními rovnostmi a uvádíme příklad několika vlastností, které nejsou charakterizova- telné lineárními rovnostmi. Dále se věnujeme Taylorově domněnce o varietách s modulárními svazy kongruencí. Speciálně ukážeme, že interpretační spojení dvou idempotentních variet, které nemají modulární svazy kongruencí, samo nemá mo- dulární svazy kongruencí. Uvádíme i obdobný výsledek pro variety s krychlovým termem. V druhé části práce uvádíme popis Bulatovových vyšších komutátorů ve varietách s mal'cevským termem. Dále použijeme tento výsledek na to, abychom ukázali, že pro každou algebru s mal'cevskou operací existuje největší klon, který obsahuje tu samou mal'cevskou operaci, má stejný svaz kongruencí a jehož ko- mutátory se shodují s těmi v původní algebře. Nakonec uvádíme další aplikaci tohoto výsledku a to na...cs_CZ
uk.abstract.enTitle: Relational Approach to Universal Algebra Author: Jakub Opršal Department: Department of Algebra Supervisor: doc. Libor Barto, Ph.D., Department of Algebra Abstract: We give some descriptions of certain algebraic properties using rela- tions and relational structures. In the first part, we focus on Neumann's lattice of interpretability types of varieties. First, we prove a characterization of vari- eties defined by linear identities, and we prove that some conditions cannot be characterized by linear identities. Next, we provide a partial result on Taylor's modularity conjecture, and we discuss several related problems. Namely, we show that the interpretability join of two idempotent varieties that are not congruence modular is not congruence modular either, and the analogue for idempotent va- rieties with a cube term. In the second part, we give a relational description of higher commutator operators, which were introduced by Bulatov, in varieties with a Mal'cev term. Furthermore, we use this result to prove that for every algebra with a Mal'cev term there exists a largest clone containing the Mal'cev operation and having the same congruence lattice and the same higher commu- tator operators as the original algebra, and to describe explicit (though infinite) set of identities describing supernilpotence...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.codeP
dc.identifier.lisID990020799140106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV