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s jednotkou, v piipadé von neumannovsky reguldrnich okruhi mé navic Rieszovu zjemiiovaci
vlastnost. Prace se zabyva otazkou, za jakych podminek je naopak redukovany komuta-
tivn{ zjemnovac{ monoid s jednotkou realizovatelny jako V (R) néjakého von neumannovsky
regularniho okruhu ¢i dokonce regularni algebry, zejména pro spocetné monoidy. Jsou uve-
dena dvé moznd zobecnéni konstrukee V (R) pro okruhy bez jednotky a je rozebran vztah mezi
nimi. Za timto ucelem jsou rozvijeny vlastnosti okruhtu s lokalnimi jednotkami a modult nad
takovymi okruhy. Daéle je v praci pfedvedena konstrukce leavittovskych algeber cest nad ori-
entovanymi grafy s nasobnymi hranami a kontrukce monoidu asociovaného s grafem, ktery
je izomorfni monoidu V (R) leavittovské algebry cest nad tymz grafem. Tyto metody jsou
vyuzity k predvedeni, jak realizovat direktni sjednoceni kone¢né generovanych volnych komu-
tativnich monoidu jako V (R) pro regularni algebru nad libovolnym télesem. Rovnéz je v préci
prezentovan zpusob, jak konstruovat redukované komutativni zjemnovaci monoidy, které nejsou
realizovatelné jako V (R) pro reguldrni algebry nad zddnym nespocetnym télesem. Na zdveér
préace je popséan monoid V (R) algebry R nad spocetnym télesem sestrojené Chuangem a Leem.
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Abstract: With every unital ring R, one can associate the abelian monoid V (R) of isomor-
phism classes of finitely generated projective right R-modules. Said monoid is a conical monoid
with order-unit. Moreover, for von Neumann regular rings, it satisfies the Riesz refinement
property. In the thesis, we deal with the question, under what conditions an abelian conical re-
finement monoid with order-unit can be realized as V (R) for some unital von Neumann regular
ring or algebra, with emphasis on countable monoids. Two generalizations of the construction
of V(R) to the context of nonunital rings are presented and their interrelation is analyzed. To
that end, necessary properties of rings with local units and modules over such rings are devel-
oped. Further, the construction of Leavitt path algebras over quivers is presented, as well as
the construction of a monoid associated with a quiver that is isomorphic to V (R) of the Leavitt
path algebra over the same quiver. These methods are then used to realize directed unions of
finitely generated free abelian monoids as V (R) of algebras over any given field. A method
of constructing abelian conical refinement monoids that are not realizable as V (R) of regular
algebras over any uncountable field is also presented. The thesis is concluded by computation
of the monoid V (R) of an algebra R over a countable field, constructed by Chuang and Lee.
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Introduction

With V (R) denoting the abelian monoid of finitely generated projective mod-
ules over a unital ring R, where the monoid operation is induced by direct sums,
the following is still an outstanding open problem:

Fundamental open problem ((Goodearl, 1995, p. 254)). Which abelian
monoids arise as V (R)’s for unital von Neumann regular rings R?

The motivation of the problem is the effort to understand what direct sum
decomposition properties hold in proj-R, the category of finitely generated pro-
jective R-modules, for unital von Neumann regular rings R. The transition to
monoids is based on the premise that some pathological decomposition properties
are constructed more easily in the language of monoids rather than von Neumann
regular rings. Hence, should one fully aximoatize the monoids arising as V (R)’s
in monoid-theoretic terms, then there would be no need to construct rings when
demontrating decomposition properties of the category proj-R (with R unital
von Neumann regular).

We leave further discussion regarding the realization problem and some open
problems related with it to Section Given some recent results on nonunital
von Neumann regular algebras, we state some variations on the problems to in-
corporate nonunital rings there. Before doing so, we shall write down all required
monoid-related definitions in Section[[.T] The monoid-theoretic terminology used
is standard; for convenience, we sum it up in one place nevertheless.

In Chapter 2] we shall discuss nonunital von Neumann regular rings and rings
with local units. We will not need any class of nonunital rings more general
than rings with local units due to the fact that every von Neumann regular ring
has local units (Proposition 2.7). We define the category of unitary modules
over a ring with local units and deal with nonunital Morita equivalence. Then
we present two equivalent generalizations of the functor V (—) to the nonunital
context and verify some of the functor’s properties in detail. Namely, we show
that it is continuous (Proposition 2.20]), that every ring is mapped by V (—) to the
same monoid as the opposite ring (Proposition [2.27)), that the two generalizations
are indeed equivalent (Proposition 2.34]), and that Morita equivalent rings are
mapped to the same monoid (Theorem 2:45)).

In Chapter 3] we overview recent results on the so-called Leavitt path algebras
that contribute greatly to solving the realization problem, as they yield a class
of abelian monoids that can be realized even by von Neumann regular algebras
over arbitrary fields. We use the construcion of Leavitt path algebras to realize
the additive monoid of nonnegative rational numbers as V (—) of a nonunital von
Neumann regular algebra in a nonstandard fashion (Subsection B.22). We also



show how any directed union of finitely generated free abelian monoids can be
realized in a similar way.

Then, in Chapter dl we present a criterion by Goodearl for an abelian monoid
to not be realizable by von Neumann regular algebras over any uncountable
fields (Proposition [LI7]). We also present a way of constructing such monoids
(Proposition [£.12).

In the final chapter, we compute the monoid V (R) for the regular unital ring
R constructed in (Chuang — Led (1990), as, to our knowledge, this monoid has not
been computed anywhere in the literature.

Some conventions

Throughout the thesis, a ring always means an associative ring, but not neces-
sarily with a unit; we denote the category of (possibly nonunital) rings by @W

We allow the singleton 0 := {0 } as a nonunital ring; it is the zero object in @W
However, for unital rings (and for fields in particular), we assume that 0 # 1.

A module will always mean a right module, unitary in the sense of Defini-
tion 2.8 nevertheless, we shall sometimes add the adjective “right” or “unitary”
for emphasis. For a ring I, we denote the category of unitary right I-modules by
Mod-I. For a unital ring R, proj-R denotes the category of finitely generated
projective right R-modules.

For a ring I, we denote by /°P the ring opposite to I, and by Idemp I the set
of all idempotents from I. If z € I, we denote by xI the set {zr | r € I }; we will
see that if I has local units, then x/ coincides with the principal right ideal in [
generated by x (Remark 2.6)).

For rings and algebras, “regular” will always mean “von Neumann regular”
(Definition 2.T]). All monoids in the thesis are abelian; hence, whenever we speak
of monoids, we mean abelian monoids, and denote the monoid operation by +.
The category of abelian monoids is denoted by M. We use Ny, Q2% and R*
to denote the additive monoids of nonnegative integers, nonnegative rational
numbers and real numbers, respectively. We also use Ny as a set when we do
not need its monoid structure, and we use N to denote the set of strictly positive
integers (i.e., N =Ny \ {0}) and Z for the set of all integers. For I a ring and
n € N, by M, (I) we mean the ring of n X n matrices over I.

Throughout the text, we use “iff” as an abbreviation of “if and only if”, and
we use “UMP” for the “universal mapping property” (of direct limits, kernels
etc.). “SES” stands for “short exact sequence”, and we write “w.l.o.g.” in place
of “without loss of generality”.

We use X Cgqp, M to denote that X is a finite subset of M, regardless of any
algebraic structure on M. We use the symbol U for disjoint unions.

By Id o~ we denote the identity functor on a category %While idy, will be
the identity morphism of an algebraic object M (monoid, ring, module, algebra).
Also, Id will denote the identity matrix, either finite or infinite; whenever we
need to specify its size, an appropriate subscript is be added. The symbol Ker ¢
denotes the module-theoretic kernel of a ring or module homomorphism ¢ (in
particular, it is a submodule of the domain of ¢), while ker ¢ stands for the
congruence generated by { (a,b) | ¢a = pb}. We use the latter only for monoid



homomorphisms.
We use the symbol [J in the following contexts:

e to signify the end of a proof of a claim within another proof (in this context,
O is followed by Claim and the number of the claim);

e to signify the end of a proof;
e to signify that a result taken from the literature is provided without proof;

e to signify that we will comment no further on the proof of a statement. This
includes observations, direct corollaries of preceding results, and statements

proofs of which have been hinted at enough prior to the statements in
question.

Whenever we say that a set is countable, we mean it is either finite or count-
ably infinite. If we need to stress that some set is of cardinality Ny, we say it is
countably infinite. In particular, when discussing quivers, we always imply that
they are finite or countably infinite.



Chapter 1

The problem

1.1 Monoid properties used

Given a monoid M, putting z < y for z,y € M iff there exists a z € M
satisfying x4z = y defines a preorder relation on M, called the algebraic preorder.
An order-unit in a monoid M is an element u € M such that for each x € M,
there exists an n € N satisfying z < nad] in the algebraic preorder (i.e., for each
x € M, there exist a z € M and an n € N such that = + z = nu). An order-ideal
in a monoid M is a submonoid S of M such that whenever z € S and y < z in
the algebraic preorder on M, then y € S.

A monoid is conical if whenver z +y =0, then x =0 = y.

Observation 1.1. A finite subdirect product of conical monoids (that is, a sub-
monoid of a direct product of finitely many conical monoids) is a conical monoid
as well. 0J

A monoid M satisfies the Riesz refinement property if whenever y; + yo =
1+ is an equality of sums in M, then there exist elements 211, 219, 201, 299 € M
such that

T1 = 211 + 212, Ty = Zo1 + 299,

Y1 = 211 + 2921, Yo = 212 + Z92.

Instead of writing down the above equalities, we use the following matrix notation:

‘yl Y2
Ty | 211 212 - (1.1)

T2 | 221 222

We say that (1)) is a refinement of the equality y; + yo = 1 + 22 in M. A
monoid satisfying the Riesz refinement property is called a refinement monoid.

Observation 1.2. An order-ideal in a refinement monoid is a refinement monoid.

O

'We use multiplication of an element u of an abelian monoid by an element n € Ny as a
short-hand notation for taking the sum of n copies of u.



A monoid M is unperforated if whenever nx < ny holds for z,y € M and
n € N, then x < y also holds. A cancellative monoid is a monoid M such that
whenever x,y, z € M satisfy x+ 2 = y+z, then x = y holds. A separative monoid
is a monoid M such that whenever x,y € M satisty t+x =2 +y =y + vy, then
x = y holds.

A monoid M is stably finite if for all x,y € M, x +y = x implies that y = 0.

1.2 Therealization problem and some of its vari-
ations

We say that a monoid is realizable or realized by R if it is isomorphic to
the monoid V (R). In order for a monoid M to be realizable by some unital
regular ring R, there are—apart from M being abelian—three known necessary
conditions:

(V1) M is conical by Proposition 2.36
(V2) M is a refinement monoid by Proposition 237 and

(V3) M has an order-unit by Observation 2.38]

Hence, a question to ask is whether all conical refinement monoids with
order-unit are realizable by unital regular rings. This would be in analogy with
(Bergman, 1974, Theorem 6.4), where it is shown that every conical abelian
monoid with order-unit is realizable by an algebra over any given field. However,
in the context of regular rings, not all monoids satisfying [(V1)] |(V2)| and |(V3)|
are realizable: It is proved in [Wehrung (1998) that there exists a conical refine-
ment monoid of cardinality Ny with order-unit that cannot be realized by any
unital regular ring (Wehrung, 1998, Corollary 2.12 and the paragraph following
it). Still, it is of interest what the situation in smaller cardinalities is. Hence, the
question is the following:

Open problem 1.3 ((Ard, (c2009, Realization problem for von Neumann regular
rings)). Is every countable conical refinement monoid realizable by a regular ring?

