Problém realizace von Neumannovsky regulárních okruhů
Problém realizace von Neumannovsky regulárních okruhů
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/77704Identifiers
Study Information System: 145816
Collections
- Kvalifikační práce [11233]
Author
Advisor
Referee
Žemlička, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical structures
Department
Department of Algebra
Date of defense
7. 9. 2015
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
Ring, von Neumannovsky regulární, Rieszův monoidKeywords (English)
Ring, von Neumann regular, Riesz monoidNázev práce: Problém realizace von Neumannovsky regulárních okruhů Autor: Samuel Mokriš Katedra: Katedra algebry Vedoucí diplomové práce: Mgr. Pavel Růžička, Ph.D., Katedra algebry Abstrakt: Každému okruhu R s jednotkou lze přiřadit komutativní monoid V (R) tříd izomor- fismů konečně generovaných pravých projektivních R-modulů. Příslušný monoid je redukovaný s jednotkou, v případě von neumannovsky regulárních okruhů má navíc Rieszovu zjemňovací vlastnost. Práce se zabývá otázkou, za jakých podmínek je naopak redukovaný komuta- tivní zjemňovací monoid s jednotkou realizovatelný jako V (R) nějakého von neumannovsky regulárního okruhu či dokonce regulární algebry, zejména pro spočetné monoidy. Jsou uve- dena dvě možná zobecnění konstrukce V (R) pro okruhy bez jednotky a je rozebrán vztah mezi nimi. Za tímto účelem jsou rozvíjeny vlastnosti okruhů s lokálními jednotkami a modulů nad takovými okruhy. Dále je v práci předvedena konstrukce leavittovských algeber cest nad ori- entovanými grafy s násobnými hranami a kontrukce monoidu asociovaného s grafem, který je izomorfní monoidu V (R) leavittovské algebry cest nad týmž grafem. Tyto metody jsou využity k předvedení, jak realizovat direktní sjednocení konečně...
Title: The realization problem for von Neumann regular rings Author: Samuel Mokriš Department: Department of Algebra Supervisor of the master thesis: Mgr. Pavel Růžička, Ph.D., Department of Algebra Abstract: With every unital ring R, one can associate the abelian monoid V (R) of isomor- phism classes of finitely generated projective right R-modules. Said monoid is a conical monoid with order-unit. Moreover, for von Neumann regular rings, it satisfies the Riesz refinement property. In the thesis, we deal with the question, under what conditions an abelian conical re- finement monoid with order-unit can be realized as V (R) for some unital von Neumann regular ring or algebra, with emphasis on countable monoids. Two generalizations of the construction of V (R) to the context of nonunital rings are presented and their interrelation is analyzed. To that end, necessary properties of rings with local units and modules over such rings are devel- oped. Further, the construction of Leavitt path algebras over quivers is presented, as well as the construction of a monoid associated with a quiver that is isomorphic to V (R) of the Leavitt path algebra over the same quiver. These methods are then used to realize directed unions of finitely generated free abelian monoids as V (R) of algebras over any given field. A method...