Let us take note that there is no mention of the monoids having order-unit
or the rings being unital in Open problem [I.3} we will get back to this in a little
while.

As Bergman’s realization result actually yields algebras over arbitrary fields,
there is a natural variation on Open problem

Problem 1.4 ((Ara, 2009, Realization problem for von Neumann regular K-
algebras)). Let K be a fixed field. Is every countable conical refinement monoid
realizable by a von Neumann regular K-algebra?

For uncountable fields, Problem [[.4] has already been answered in the nega-
tive, as shown in Proposition [£I0—in fact, we devote Chapter d to developing
ways of constructing countable conical refinement monoids not realizable by reg-
ular algebras over uncountable fields. However, for the monoids constructed in
Chapter @l we do not a priori know whether they can be realized by regular rings
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or regular algebras over countable fields. For countable fields, Problem [1.4]is still
open.

Opposed to results from Chapter [, by recent results of |Ara et all (2007) and
Ara — Brustenga (2007), there is a class of countable conical refinement monoids
realizable by unital regular algebras over any given field; we discuss the results
in Chapter Bl With a suitable generalization of V (I) to incorporate nonunital
rings I (see Section 23]), said results include a wider class of monoids that are
realizable by (in general nonunital) regular algebras over arbitrary fields. Due to
condition , monoids without order-unit cannot be realized by unital rings;
nevertheless, there are such monoids that are realizable by nonunital regular
algebras, see e.g. Example B.4l Not including conditions of order-units and
unital rings in Open problem [[3] thus makes the problem more general.

Since results presented in Chapter [ also include realizations of monoids with
order-units by nonunital regular algebras, while we do not know whether they
are realizable by unital ones (Example B.I8]), we state the following variation on
Open problem

Problem 1.5. Is there a countable conical refinement monoid with order-unit
that is realizable by a nonunital regular ring, but not by a unital regular ring?

In|Goodearl (c1995), more questions on general properties of V (R) and proj-R
are raised, e.g. whether all V (R)’s are separative. We mention this problem only
briefly in connection with Chapter Bf more on recent results on problems from
Goodear] (¢1995) can be found in the survey |[Ara (c2009).



Chapter 2

Regular rings and rings with
local units

Definitions in generalizations of the standard module theory for modules over
nonunital rings vary from author to author. In this place, we develop some of the
theory for modules over rings with local units that we need manually.

Definition 2.1. A ring [ is regular if for every x € I, there exists a y € I such
that xyx = x. Such (in general not unique) element y is called a quasi-inverse of
x.

Remark 2.2. As opposed to unital rings, for a general ring I, the set zI =
{xr | r €I} need not contain z as its element. However, this is not the case
when [ is regular: For, if x,y € [ satisfy zyxr = z, then x = z(yx) € zl.
Since the set x[ is closed under addition in I, we see that it is a right ideal
in I containing x. The element x cannot be contained in any strictly smaller
ideal (inclusion-wise), whence xI is the principal right ideal in I generated by x.
Moreover, as xyxy = xy, the element xy is an idempotent in I, and it is clear that
xl = zyl. Thus, in a regular ring, every principal right ideal is generated by an
idempotent. Similarly to unital regular rings, this extends to finitely generated
right ideals:

Proposition 2.3. For a reqular ring I, each finitely generated right ideal in I is
principal, and as such generated by an idempotent.

Proof. Due to Remark 2.2, we can verbatim use the proof of implication (b)=-(c)
from (Goodearl, [1979, Theorem 1.1). O

Since the definition of regular rings is left-right symmetric, Proposition 2.3]
also holds if we replace the word “right” with “left”.

Corollary 2.4. For a unital reqular ring R, every finitely generated right ideal
i R 1s a projective R-module.

Proof. With the finitely generated right ideal expressible as e R by Proposition[2.3]
we see that R=eR® (1 — e)R. O

Definition 2.5. A ring [ is a ring with local units provided that for every finite
subset X of I, there is an e € Idemp I such that X is contained in ele. Note that
X Celeiff ex =z = xe holds for all x € X).
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Remark 2.6. If z is an element of a ring / with local units, then applying
Definition to the set {x} C I yields in particular that € z/. Similarly
to the case of regular rings, we can thus write x[ for the principal right ideal
generated by x. Also, note that in any ring I, the empty set is contained in the
set 0 = 0/0. Hence, whenever inquiring whether a ring has local units, we only
check the defining conditions for nonempty finite subsets of .

Proposition 2.7. Every reqular ring is a ring with local units.

Proof. Let I be regular and let zy,...,x, € I with n > 1. By Proposition 2.3]
there is an idempotent ¢ in [ satisfying ¢ = x1I + ...x,I. Then gx; = x;
holds for all # = 1,...,n. From the version of Proposition 2.3 for left ideals,
there is an idempotent f in [ satisfying gf = g and x;f = x; for all :. Put
e:= f+g— fg;it follows from gf = g and from f and g being idempotent that

e=f+fog—f9+9f+9*—9fg—9f*—gfg+gfgf =e. For any i, we have:
ex; = fai + g — fgr; = foi+ai — foi=xi = f + g — x: fg = we.

Thus, given any X Cg, I, there is an idempotent e € R satisfying X C ele, as
desired. 0

2.1 Unitary modules over nonunital rings

Once we lose the condition that rings be unital, we shall seek a replacement
for the condition that modules be unitary (in the classical sense that m - 1z =
m for all elements m of a right R-module); for, by leaving it out without any
replacement, the category of I-modules would become uncomfortably large (e.g.,
every abelian group with zero multiplication would be an I-module). To obviate
this inconvenience, there is a generalization of the classical unitarity condition:

Definition 2.8. A (right) module M over a ring I is wnitary provided that
MI = M, that is, for every m € M there are my,...,m, € M and ry,...,7r, € I
such that m = mqyry + -+ + m,r,. By Mod-I, we shall denote the category of
unitary right I-modules.

Remark 2.9. If R is a unital ring, if M is a unitary R-module in the sense of
Definition 2.8 and if m € M, we can write m = > m;r;, so

m-1lp= (ijrj> -lR:ij-(rj-lR) :ijrj =m

holds. Thus, for unital rings, unitary modules in the sense of Definition 2.8 are
precisely those that are unitary in the classical sense.

Lemma 2.10. If I is a ring with local units, then an I-module M is unitary if
and only if for each m € M, there is an idempotent e € I such that me = m.

Proof. The if-part is clear. For the only-if-part, let m € M = MI. Then m =
> myr;. Since I has local units, we can find an idempotent e satisfying rje = r;
for all j. Then,

m-e= <ijrj)e:ij(rje) :ij'r’j:m. O

10



From now on, unless stated otherwise, by a module we always mean a unitary
module.

Very much like in the category Mod-R with R a unital ring, we may define
some categorical terms in Mod -7 with [ a ring with local units as concrete mod-
ules and morphisms; namely, we define kernels, images, cokernels and the zero
module in Mod -1 as is standard in Mod -R. It is easy to check that a morphism
in Mod -7 is injective iff its kernel is zero, and this happens iff the morphism is
a monomorphism. We give a proof that epimorphisms are precisely surjective
homomorphisms:

Lemma 2.11. Let I be a ring and A —>— B a morphism in Mod -I. Then
@ 1s an epimorphism in Mod -1 iff Imp = B.
Proof. First, suppose that ¢ is onto. Let us have

«

A—*sp~ %

in Mod-I with awp = . Then o f = Bl f; since Im ¢ = B, we conclude that
a = . We have thus shown that ¢ is an epimorphism.

For the converse, let ¢ be an epimorphism in Mod-I. Let 7 : B — B/Imp
be the canonical projection; then 7 is onto and mp = 0. We then have

A—*5B87 B/my
S

in Mod -/ with m¢ = 0 = Og. Since ¢ is an epimorphism, it follows that 7 = 0.
As 7 is onto, we conclude that Im ¢ = B. O

Also, Mod -1 is an exact abelian category (in the sense of (Mitchell, 1965, §1.15
and §1.20)), and we note that ¢ : A — B is a monomorphism iff the sequence

0 A—2— B isexact, and ¢ is an epimorphism if A4 —~— B 0

is exact.
Lemma 2.12. If I is a ring with local units and M € Mod -1, then there is a
surjective homomorphism 1Y I m for some set A, i.e., every I-module

18 the epimorphic image of a direct sum of copies of I.

Proof. For each m € M, the map [ wi)% M is an I-module homomorphism.

Since M is unitary, there is, by Lemma .10, an idempotent e € I satisfying m =
me = fm(e), so m is in the image of f,,. Take f := &P, c5; fm : IM s M. O

2.2 Morita equivalence for rings with local units

Definition 2.13. We say that rings I, J are Morita equivalent if the categories
Mod-I, Mod-J are additively equivalent, i.e., there are additive functors G :
Mod-I — Mod-J and H : Mod-J — Mod-I such that GH is naturally

equivalent to Idyeq-; and HG is naturally equivalent to Idyeq-s-

11



Remark 2.14. Our definition of Mod -1, and thus also the definition of Morita
equivalence, follows Anh — Marki (1987). For nonunital rings, some authors
use other definitions of Mod -1, which carry over to Morita equivalence meaning
equivalence of a different pair of categories—e.g., in |Goodear] (2009), Mod-1
denotes the category of unitary modules in our sense (albeit they are called “full”
instead) that are also “nondegenerate”, meaning that in any module, 0 is its only
element x satisfying £/ = 0. Thus, when using results from the literature, we
have to take heed of the definitions that the particular author uses.

Proposition 2.15. Let I,J be rings with local units Morita equivalent via G :
Mod -I — Mod -J and H : Mod-J — Mod -I. Then the functors G and H
preserve direct sums.

Proof. Let, say, (M,|a € A) be a system of I[-modules. Then, using the natu-
ral equivalences HG ~ Idyoq-r and GH =~ Idyeq.; and the coproduct UMP of
@D,.cs Mo in Mod -1, one verifies that G (., Ma) satisfies the UMP for coprod-
uct of the system (GM,|o € A) in Mod-J. Thus, G (B,cx Ma) = B ,cp GM,.

]

In the process of proving Theorem 2.45] we shall need the fact that, in analogy
with the unital case, the functors G, H in a Morita equivalence are necessarily
exact. Due to Lemma (taken from [Anh — Marki (1987)), we only need to be
concerned by the tensor functor and by a variation on the Hom functor (for the
variation and its justification, see Remark 2.I8)). Let us begin with the tensor
functor:

For I,J rings and M;, ;N; (unitary) modules, there is a right J-module
structure on M ®; N given by (m ® n) - j := m ® (n - j); this is proved as
in (Anderson — Fuller, 1992, Proposition 19.5) for modules over unital rings, as
multiplication by 1 does not occur in the proof. We only need to check that
M ®; N is, as a J-module, unitary. To that end, note that as an abelian group,
(M ® N)J is generated by elements (m ® n)j with m € M, n € N and j € J.
As N is a unitary J-module, its additive group is generated by elements nj with
n € N and j € J; in turn, the additive group M ® (NJ) = M ® N is generated
by elements m ® (nj) (m € M,n € N,j € J). Thus, as additive groups, M @ N
and (M ® N)J are generated by the same sets of elements, whence they coincide.

Hence, with ;N; a unitary bimodule, sending M € Mod-I to M ®; N is a
map of objects of Mod-I to objects of Mod-J. As in (Anderson — Fuller, 1992,
Theorem 19.10), one shows that:

Proposition 2.16. Let I, J be rings and ;N; a bimodule. Then
— ®r N : Mod-I — Mod-J
1s an additive functor. O

Now that we have a well-defined tensor functor between relevant categories,
we shall prove that it is an epifunctor:

Lemma 2.17. The functor — ® N of Proposition[2.10 preserves epimorphisms.
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Proof. Let A; —— B, >0  be exact in Mod-I; we want to prove that

then A®; N M B ®; N is an epimorphism in Mod-J.

Let b € B, n € N. By surjectivity of ¢ (Lemma[2.TT]), b = ¢a for some a € A.
Then

bon=(pa)®n = (p®@ridy)(a®n) € Imy @ idy .

Thus, the set {b®@n € B®; N |be B,n € N} generating B ®; N is a subset
of Imy ®; idy, whence ¢ ®; idy is onto. Consequently, by Lemma 211l the
morphism ¢ ®; idy is an epimorphism in Mod-J. U

Remark 2.18. For B € Mod-I and A € J-Mod-I a bimodule (unitary both
as a left J-module and as a right I-module), the abelian group Hom; (A, B)
can be given a (not necessarily unitary) right J-module structure in a standard
way: For ¢ € Hom; (A, B) and x € J, put (p-x)a := ¢(x-a) for all a € A.
However, the resulting right J-module need not be unitary: As an example, take
J = K“ for some field K. We see that J is a nonunital regular algebra with
local units. Suppose now that Homj (J, J) is a unitary right J-module. Then,
by Lemma 2.10] there is an idempotent u € J satisfying id; -u = id;. However,
since J = K“ is an infinite direct sum, there exists a nonzero v € J such that
uv = 0. Then 0 # v = idyv = (idy -u)v = id;(uv) = wv = 0, a contradiction.
Thus, we have found an example of the J-module Hom; (A, B) not being unitary.

To fix this, instead of the additive group Hom; (A, B), we shall focus on
Hom;(A,B)J = {> ¢ x|y € Hom; (A B),z € J}. Since rings with local
units are idempotent, this group—with the J-module structure from Hom; (A, B)—
is a unitary J-module, i.e., an element of Mod-.J.

It is easy to check that if ¢ : B — (' is a morphism in Mod-/ and if
A € J-Mod-I, then the assignment

Homy (A, ¢) J : Hom; (A, B) J — Hom; (A,C) J
Yy
is a J-module homomorphism. Clearly, if ¢’ : C — D is another /-homomorphism,

then (Hom; (A, ¢') J)o(Homy; (A, ¢) J) = Homy (A, ¢'¢) J, and Hom; (A,idg) J =
idtiom, (B,c)s, whence Homy (A, —) J is a functor from Mod-I to Mod-J.

Lemma 2.19. Let I, J be rings with local units and let A € J-Mod -I. Then the

functor Homy (A, —) J : Mod -I — Mod -J is additive and preserves monomor-
phisms.

Proof. Additivity is clear from the definition. For preservation of monomor-
phisms, let us have

A

|+

0 B—25C

in Mod-I with the row exact and suppose that 0 = (Hom; (A4, p) J)Y = wib.
Then, by the UMP of the kernel of ¢, the morphism 9 factors through Ker ¢ = 0,
whence ¢ = 0. Thus, for ¢ a monomorphism, we have shown that Hom; (A4, ¢) J
is injective. 0

13



Now, translating a part of (Anh — Marki, [1987, Theorem 2.1) into the language
of right modules, we have:

Lemma 2.20. Let I, J be rings with local units Morita equivalent via
a
Mod -I T/ Mod -J.
H

Set P:= H(J;) and Q := G(I;). Then P € J-Mod-I, Q € I-Mod -J and:
(i) G ~ Hom; (P,—)J, H ~ Hom; (Q,—) I;
(ii)) G~—®;Q, H~—®; P. O

Proposition 2.21. Let I,J be rings with local units Morita equivalent via
a
Mod -1 =—— Mod -J.
H

Then the functors G and H are ezact.

Proof. From part of Lemma [2.20] and from Lemma .19, we see that the
functors G and H preserve monomorphisms, while from Lemma [2Z.20(ii)| and from
Lemma [2.17] it follows that G and H preserve epimorphisms.

Let us have a SES 0 A2, ¢ 0 in Mod-I; we

GB

want to prove that then 0 —— GA —%%5 GB GC 0 isa SES

in Mod-J. Since (GB)(Ga) = G(fa) = GO = 0 and since G peserves monomor-
phisms and epimorphisms, we only need to verify that Ker G5 C Im Ga.

Let z € KerGB. Denote by ¢, : xJ — GB the inclusion map of the J-
submodule of GB generated by x into GB. Applying H and the natural iso-
morphism 7 : HG — Idyoq.7, we have the following commutative diagram in

Mod-I:

0 y A a y B b C 0

nA TE nB Tﬁ nc T:

00— HGA -2, gaB "9 . oo —5 0

HLmT

H(zJ).

Note that since the top row in the above diagram is exact, so is the middle one, as
14,78, Nc are isomorphisms. In particular, HGa : HGA — HG B satisfies the
UMP of the kernel of HGS. Since z € Ker G5, we have (Gf3)t, = 0, whence also
(HGB)Ht, = 0. Thus, by the UMP of the kernel of HG«, the morphism He,
factors through HGa, i.e., there is a morphism £ : H(xJ) — HGA satisfying
Hu, = (HGa)é.
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Applying G' and the natural isomorphism ¢ : GH — Idyjq.7, We obtain the
following commutative diagram in Mod-.J:

GB

GA (e |~ zJ

Caa |~ GHGB Ceg |~

GHG«
e GH(

GHGA «

zJ).

Chasing this diagram, we see that

to = Cap(GH) (o = Cap(GHGa)(GE)(,; = (Ga)aa(GE)C,; -

In particular, we have shown that for a general z € Ker G, we have z € Im ¢, C
Im Ga, so Ker GS C Im Ga, which is what was left to be proved. O

2.3 The functor V (—)

In the study of unital regular rings, the monoid V (R) is defined as the monoid
of isomorphism classes of finitely generated projective right R-modules, with the
monoid operation defined by [P] + [Q] := [P ® Q] (Goodearl, (1995, §5). An
equivalent definition is as the monoid of equivalence classes of idempotent infinite
matrices over R[] The latter definition, which we will informally call the “idem-
potent picture”E is easily generalized for nonunital rings (see Definition [2.24)).
In Definition 2.28] we present a generalization of the construction via projective
modules (the so-called “projective picture”) for nonunital rings. We prove in
Proposition 2.34] that up to isomorphism, we end up with the same monoid either
way. Nevertheless, it is useful to keep both definitions and always use the more
convenient one; for example, we use the “idempotent picture” while proving that
V (—) is in fact a functor (moreover, a continuous one, see Proposition 2.26)),
while we use the “projective picture” to prove that the resulting monoid has the
Riesz refinement property (Proposition 2.37).

2.3.1 Definition of V (—) using idempotents
Let I be a ring. For square matrices a € M, (I), b € M;(I), we denote by

! 0) € M, x(I). We think of the

a @ b the block sum of @ and b, i.e., a®b := <O b

!This construction is also used in the study of C*-algebras, see (Blackadaxr, 1998, Definition
5.1.2).
2The terminology of “idempotent” and “projective” picture is taken from |Goodearl (2009).
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injective map
M, (I) — M, 1(I)

a—a®0= a 0
~\0 0

as of inclusion of rings, and we let M (/) be the directed union of all M, (I)’s.
Hence, elements of M, (I) can be viewed as (countably) infinite square matrices
over I with only finitely many nonzero entries. For idempotent matrices e, g €
M (I), we say that e and g are equivalent and write e ~ ¢ if there exist x,y €
M. (I) such that exgye = e and gyexg = g; clearly, ~ is an equivalence relation
on the set of all idempotent elements of M. (I).

In the unital case, the notion of two matrices being equivalent is a way of say-
ing that the images of the endomorphisms of free modules given by the matrices
are isomorphic:

Lemma 2.22. If R is a unital ring, if e, g are idempotent matrices over R with
e € M,(R) € M(R) and g € M,,(R) C My (R) and if x € My (R), then left
multiplication by exg defines a right R-module homomorphism gR™ — eR™.
In particular, if y € My (R) and if exgye = e and gyexg = g hold, then the
R-modules eR" and gR™ are isomorphic.

Proof. Straightforward, using that left multiplication by an element of R is a
right R-module homomorphism Rr — Rp (Anderson — Fuller, 1992, Proposition
4.11). O

Observation 2.23. For a ring homomorphism ¢ : [ — J andn € {1,2,...} U
{0}, replacing entries in matrices over I by their respective images under ¢
defines a ring homomorphism M, () : M,,(I) — M,(J). Moreover, the assign-
ment M,(—) : o —> M,(p) is functorial. O

Definition 2.24. For a ring I, we define V (I) as the monoid of equivalence
classes of idempotents from M, (I) with addition induced from block sums, that
is, [e] + [g] == [e @ g].

For two rings I, J, observe that M, (I X J) ~ M. (I) x My(J). Moreover,
a pair of idempotent matrices from M (I x J) is equivalent iff both the cor-
responding pairs of matrices over I and J are equivalent. Hence we can state
that:

Observation 2.25. For I and J rings, there is a monoid isomorphismV (I x J) ~
V() xV(J). O

We shall now provide a detailed proof that V (—) can be also defined on ring
homomorphisms in a way that it forms a continuous functor from the category
of nonunital rings to the category of abelian monoids:

Proposition 2.26. V (—) is a functor from ‘6/?’% to Mew that preserves direct
limats.

Proof. For a ring homomorphism ¢ : I — J and [e] € V (I), let us put

V(p)le] = [Mu(#)(e)]- (2.1)



Claim 1. The assignment [e] — V () [e] is a well-defined map V () : V (I) —
V(J).

Proof of Claim. If e ~ g in M, (I), then we have exgye = e and gyexrg =
g for some z,y € M, (I). Applying the homomorphism M. (¢), we obtain
Mo (@)(€e) ~ Moo(9)(g) via M (¢)(z) and My ()(y), so the assignment [e] —
[Mo(¢)(e)] is independent of the choice of representative of [e]. Since M. () is
a homomorphism, we also see that if e is an idempotent, then so is M. (p)(e),
whence V () [e] € V (J). O Claim 1.

Observe that the ring homomorphism M (¢) commutes with taking block
sums.From the definition of V (¢), we then arrive at

V(e)([e] +1g]) =V (p)[e @ gl = [Mu(p)(e ® g)] = [Mx(p)(e) ® Mws(9)(9)]
=V (p)[e] +V(¥) 9]

for any e, g € Idemp M, (I). Thus, the map V() : V(I) — V (J) above is in
fact a monoid homomorphism.

The functoriality of V (—) follows from M., (—) being functorial.

To establish that V (—) preserves direct limits, we use the following explicit
construction of direct limits in @W Let (I,|a € A) be a directed system of rings
with transition maps f7 : I, — I5 for a < 3. We define a ring I as follows:

e Elements of I: Equivalence classes of elements of the disjoint union (J I,,
acA
where x € 1,,y € Iz are equivalent if and only if there is a v > «,f

satisfying flz = f3y.

e Ring operations in I: For x € 1,,y € I3, there is a
the product and sum of [z] and [y] in I as [z] - [y] :

[z] + [y] == [f2(x) + f5(y)], respectively.

v > a,fin A; we define
= 1) - ()] and

It is routine to check that the operations above are well-defined (independent of
the choice of represenatives of [x] and [y], as well as of the choice of v), that the
neutral element in the sum operation is the common class of all 0’s in I,’s, that
—[x] = [—x] and that I with these operations constitutes a ring. It is also easy
to verify that I with the canonical maps

faily —1

satisfies the UMP defining the direct limit of the system (Iz|o € A) in Fup,
whence we can write I = hﬂ[a-

Suppose now that we have a directed system (I,|a € A) in @y with direct
limit [ = hﬂ I, constructed as above. We want to prove that V' (I) with the maps

V(fa) : V(1) — V() satisty the UMP defining ligﬂ/(]a) in .M. Suppose
M is an abelian monoid and suppose ¥, : V (I,) — M, o € A, are monoid
homorphisms satisfying

Vo = VgV (ff) whenever o < f3; (2.2)
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we are looking for a morphism ¢ : V (I) — M satisfying ¥V (f,) = ¢, for all
a € A, and we want to show that it is unique.

Until the end of the proof, let us write F,, instead of M (f,) for any a € A,
and F? instead of M., (f?) whenever o < 3. We thus have F, : My (I,) —
My (I) and F? : M, (I,) — My (Ig) replacing entries of matrices over I, by
their images under f, and f?, respectively. We will find this short-hand notation
particularly useful when writing down (2.3)) and its consequences.

Let e € Idemp M, (I). Since entries of e are in [ = lim /,, and only finitely
many of them are nonzero, there exists a § € A such that all entries of e are
in Im f3. Hence, there is a matrix é € My (Ig) such that Fge = e. However,
the matrix é need not be idempotent. Still, for any i, j, we have

F3((€%)i5) = (e%)i; = €3 = fa((€)s))

by idempotence of e. Then, by the construction of I, there is a 7;; > § such that
f37((€%)ig) = f37((€)). Take

v :=max { y;; | i,j € N such that (¢);; # 0 or (6%);; # 0} ;
note that we are taking maximum from a finite set. Then

Fje = Fj(é%) = (Fje)?

holds. Hence, é := Fjé € M (I,) is idempotent, so its equivalence class [€] is an
element of V (I,). Moreover, since fs = f, f3 holds and since V (—) is a functor,
€] is a preimage of [e] under V (f,) : V (I,) — V (). In order for ¥V (f,) = v,
to hold, we then have no choice but to put ¢(le]) = 1,([é]). Hence, once we
verify that by iterating this construction for every [e] € V (I), we obtain a well-
defined homomorphism ¢ : V (I) — M of abelian monoids (Claims 2 through
M), it is clear that ¢ will be the unigue homomorphism from V (I) to M to satisfy

o =WV (fo) for all a € A.

Claim 2. For e € Idemp M (1), if a,b € A and a € Idemp M (1,) and b €
Idemp Mo (1) satisfy V (fa) [a] = [e] =V (f5) [b], then ¥a[a] = ¥s[b)].

Proof of Claim. From the definition of V (—) on morphisms, we have

[Faa] =V (fa) la] =V (fs) [b] = [F0] -
Then, by the definition of equivalence of idempotents in M. (1), there are =,y €
M (I) satisfying

Faa = (Faa)z(Fsb)y(Faa) and } (2.3)

ng = (Fﬁb)]J(FQCL).T(ng)

Since = and y have only finitely many nonzero entries, there are v € A (w.l.o.g.,
v > a,f)and &,y € I, such that x = F,2,y = F,y. From (2.3]), from the equality
fo = f1f) and from F, = M.(f,) being a ring homomorphism, we obtain

Fo = (F,Fa)(B2) (B FJ0)(Fg)(FyFla) = B (Fla)2(Fb)j(Fla))  (24)

and, similarly,

Fob = E,((F3b)j(F]a)i(F;b)). (2.5)
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In particular, for any ¢, j, we obtain from (2.4)) that
(Faa)y = folayy) = (B (F2a)2(F30)i(F))) = 1, ((Fla)2(E30)i(Fa),)

holds in I. Then, from the construction of I, there is a (;; > v such that

18 (aig) = £ (((Fla)a(Fin)g(Fla) )
Take
¢ :=max{(; |4 j € Nsuch that a; # 0 or ((FJa)z (Fab)y(Fla)), 7 0};

then
FSa = FS((Fla)2(FJb)j(Fla)).

hold. Similarly, from (23] we derive that
Filb = FI((Fb)j(Fla)z(FJb))
holds for some n > «y. For £ := max{(,n}, we then have

Féa = (FSa)(F$2)(F§b)(Fiy)(Féa) and
F§b = (ng)(F )(Ffa)(F ) (F5b),

whence we conclude that [Fja] = [F gb} holds in V (I¢). Thus:

Yala] = v (V (£5) [a]) by @2,
= ¢ [F&(a)] by @.1),
= e | F5(0)]

— e (v (15) 1) by @),
= Yp(t] by (22,

as desired. O Claim 2.

Claim 3. For e,g € Idemp M, (I) with le] = [g] in V(I), if 8,7 € A and
é € Idemp M. (I5), g € Idemp M (I,) satisfy V (f3) [€] = [e] and [g] =V (f) ],
then 1gle] = y,[g]-

Proof of Claim. By the definition of equivalence in M, (), there are z,y €
M. (I) such that both

Fge = (Fge)x(F,g)y(Fse) and
Fg = (F9)y(Fse)z(F,g)

hold. As in the proof of Claim 2 we find a £ > 5,y and 7,7 € M (I¢) satistying
Fle = (Ffe ~)f(Fg g)g(Ff:) and
Fig = (F59)y(Fae)x(Fsg);
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thence, [Fgé] = [Ffg] holds in V (I¢). We conclude that

Ule) = vV (£5) 6] = sl FSe] = 5 [F3) = wev (£5) [3) = (). O Claim 3

By Claims ] a B we have a well-defined map ¢ : V(I) — M. To conclude
the proof of Proposition 2.26] it now only remains to verify that v is in fact a
morphism in M.

Claim 4. The map ¢ : V (I) — M is a monoid homomorphism.

Proof of Claim. For any a € A, we have [F,(0)] = [0], whence 1[0] = 1,[0] =0 €
M. Let now [e],[g] € V(I). Again, there are idempotents €, € Idemp M. (I,)
for some o € A satistying [Fné] = V (fa)[€] = [e] and [F,g] = V (f.) [9] = [9]-
Since V (f,) is a monoid homomorphism, we have

le@gl=le]+ 9] =V (fo) ([e] +[9]) =V (fa) [ D g].

Hence, ¥le ® g] = al& ® §] = Valé] + ¥alg) = vle] +¥lg). O Claim 4. 0

Next, we shall show that applying the functor V (=) to either a nonunital ring
I or to the ring opposite to I, I°P; yields the same monoid:

Proposition 2.27. Let I be a ring. Then V (I) ~V (I°P).

Proof. Throughout this proof, we shall denote multiplication in I°? by -, i.e.,
for x,y € I, x -op y := yx (with concatenation denoting multiplication in I). For
matrices over I, -, will mean matrix multiplication as matrices over I°P. For any
matrix m, the symbol mT will denote the matrix transpose of m, i.e., (m7);; = m;;
for all ¢, j.

Claim 1. The assignment

T Mo(I) — Moo(I°)

m—mT

s a ring antiisomorphism.

Proof of Claim. Let a,b € My (I). Then, for any i, j, we have:

(ab)ij = > by = > bijop ain = 3 _(0)jk -op (a7)ki = (b7 -op aT);i-
k k

k

Hence, (ab)T = bT-,,aT. As m — mT clearly preserves sums and the zero matrix,
it follows that it is an antihomomorphism. Starting with I°P instead of I, we also
have an antihomomorphism T : M (I°?) — My (I). Now that (mT)T = m for
any m € My (I) or m € My (I°), we conclude that T is an antiisomorphism.
O Claim 1.

For an idempotent matrix e € My (I), we have €T .o, €T = (ee)T = €T, so T
maps idempotent matrices to idempotent matrices.

Let e,g € Idemp M (I) be equivalent, i.e., by definition, e = exgye and
g = gyexg for some z,y € My (I). Then, by Claim [I]

T T T T T T T
el = (exgye)T =€ -op YT op 97 “op T “op €7, and

T — 4T . T. T. T. T
g =9G opT op€ op¥Y ‘opd,
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so eT ~ g7 as elements of My (I°?). It follows that T induces a map [—T] :
V(I) — V(I°?). Since (e @ g)T = €T @ g" and 07 = 0, the map [-T] is a
monoid homomorphism. Finally, the similarly constructed homomorphism [—T] :
V (I°?) — V() is a two-sided inverse of the above homomorphism, whence
these two are actually isomorphisms between V (I) and V (1°P). O

2.3.2 Definition of V (—) using projective modules

We shall now present a generalization of the classical definition of V (R) as the
monoid of isomorphism classes of finitely generated projective right R-modules
for a unital ring R into the nonunital setting and prove that the resulting monoid
is isomorphic to the monoid of equivalence classes of idempotent matrices.

Definition 2.28. For a ring [ and a unital ring R containing I as a two-sided
ideal, we put FP (I,R) := { P € proj-R | PI = P}, that is, FP (I, R) is the
class of all finitely generated projective right R-modules (unitary in the classical
sense) that are unitary as /-modules (with the I-structure defined by restriction
of scalars). We define Vi([) as the abelian monoid of isomorphism classes of
elements of FP (I, R) (as R-modules), with addition induced from direct sums.

Remark 2.29. For an arbitrary ring I, there always exists a unital ring R con-
taining I as a two-sided ideal; however, such ring R is by no means unique.
Possible constructions of R include formally adjoining a unit element to I, see
(Faithl, [1973. p. 384); or, one can construct the multiplier algebra as in Ara —
Perera (2000)@; or, starting with a regular ring, it is shown in [Fuchs — Halperin
(1964) how to embed it as a two-sided ideal in a regular unital ring. Nevertheless,
we show that the monoid Vg(I) is, up to isomorphism, independent of the choice
of R, see Proposition[2.34land Remark [2.351 Once this is established, we will drop
the subscript g from Vg(I) and denote by V (I) either of the monoids defined in
Definition 2.24] or Definition 2.28

Until Remark inclusive, let us fix I and R (I still being a two-sided
ideal in a unital ring R). We assume that [ is a ring with local units. For our
purposes, this assumption comes at no cost, since all regular rings have local units
(Proposition 2.7]).

We start the proof by constructing a monoid homomorphism from Vg(I) to
V (I); the first step is to find a suitable map from FP (I, R) to My (I):

Lemma 2.30. Let P € FP (I, R). Then thereis ann € N and an e € Idemp M,,(I)
satisfying P ~ eR"™ = el™ as R-modules.

Proof. Since P is a finitely generated projective R-module, it is isomorphic to
a direct summand of R"™ for some finite n. Hence, there are morphisms 7, ¢ in
Mod-R such that the following diagram is commutative and both the row and

3Although defined only for semiprime rings in |Ara — Perera (2000), the definition works
perfectly fine without the requirement of semiprimeness.
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the column in it are exact:

|
|

R"—— P 0.
Since 7wt = idp, the morphism e := (7w : R® — R" is idempotent. Since ¢ is

injective and 7 is surjective, we see that P ~ eR" via ¢. Identifying Endg(R")
with M, (R) in the standard way (with elements of R™ viewed as column vectors
and with matrices acting on the left, since we are dealing with right modules), we
view e as an idempotent element of M,(R) C M, (R). Then, for any i < n, the
i-th column of e is precisely the element e(b;) € eR", where b; is the i-th vector
in the canonical basis of R" (i.e., by = (1,0,...,0),bo = (0,1,0,...,0),...,b, =
0,...,0,1)).

We have eR" = P ~ P; from PI = P and from e being an R-module
homomorphism, it follows that eR™ = (eR™)I. Clearly, el™ C eR"; on the other
hand, since [ is an ideal in R, we have (eR™)I C el™. Put together, we have
P ~eR" = el™. It remains to show that e is in fact an element of M, (I). From
eR™ = el™, we have that eb; € el™ C I" for all ¢ < n. Hence, with columns of
e being the images of b;’s, we conclude that all entries of e are elements of I, as
desired. O

Remark 2.31. For an idempotent matrix e € M, (), clearly e/™ C eR". On
the other hand, since [ is an ideal in R and since e has entries in I, we have
eR"™ C I", so, from the idempotence of e, we obtain eR" = e(eR"™) C el”. So, as
sets, we have el™ = eR". Henceforth, we shall write e R" when viewing this set
as an R-module and el™ when viewing it as an /-module.
Since we assume that I has local units, we see that el™ = (el™)[: Indeed, as
T
an element of el™ C " is an n-tuple x = | : | with xy,...,x, € I, there is
xn
an idempotent u € [ sarisfying xu = x, whence x € (el™)I. We conclude that

eR" € FP (I, R).

It will be useful to have written down the following fact:

Observation 2.32. Ifg*> = g € M,,,(I) andn > m, then gR™ ~ (g 0 0 ) R™.0

Thanks to Lemma 2.30] whenever we deal with (isomorphism classes of) ele-
ments of FP (I, R), we can focus on idempotent matrices over I instead. However,
we should note that neither the matrix e of Lemma 2.30 nor its size is unique: for

example, (1)R ~ <(1] 8) R? = ((1] (1]) R? for any unital ring R. Nevertheless,

the matrix is unique up to equivalence:
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Lemma 2.33. If e € Idemp M, (I), g € Idemp M,,(I) satisfy eR" ~ gR™, then
e~ g as elements of M (I).

Proof. By Observation 2.32] we may w.l.o.g. suppose that n = m.
Let z,y be mutually inverse isomorphisms between eR" and gR":

Yy
~—

eR" gR™.
~_ _~

T

As eR"™ and gR"™ are both direct summands of R", both z,y can be extended
to endomorohisms of R™; hence, view z,y as elements of M,(R). Since I is an
ideal of R and since e, g are matrices over I, we see that exr and gy are—as
matrices—elements of M, (I). Since e and g are idempotent, they act as identity
on eR"™ and gR", respectively. With 2y = id.g» and yz = idggrn, we conclude
that e(ex)g(gy)e = (ex)(gy)e = xye = e and g(gy)e(ex)g = g, whence e ~ g. [

For [P] € Vg(I), put
p[P]:=le] € V(I), (2.6)
where e is any idempotent element of M, (I) satisfying eR" ~ P. By Lemma[2.30]
such e always exists; by Lemma 2.33] ¢[P] is independent of the choice of rep-

resentative P of [P] and is uniquely determined by [P]. Finally, observe that if
e2=e€ M,(I), g> =g € M,,(I), then

e 0
R"® gR™ ~ R 2.7
e ogrn = (¢ 1) @7)

o([eR"] + [gR™]) = ¢leR" ® gR™] = [e ® g] = [e] + [g] = p[eR"] + p[gR™].

All put together, ¢ : Vgr(I) — V (I) is a well-defined monoid homomorphism.
Finding its inverse is easier:

For e € Idemp M, (1), there is an n < oo such that e € M, (I); by Observa-
tion 2.32] eR™ ~ eR™ for any other m < oo satisfying e € M,,(I). Moreover, by
Remark 2311 we have eR™ € FP (I, R). Hence, assigning the isomorphism class
of [eR"] to e is a well-defined map from Idemp M., (I) to Vr(I).

Suppose now that e, g are equivalent idempotent matrices over I satisfying
ee M,(I) C My(I), g € M,,,(I) € My (I). Then, by Lemma 222 eR" ~ gR™
holds, so the elements [eR"] and [gR™] of Vg(I) are equal. With the preceding
paragraph, we have thus shown that mapping [e] € V (I) to [eR"] € Vg(I) for n
large enough is a well-defined map. As above, we see from (2.7)) that this map is
a monoid homomorphism. It is clearly an inverse of ¢, so we can conclude:

Proposition 2.34. The map ¢ : Vr(I) — V (I) defined by ([2.6]) is an isomor-
phism in the category M. O

Remark 2.35. As R plays no role in the definition of V (I) (via idempotent
matrices over I), Proposition 237 tells us that Vg(I) is actually independent of
the choice of R. Notice that if [ is unital to begin with, we can choose R = I;
then FP (I,1) = FP (I, R) becomes proj-1, and V (I) is then the classical monoid
of isomorphism classes of finitely generated projective I-modules.

From now on, we refrain from using the subscript  in Vg(I) and denote either
of the isomorphic monoids by V (I).
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2.3.3 Common properties of V (—)’s of regular rings

Proposition 2.36. Let I be a ring with local units. Then the monoid V (I) is
conical.

Proof. Let R be a unital ring containing [ as a two-sided ideal. For an R-module
M, note that M ~ 0 iff M = 0 = {0}. Thus, if P,Q € FP (I, R) satisfy
[P® Q] =[0], then P& Q ~ 0, so P& (Q is the zero module. As P and @ can be
embedded into P & @), it follows that P =0 = Q. O

Proposition 2.37. Let I be a regular ring. Then V (I) is a refinement monoid.

Proof. Let R be a unital regular ring containing I as a two-sided ideal; such R
always exists by (Fuchs — Halperin, 1964, Theorem 1). Viewing V (R) as the
monoid of isomorphism classes of modules from FP (R, R) = proj-R, the monoid
V (R) is a refinement monoid by (Goodearl, 1979, Theorem 2.8). From (Ara et all,
1998, Proposition 1.4), V (I) is an order-ideal in V (R)H Thus, by Observation [L.2],
V (I) is a refinement monoid. O

Finally, since every projective module over a wunital ring is isomorphic to a
direct summand of a free module, we have:

Observation 2.38. If R is a unital ring, then [R] is an order-unit in V (R). O

2.3.4 V(—)’s of Morita equivalent rings with local units

For wnital rings, it follows from the classical constuction of V(R) as the
monoid of isomorphism classes of finitely generated projective R-modules that
the monoids V (R),V (S) for Morita equivalent unital rings R and S are ismo-
morphic. We shall now prove a similar statement for Morita equivalent rings with
local units, using the “projective picture”. We shall make use of the following
fact:

Proposition 2.39. Let I, J be rings with local units with I contained in J as a
two-sided ideal. Then, for any M € Mod -1, there is a natural unitary J-module
structure on M extending the original I-structure. The category Mod -I s a full
subcategory of Mod -J.

Proof. Let M € Mod-I. For m € M, by Lemma .10} there is an idempotent
u € I satisfying m = mu. For r € J, we then have ur € I, since [ is an ideal in
J; put then m - r :=m - (ur).

Claim 1. The definition of m - r s independent of w.

Proof of Claim. Let u,v € Idemp I satisfy mu = m = muv. Since I has local
units, there is an idempotent w € [ with uvw = w and vw = v. Then wr € I;

4A prerequisite for (Ara et all,[1998, Proposition 1.4) to apply is that R be a unital exchange
ring. Thankfully, all unital regular rings are such, as can be checked using (Nicholson, 1977,
Theorem 2.1) and (Goodearl, 1979, Theorem 1.7).
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using - to denote the [-action on M and concatenation to denote multilpication
in J, we then have

m - (ur) —m- (vr) =m- ((vw)r) —m- ((vw)r)
=m - (u(wr)) —m- (v(wr))
=(m-u)-(wr)—(m-v)-(wr)
=m- (wr) —m- (wr)
=0,

whence m - (ur) =m - (vr). O Claim 1.
By Claim [Il we have a well-defined map

MxR-— M
(m,r) — m-r.

We want to show that this map defines a J-module structure on M.

e Let m,m' € M and r € J. Then, since M is a unitary /-module, there are
u,u’ € Idemp [ satisfying mu = m and m’v’ = m’' (Lemma 2.T0). Since
I has local units, there is an idempotent v € [ such that uv = u and
w'v =u'. Then mv = (mu)v = m(uv) = mu = m, and similarly m'v = m/,

so (m+ m/)v = m + m' holds. Hence

(m+m')-r=m+m)(vr)=mvr) +m'(vr)=m-r+m'-r.

e Let me M, r;s € R and let u € Idemp I satisty mu = m. Then

m-(r+s)=m(u(r+s)) =m(ur+us) =m(ur) +m(us) =m-r+m-s.

e Let once again m € M, r,s € J and let u € Idemp I satisfy mu = m. Since
I has local units and since ur is an element of I, there is an idempotent
v € I satisfying (ur)v = wr. Then (m(ur))v = m((ur)v) = m(ur) holds,
whence

m-(rs) = m(u(rs)) = m(((ur)v)s) = m((ur)(vs)) = (m(ur))(vs) = (m-r)-s.

Finally, to prove that we have defined a unitary J-module structure on M, if
m € M, there is—by Lemma 2.I0—an idempotent v € I with mu = m; since
wel CJand m-u = m(uu) = mu = m, Lemma 210 yields that M as a
J-module is unitary.

We have shown how to embed objects from Mod-I into Mod-J. For Mod-I
being a subcategory of Mod-J, let ¢ : M — N be a homomorphism of I-
modules; we want to show—with the J-structure on M and N defined as above—
that ¢ is also a J-module homomorphism. To that end, let m € M, r € J,
u € Idemp I and mu = m. Then, since ¢ is an [-module homomorphism, we
have o(m)u = p(mu) = p(m). Hence,

p(m-r) = p(m(ur)) = p(m)(ur) = p(m) - r.
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We have thus shown that taking a morphism in Mod-/, the same map between
the underlying sets is also a morphism in Mod-J. It follows that Mod-I is a
subcategory of Mod-J.

We see from the definition of the J-module structure on M that restriction
of scalars to I yields the original I-module structure on M; in particular, every
morphism in Mod-J between I-modules is also a morphism in Mod-/, so the
subcategory Mod-I is indeed a full subcategory of Mod-J. O

Remark 2.40. In general, the subcategory Mod-I in Mod-J of Proposition 2.39]
is not dense: For example, if I = 0, then Mod-I, the category of unitary I-
modules, contains only one isomorphism class of objects, namely, the class of
modules isomorphic to 0. If J is any nontrivial ring, then J; € Mod-J is not
isomorohic to 0, so it is not (isomorphic to) a unitary I-module, i.e., it is not
(isomorphic to) an object from Mod-1.

Lemma 2.41. If I is a ring with local units contained in a unital ring R as a
two-sided ideal and if A € FP (I, R), then, after restriction of scalars:

(i) A is finitely generated in Mod -1.
(ii) A is projective in Mod -1 ;

Proof. [()} By the definition of FP (I, R), A is finitely generated as an R-module.
Hence, there is a finite subset X Cg, A satisfying A = > _ oR. Clearly,
Y .ol €% xR = Aholds. If, on the other hand, a € A, it is necessarily of the
form a =) ar, with r, € R. From the definition of FP (I, R), A is a unitary I-
module; thus, by Lemma .10, there is an e € [ satisfying a = ae = (>, ar;) e =
>, z(rze), which is an element of ) xI. We conclude that A =3 _. 2, so as
an I-module, A is spanned by the finite set X.
: Assume there is a diagram

A
l (2.8)
C

B > 0

in Mod -/ with the row exact. By Proposition 2.39] we have the same diagram
in Mod-R; note that, by Lemma 2.1 exactness of the row in either of the
categories is equivalent to the morphism B — C' being onto, whence the row in
(2.8) is exact in Mod-R, too. Since A is projective as an R-module, there exists
a morphism A — B in Mod-R making the following diagram commutative:

3, l (2.9)

By Proposition 2.39) Mod-I is a full subcategory of Mod-R; thus, (2.9) is also
a commutative diagram in Mod-I. As we have shown for an arbitrary I-module
epimorphism B — C' that (2.8)) can be completed to (2.9) in Mod -1, we conclude
that A is a projective I-module. O
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Suppose now that I,.J are Morita equivalent rings with local units. Then,
there are additive functors G : Mod-I — Mod-J and H : Mod-J — Mod-I
and natural isomorphisms n : HG — Idyoq.; and ¢ : GH — Idyjeq.y. From G
and H, we shall derive maps between FP (I, R) and FP (J,S) (with I a two-sided
ideal in a unital ring R and J a two-sided ideal in a unital ring S) that will induce
mutually inverse monoid homomorphisms between V (I) and V (J).

Let A € FP (I, R). From the definition of FP (I, R), we have Al = A, whence,
after restriction of scalars, A is a unitary I-module. By applying Proposition 2.39
to the unitary J-module GA, we obtain GA € Mod-S. We shall show that as an
S-module, GA is finitely generated and projective.

Lemma 2.42. The J-module GA is finitely generated. In particular, it is also

finitely generated as an S-module.

Proof. By Lemma 212, there is an exact sequence J&) —2 5 GA > 0

for some set X. Since H preserves direct sums (Proposition [2.15]), we have

a:=(Hep)of

(HN)X —£ 5 H (JX) L2y HGA 2 4

in Mod-I, and since H is exact (Proposition 2.21]), Hy is surjective. Since &
is an isomorphism, a = (Hp)¢{ is also surjective. Since A is finitely gener-
ated in Mod-R, it is, by Lemma ZAI[Q)] a finitely generated I-module. From
HGA ~ A, we infer that HGA is a finitely generated I-module, too. With
HGA = Im (@xeX ozw) = > ey Ima,, where a, denotes the morphism from
the z-th copy of HJ to HGA, and with each Im «, being an [-submodule of
HGA, there is a finite subset Y Cg,, X such that HGA = )~ _, Ima,. Hence,
@Dy . : (HJ)Y) — HGA is an epimorphism in Mod-I; by exactness of G
(Proposition 2.2T), we have that G (Py o) : G ((HJ)Y)) — GHGA is an
epimorphism in Mod-J. With H preserving direct limits, the following compo-
sition is a composition of an epimorphism with isomorphisms, whence it is an
epimorphism from J®) to GA in Mod-.J:

-1
G o
JY) L:)> GH (J(Y)) — G ((HJ)(Y)) (®v >G’HGA G(ZA) GA.

With Y being finite, we conclude that GA is a finitely generated J-module,
as desired. That it is also finitely generated as an S-module now follows from
Proposition 2.39 since a finite set spanning GA as a J-module spans it as an
S-module as well. O

Lemma 2.43. As an S-module, GA is projective.

Proof. Let us have a diagram




in Mod-S with the row exact; we want to find a homomorphism p : GA — M
satisfying ¢@ = ¢.

Since GA is unitary, we have, for every x € GA, an idempotent e, € J
satisfying xe, = x (Lemma 2I0). Then px = p(xe,) = (pz)e, holds, so px €
NJ. As this holds for any x € GA, we obtain Imp C NJ. Denoting by ¢y the
inclusion map NJ C N, we then have a commutative diagram

GA
X

e

N

in Mod-S. Similarly, considering the S-submodule MJ of M, we see that
Im (¢|pr7) € NJ. Hence, we have the following commutative diagram in Mod-S:

Mg s Ylng NJ

lLM LN (2.11)

M—Y N

If, on the other hand, n € N and e € Idemp J, then, by surjectivity of 1, there
is an m € M such that Ym = n. Then ne = (Ym)e = ¥(me) € Im|p;y. Thus,
Y|py: MJ — NJ is surjective, and as such an epimorphism (Lemma 2.TT]).

By idempotence of rings with local units, M J and NJ are unitary J-modules;
hence, in Mod-J, we have the following diagram with the row exact:

GA

/

¢
Mg Ny o
Applying the exact functor H (Proposition 2.21]), we obtain
HGA
Hy'
HMT) ™M) (N gy —— .

in Mod-/ with the row exact. By Lemma R.4J|(ii), A is projective as an I-
module, whence, with n : HG — Idy0q.7 & natural isomorphism, there exists an
I-homomorphism ¢ making the following diagram commutative:

A
Nlnzl
f HGA
Hy'
H(|ag)
H(MJ) T (N ).
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Applying the functor G, with ( : GH — Idyq.s a natural isomorphism, we
obtain the following commutative diagram in Mod-J:

GA
NlG(nA1)=(GnA)1
e GHGA 2 GA (2.12)
o T
GH(MJ 2 G (N~ N
Using ¢ again, (2.12) yields:
GA T qHGA A gA
lag lGHgo’
GHMJ Y G (N ) o
l v CNJ (2'13)
MJ Yl NJ.

Put v := (g0 GE o Gna o (ga : GA — MJ (a morphism in Mod-J). From
the commutativity of (ZI3)), we then have ¢’ = (¥|y5)v. Transferring to Mod-S

(Proposition 2:39) and using commutativity of (2I0) and (ZII), we obtain the
following commutative diagram in Mod-S"

GA

MJ PN e

[ [+

M —— N.

Putting © := 1jsv yields the desired factorization of ¢ through ¥ in Mod-S. O
Combining Lemmas 2.42] and 2.43] with Proposition 2.39 we conclude that:

Proposition 2.44. Let I, J be rings with local units Morita equivalent via
a
Mod -I T/ Mod -J.
H

Let I be a two-sided ideal in a unital ring R, J a two-sided ideal in a unital ring
S and let A€ FP (I, R). Then GA € FP (J,S). O

29



Theorem 2.45. Let I, J be rings with local units Morita equivalent via
a
Mod -I T/ Mod -J.
H

Then V (I) ~V (J).

Proof. Let R, S be unital rings, R containing [ and S containing .J, both as two-
sided ideals. If A, B € FP (I, R) satisfy A ~ B in Mod-R, then A and B are also
isomorphic in Mod-I. Then, since G is a functor, the J-modules GA and GB
are isomorphic; notice that then they are also isomorphic as S-modules. Thus,
[GA] = [GB] holds in V (J) (due to Proposition 2.44] GA and GB are elements
of FP (J,S), whence it makes sense to consider their S-isomorphism classes as
elements of V (J)). It now follows that G induces a map

G:V(I)—V(J)
[A] — [GA].

Similarly, there is a map H : V (J) — V (I) induced by H. Since HGA ~ A as
I-modules holds for any module A € FP (I, R), we infer that also [A] = [HGA] in
V (I) (use Proposition 239). Thus, HG = idy(7). Symmetrically, GH = idy ().
To conclude that the monoids V (I) and V (J) are isomorphic, it remains to
show that G and H are monoid homomorphisms. To that end, notice that for
A, B € FP (I, R), the direct sum A® B in Mod-R is aslo an element of FP (I, R),
and after restriction of scalars, the same module is also the direct sum of A
and B in Mod-I; that G and H are homomorphisms in M. now follows from
Proposition .15l O
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Chapter 3

Leavitt path algebras

In this place, we overview some results on Leavitt path algebras related with
the realization problem.

3.1 Quivers and path algebras

3.1.1 Quivers and their duals

Let us first fix terminology we use later in the chapter. In our introduction of
the Leavitt path algebras, we mostly follow the outline of |Goodear] (2009).

A quiverl] E = (E° E',s,r) consists of disjoint sets E° and E! and maps
s,7: BE' — E°. We always assume that the set E° is not empty. We refer to
elements of E° as vertices of E and to elements of E' as edges (or arrows) of E.
For an edge e, the vertex s(e) is called the source of e and r(e) is called the range
of e. We then say that e is an edge from s(e) to r(e). We also say that s(e) emits
e and that r(e) receives e. A vertex is called a receiver if it receives at least one
edge, an emitter if it emits at least one edge, and an infinite emitter if it emits
infinitely many edges. A vertex that is not an emitter is called a sink, while it
is called a sourcdd if it is not a receiver. A vertex is called singular if it is either
a sink or an infinite emitter, and a reqular vertex is a vertex that is not singular
(that is, a vertex v € E° is regular iff 0 < |s;'(v)| < 00). A loop is an edge with
the same source and range.

If E = (E° E',sg,rg), F = (F°, F',sp,rp) are quivers, we say that F is a
subquiver of E if F* C E°, F! C E'| sp = sg|p and rp = rg|F.

Since our primary focus is on countable monoids, we restrict our attention to
countable quivers only; hence, by a quiver, we will always mean a countable one,
that is, with only countably many vertices and edges.

A path of length n in a quiver is a sequence eq,es, ..., e, of edges satisfying
r(e;) = s(e;41) foralli =1,...,n—1. We shall often write paths in the form of a
product@, that is, p = ejes - - - e, stands for the path above. We also say that s(e;)

TAlso called “graph” or “directed graph” in papers cited.

2The disticntion between the source of an edge and a source in a quiver will be clear at all
times.

3Note that in path algebras, the product ejes for e1,es € E will be defined even if 7(e;) #
s(e2). By saying that p = ejes - - - e, is a path, we imply that the ranges and sources of adjacent
edges match.
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is the source of p and r(ez) the range of p and denote these two vertices by s(p)
and r(p), respectively. We consider each vertex v to be a path in E, specifically,
a path of legth zero; the source, s(v), and range, r(v), of such path is v itself.

A cycle in a quiver F is a path p in F of length n > 0 satisfying s(p) = r(p);
an acyclic quiver is a quiver containing no cycles (so an acyclic quiver is such
that its only paths with the same source and range are the vertices, i.e., paths of
length zero).

We say that a quiver is row-finite if it has no infinite emitters.

The dual of a quiver FE is the quiveIH E* = ((E*)°, (E*)!, s,7) consisting of
the same vertices as E (that is, (E*)? = EY) and arrows from E reversed, i.e.,
(E*)! := {e*|e€ E'} with s(e*) = r(e) and r(e*) = s(e) for all e € E. If
p = ejey---€, is a path in E, we denote by p* the corresponding path in E*:
P = ey el

By the double of a quiver F, denoted by E, we mean the union of E and its
dual, E*, with the two sets of edges considered disjoint. We call the edges (or
paths) from E real and edges (paths) from E* ghosts.

For quivers E = (E° E',sp,rg), F = (F°, F' sp,rr), a quiver homomor-
phism from E to F is given by two maps, ©° : B — FY and ¢! : B! — F!,
satisfying the following compatibility conditions:

o sp(ple) = %sp(e)), and
o rr(ple) = Y(rp(e)) for all e € B

In other words, a quiver homomorphism £ — F is a map E°UE! — FOU F!
that respects sources and targets. A homomorphism ¢ is called complete if it is
injective (both on vertices and on edges) and if it maps s3'(v) onto sz (¢°(v))
bijectively, whenever v € E° is a regular vertex. We say that a subquiver F of F/
is a complete subquiver of E if the inclusion map I — F is a complete quiver
homomorphism.

Observation 3.1. (i) The identity map on a quiver is a complete homomor-
phism. If B — F — G are complete quiver homomorphisms, then so
is their composition. Hence, (countable) quivers as objects and complete
quiver homomorphisms as morphisms form a category. We denote this cat-

egory by Lo

(ii) If p - E— F' is a complete quiver homomorphism, then the quiver p(E) =
(9(E®), o(EY), sp|umr), TF|pmr) is a complete subquiver of F. O

We denote the full subcategory of o consisting of all countable row-finite
quivers and complete homomorphisms between such by ﬂwﬁ

Proposition 3.2. (i) (Goodearl, 2009, Lemma 2.5 (a)) Arbitrary direct limits
exist in the category %Zw

4Some authors use E* to denote the set of all paths in E; we prefer the notation presented
here, with * denoting what will be called “taking ghosts” of edges or paths.

5 ;//@m is the category G of |Ara et all (2007), while Couvivis the full subcategory of countable
quivers of the category CKGr from |Goodear] (2009).
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(ii) (Ara_et all,|2007, Lemma 3.1) Every row-finite quiver is a direct limit in the
category %Zm of the directed system of all its finite complete subquivers.l]

Example 3.3 (the infinite rosdd quiver). We define the “infinite rose quiver” R,
as a quiver with one vertex and (countably) infinitely many edges, necessarily
loops from the single vertex to itself. We picture R, as

(00) 2 @

(when we depict quivers graphically, a positive integer n or the infinity sign, co, in
parentheses near an arrow symbolize that there are n or countably infinitely many
arrows, respectively, with the same source and range as the arrow in the picture).
Let F be a finite quiver and ¢ : £ — R, a complete graph homomorpihsm.
Since ¢ is injective, E has only one vertex, say, F° = {v}. Suppose that the
set E' is nonempty. Then, since ¢ is complete, there is a bijection between
s71(v) = E! and (R4)!, the infinite set of edges of R.,. Hence, the quiver E is
not finite, a contradiction. Thus, unlike the row-finite case (Proposition ,
R is not a direct limit of finite graphs in s

3.1.2 Path algebras

For a quiver F and a field K, we define the path algebra of E over K as the K-
algebra with basis the set of all paths in £/, and with the following multiplication:
If p,q are paths in F, we let pg be the concatenation of p and ¢ if r(p) = s(q),
and zero otherwise. This in particular means that:

e lf p=-e;---e, and g = fi--- f, are paths of strictly positive length with
r(e,) = s(f1), then pg =e1---ep fi-+ fim.

e If p is a path, then s(p)p = p = pr(p). In particular, for a vertex v, v? = v.
We denote the path algebra of F over K by KFE.

Example 3.4. Let V,, denote the quiver consisting of a countably infinite set of
vertices and no edges. Then KV, ~ K is a nonunital regular algebra (we've
already seen this algebra in Remark 2.I8]). We see that the monoid V (K'V,,) ~
(Ng)“) does not have an order-unit; in particular, it cannot be realized by any
unital regular ring.

Observe that if the set E° is finite, then the sum of all vertices of E is a unit
in KE, irrespective of the cardinality of the set E'. On the other hand, if the set
E° is infinite, then the algebra K E cannot have a unit: Suppose the contrary,

that is, that 1 = > aupisaunit in KFE, with a,, € K. Then, for every
p apath in E

vertex v € E°, we would have

v=v-1= Z app.

p a path in F,
s(p) =v

6Recall that a rose is a rose is a rose, even if it is infinite.
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Since the set of all paths in E is linearly independent over K, we conclude that
o, = 1 for every v € E', a contradiction, since only finitely many «,’s can be
nonzero. Nevertheless, even for E° infinite, we have:

Lemma 3.5. For a quiver E and a field K, the path algebra KE has local units.

Proof. Given a finite set P of paths in F (also admitting paths of length zero,
i.e., vertices, as elements of P), put V := {s(p) |p€ P}U{r(p) | p € P}. Then,
putting x := > _, v, we see that z is an idempotent in KFE satisfying zp = p =
px for all p € P. O

Definition 3.6. The Leavitt path algebra of E over K is the quotient of the path
algebra K'E (i.e., of the path algebra of the double of E over K) modulo the ideal
generated by the following elements:

e c¢*c —r(e) for every e € EY;
e c*¢’ for all pairs e, € of distinct edges in E;

e v— > ee* for all vertices v with 0 < [s7!(v)| < oo.

eEEl,
v = s(e)

We denote said algebra by Li(FE) or L(E).

Dealing with elements of L(F), we will use the same names for elements of
K FE and their cosets in L(E). Thus, the following relations hold true in L(E):

r(e) ife=¢,

(cx1) e~ {

0 otherwise;
(CK2) v = Y ee* for every v € E that is neither a sink nor an infinite
e e E‘l,
v = s(e)

emitter.

Remark 3.7. For a quiver F, applying Lemma[3.5] to the quiver E , we have that
KFE is a ring with local units. As a quotient of K'F, L(F) is always a ring with
local units, and, moreover, it is a unital ring if the set £ is finite.

A few words on which elements of K E remain distinct in L(FE) are in order:
Firstly, (the cosets of) vertices are not only distinct, but also linearly independent:

Lemma 3.8 ((Goodearl, 2009, Lemma 1.5)). Let K be a field and E a quiver.
Then the cosets of the vertices from E° are K-linearly independent elements of

L(E). 0

In (Siles Molinal, 2008, Lemma 1.1), it is shown that distinct real paths in
L(FE) are linearly independent; in |Goodear] (2009), this has been extended to
include ghost paths:

Lemma 3.9 ((Goodearl, 2009, Lemma 1.6)). Let K be a field and E a quiver.
Then the quotient map KE — Ly (E) restricts to an embedding of the subspace
KE + KE* of KE into Lk(E). OJ
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In K E\, any set consisting of distinct real paths, distinct ghost paths and
distinct vertices is linearly independent. Thus, Lemma [3.9] tells us that the same
holds in L(FE).

Regarding K-dimension of K'E or Lk (FE), we see from the definitions that:

Observation 3.10. For a field K and a quiver E, the following are equivalent:

(i) The quiver E is finite (in the sense that both E° and E' are finite sets) and
acyclic;
(i) dimgx KE is finite;
(i1i) dimy K E* is finite. O
However, if £ # (), then E contains a cycle, whence the K-dimension of K E

is infinite; nevertheless, the necessary and sufficient conditions for L(FE) to be
finite-dimensional are the same as for K'E by a result of |Abrams et all (2007):

Proposition 3.11 ((Abrams et all, 2007, Corollary 3.6)). For E a quiver and K
a field, the Leavitt path algebra L (F) is a finite-dimensional K -algebra iff E is
finite and acyclic. O

Functoriality of taking Leavitt path algebras

It is shown in (Goodearl, 2009, §2.4) that for a field K, the assignment F ——
Ly (E) can be extended to a functor Li(—) from @i to the category of K-
algebras, and in (Goodearl, 2009, Lemma 2.5(b)) that this functor is continuous.
This functor plays a role in the naturality of the isomorphism of Theorem [3.171

3.1.3 Regularity conditions for Leavitt path algebras

An important question from our perspective is whether Leavitt path algebras
can be regular rings, and if so, then under what conditions. A result on this topic
is the following;:

Theorem 3.12 ((Abrams — Rangaswamy, 2010, Theorem 1)). For a quiver E
and a field K, the following are equivalent:

(i) Lx(E) is a regular ring;
(ii) E is acyclic;

(iii) Li(E) is locally K-matricial, i.e., it is the direct union of subrings, each
of which is isomorphic to a finite direct sum of finite matrixz rings over K.

Notice that unlike Propositon [B.11] there is no finiteness condition imposed on
FE in in the above theorem. Thus, there also are infinite-dimensional Leavitt
path algebras that are regular.
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3.2 V(—) of Leavitt path algebras

3.2.1 The monoid My associated with a quiver F

Now that we have that some regular rings can be obtained as Leavitt path
algebras, we are interested in what the monoid V (—) of such rings can look like.

Fortunately, it can be described in terms of generators and relations between
them based on the quiver E (Theorem B.17]).

Definition 3.13. Let E be a (general) quiver. Let us denote by Fgo the free
abelian monoid freely generated by the set E° (i.e., by vertices of E; cf. (Burris
— Sankappanavar, 2012, Definition 10.5)), and let Ag be the congruence on Fgo
generated by the relations

v= Z r(e) for every regular vertex v € E°. (3.1)

e€s~1(v)

We put Mg to be the factor monoid Fro/Ag; we call Mg the monoid associated
with E. When computing with the monoid Mg, we shall denote the Ag-class of
a vertex v € E° also by v.

Remark 3.14. A monoid associated with a quiver E has a presentation
(X]A), (3.2)

where X = E° is a countable set and A = {2z =3 _ n.y | v € X}, with n,
elements of Ny, all but finitely many of them nonzero for each z. Conversely,
any abelian monoid with such presentation is associated with a suitable quiver
E: Let E := X be the set of vertices, and for all pairs z,y € X, let there be n,,
arrows from x to y in E. Then indeed Mg has presentation (3.2)).

Immediately from the definition, we see that we can slightly modify a quiver
without affecting the monoid Mg:

Observation 3.15. Let E, I' be quivers such that F' can be obtained from E by
removing a reqular vertex v € E° and adding an edge f(c .y from s(e) to r(€') for
each pair of edges e, € € E' satisfying r(e) = v and s(e’) = v; that is, we take a
reqular vertex v € E° and put F* = E°\ {v} and

P (B'\ (55 (0) Urgt(0)) O{ iy | € € 75 (0), ¢ € 55 (0) },
where sp (fe.en) = sp(e) and v (fieen) = rE(€) for all relevant e, e’. Then

MF—>ME
w— w, w € F°,

1s a monoid isomorphism. In particular, removing a source that is reqular from
a quiver E does not affect Mg. O

For row-finite quivers, the following holds:
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Lemma 3.16 ((Ara et all, 2007, Lemma 3.4)). The assignment E — Mg can be

extended to a continuous functor from %Zm to Mew. With Propositionlﬂ
it follows that every monoid of the form Mg is a direct limit of finite monoids
Mg in the category y@ . O

Theorem 3.17 ((Ara et all, 2007, Theorem 3.5)). For a row-finite quiver E,
there is a monoid isomorphism vg : Mg — V (Li (FE)), natural in the sense that
if o Mg — Mp is a morphism in %Zm, then V (Lk (@) ve = YrM.,. O

Example 3.18 (the binary tree quiver). Consider the infinite binary tree quiver,

FE, as in the diagram:

VAN

/\

Then in the algebraic preorder on Mg, v < vy holds for each v € E°. Thus, for a
general element = ) n,v of Mg, we have x < (>, n,) vo. We conclude that v
is an order-unit in Mg. Since there are no cycles in E, the Leavitt path algebra
L (F) is regular by Theorem B12l As F is row-finite, the monoid V (Lg(FE)) is
isomorphic to Mg by Theorem BIT hence, V (Li(F)) has an order-unit. Since
the quiver E has infinitely many vertices, the algebra Ly (F) is not unital. Thus,
the monoid V (Lk(FE)) is an example of a countable conical refinement monoid
with order-unit realizable by a nonunital regular ring, where we do not know if it
is also realizable by a unital ring.

3.2.2 A nonstandard construction of the additive monoid
of nonnegative rationals as V(A) with A a regular
Leavitt path algebra

We shall now construct an acyclic row-finite quiver E such that My is iso-
morphic to Q=°, the additive monoid of nonnegative rational numbers. With

E acyclic, we will have that for any filed K, the algebra Lx(F) is regular (by

Theorem B.12)), and by Theorem B.I7 that Q=° ~ My ~ V (Lk(FE)).
For ¢ € N, let p; denote the ¢-th prime number, i.e., p; = 2,py = 3, p3 = 5 etc.
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Theorem 3.19. Let E° := {vy,v9,v3,...} = {v; | i € N} be a countably infinite
set of vertices. Let E be a quiver with vertex set E° such that for each n, there
are p1ps - - Pp = H?Zl p; arrows from v, to v,.1, and such that there are no edges
from v, to any v,, except v,i1. Then, for any field K, the Leavitt path algebra

Lk (E) is regular and V (Li(E)) ~ Q=°.

Proof. The quiver F is as in the following diagram, with the number in paren-
theses above an arrow indicating the number of arrows with the same source and

range:

(2) (6) (30) (210)

\
.’Ul .1)2 4 .1)3 .’U4

Claim 1. For m > n, the equality

m—1 J
Un = <H Hpi) U = (O T R aPi ) Um
j=n i=1

holds in Mg.

Proof of Claim. By B1), v, = Zees,l(vn) Ups1 holds in F| so v, = kv,,1, where
k is the number of arrows from v, to v,.; in . From the definition of F,
k =TI, pi- Proceed by induction. O Claim I.

It is clear that F is acyclic, so Lx(F) is regular by Theorem B2l By The-
orem B.17, we only need to show that the monoids My and Q=° are isomor-
phic. To that end, we shall construct monoid homomorphisms My — Q=% and
Q=" — My that compose to identities on My and Q=°, respectively. Let us
begin with the one from Mg to Q=%:

With the set E° freely generating Fgo, the assingnemnt

Uy — prfn = T (3.3)
i=1

1 . p2 ..... pi_Q * Pn—1

for each n € N defines a monoid homomorphism v : Fgo — Q2°. Notice that

then, for each n,
1

U (Uns1) = mw(%)

holds. Thus, since there are H?Zl p; distinct arrows from v, to v,y; in E and
since 1 is a monoid homomorphism, we have

w<vn>:<Hpi>w<vn+1>: Yo W) =¢| D ven

e€s™1(vp) e€s1(vp)

for each n € N. Hence, v respects the congruence Ag, whence ([B.3]) also defines
a monoid homomorphism v : My — Q=°.

For the opposite direction, let us first define a map ¢ from Ny x N to Mg. For
a ¢ € N, with ¢ = p{*p5* - - - p% and with a,, # 0, put

Jor=max{a;+i|i=1,...,n}
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and
H A (3.4)

From the definition of j,, the inequality j, —a; —¢ > 0 holds for all 7 < j,. Also,

Jqg — @j, — Jq = 0 holds, so we can write 7, = Hiq 11pf“ “~" instead of ([F4). We
let j1 -~ 1 and m = 1. Now, for any (p,q) € Ny x N, put
PP ) = (p-mg) - v, (3.5)

Claim 2. For (p,q) € No x N and m € N, ¢((p, q)) = ¢((mp, mq)) holds.

Proof of Claim. For m = 1, the assertion is trivial.
Suppose now that m is a prime, that is, m = p; for some k € N. If ¢ = 1,
then jgm = Jp, = k+1 and

Hpk+1 P b PR (3.6)

hence,

©((mp, mq)) = w((p * Dks D))

ﬂ-pk Vk+1 by (m)7
= (pHp’““ ) by (B3),

) (H Hpi)

j=11i=1

= pv; by Claim [T
= pmu; from m =1,
= ¢((p,q)) from ¢ =1 and B3,

as asserted.
Let now ¢q # 1, so we can write ¢ = py* - - - p%* with a,, # 0. Let us divide the
situation into three cases, depending on the relationship between j, and a; + k:

o If j, > ap + k, then j, = jpg. We see from (B.4) that 7, = 72, whence
p((pm, qm)) = (pm7t v, = (pmg)vs, = ¢((p; 0))-
o If j, = ay + k, then jg, = j, + 1, so

Tgm = Tq " P1P2 " Pk—1"Pk+1" " "Pj, = Tq * le
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Thus,
¢((pm, gm)) (pm— Hm) Vjorm by B.5),

Jq
= P7y (H pi) Vjg+1 from jgm = jg +1,

i=1
= Py, by Claim [IJ,
= ¢((p,9)).

o If jq < ay, + k, then we see from the definition of j, that £ > n, and that
jym = k + 1 holds. Defining a; := 0 for all n < i < k and a; := 1 (so that

ai, a2

qm pi'ps? - - - pt), we then have:

: (ﬁ = <pf+1-jq>>) I

1=1 1=jq+1
Jq
Jq—ai— k+1—jq k+1—i
Hp 117 I+
=1 1= _]qul k

Ja ' k - 1
=, <pr“]q> I » | =

i=1 i=jqt1 P
M, G
o q
= p_ | | | |pz’7
J=Jjq =1

whence, using Claim [Il once again,

o ((pm, qm)) = ppi Hsz vk = pgvy, = (P, )
] =jq 1=1

holds.

As one of the three cases above must occur, we have proved that for m a prime,
o((pm,qm)) = ¢((p,q)) holds. Decomposing a general m > 1 to a product of
primes, the general assertion of the claim follows. Ul Claim 2.

It follows from Claim [ that the assignment 2 — ¢((p, ¢)) is a well-defined
map from Q=° to Mpg; let us denote it by ». Next, we show that this map is in
fact a monoid homomorphism. It is clear that $(0) = 0. Let now 2 fli: e Q=Y

Y
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then

I
|

_(p 7V pqd +p'q
2 T
q q qq

pqd + P’ Q) T, by B.5),

/ ’
Pq Taq' V5, +p 4Tqq' Vs,

_(pd\ , _(Pa\ __(p\ (P
-2 (5) = (i) == (0) = (7).
qq aq q q
We conclude that @ : Q2° — My is indeed a monoid homomorphism.

For any n € N, we have ¥(v,) = %, where ¢ = []\_, p!'" by (B3). Observe
that then j, = n, so m, =[]} T 1 50 (%) =1-1-v;, = vy; as we

=114

—

have shown that Po1) maps each of the generators v, of My to itself, we conclude
that @OQ/}ZICIME . . .
As for the composition 1)o@, for any p € Ny, we see that 1o® (%) = P(pvy) =

p- e Q=% with ¢ = p{*--- p% and a, # 0, then
—(_{(p = B _
w ¥ 5 - w (pﬂ'q’qu) _ pﬂ-qu}jq)
oo\ [dd o .
=D (H pgq_a1_1> <H p;_JQ> — pHp;al = 67
i=1 i=1 i=1

SO 1) 0P = idg=o. We have shown that Mg ~ Q=°, as required. O

Remark 3.20. With little effort, one can see that in Theorem [B.19] if instead
of the sequence pi, po, ... going through all prime numbers, we only chose some
(be it finitely or infinitely many), and if we adjusted the quiver E accordingly, a
similar proof would yield a regular Leavitt path algebra Ly (FE) over an arbitrary
field K such that the monoid V (Lk(E)) would be isomorphic to the submonoid
of Q= consisting only of rational numbers that can be expressed as fractions
having only products of powers of the chosen primes in the denominator. Such
submonoids of Q=° have “nonzero refinements” in the sense of Remark EI3| (for
a proof, also see said remark), so they can be used in generalizations of the
constructions of Proposition presented in Remark [4.13]
For an alternative proof of Theorem [3.19] see Remark [3.34]

3.2.3 Desingularization and V (Lg(F)) for E a general quiver

Example 3.21 (the infinite edges quiver). Let F., denote the “infinite edges
quiver”, consisting of two vertices v, w, (countably) infinitely many edges from v
to w and no other edges, pictured as

o, — o,
For this particular quiver, the algebra L(F,) is unital, regular by Theorem B.12]
and isomorphic to the ring { A+ kId | A€ M (K).k€ K} (see (Abrams —

Aranda Pino, 2008, Lemma 1.1)). That set aside, a fact of interest to us is that
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L(EL) is not isomorphic to any Leavitt path algebra over a row-finite quiver
(Abrams — Aranda Pinag, 2008, Proposition 5.5). Thus, it witnesses that there
are quivers E € @i whose Leavitt path algebras cannot be realized as Leavitt
path algebras of row-finite quivers; as Theorem B.17 then does not apply to these
quivers, we might wonder what the monoids V (—) of such Leavitt path algebras
look like. As we will see in Corollary 3.24] the process of desingularization of a
quiver answers this question.

For a quiver E, a desingularization of E is a quiver F' obtained from E in the
following way:

e For every sink vy in F, an infinite quiver of the form

v2 O3 (37)

V0 U1 ’

is attached at vy.

e For every infinite emitter vy in F, write s3' (vg) = { €1, €2, €3, ... }; an infinite
quiver of the form ([B.7) is attached at vy, and for every i € N, the edge e;
is removed, while a new edge from v;_; to rg(e;) is added.

Remark 3.22. All vertices of a desingularization of a quiver are clearly regular;
in particular, a desingularization of a quiver E is a row-finite quiver. We speak of
a desingularization of E and not of the desingularization of FE, since, in general,
the order in which we “desingularize” the vertices, or even different ordering of the
set s5'(vg) for an infinite emitter vy may yield different (nonisomorhic) quivers:
For example, consider the infinite rose quiver, R.,, of Example B.3] and attach
to it one new vertex and one new edge e from the original vertex to the new one.
The resulting quiver is

(00) C @, —5— @,

Taking the edge e as “e;”, the desingularization process yields

For our purposes, an important fact about desingularizations is the following:

Theorem 3.23 ((Abrams — Aranda Ping, 2008, Theorem 5.2)). Let K be a field,
E an arbitrary quiver and F' a desingularization of E. Then the algebras Ly (E)
and Lg(F) are Morita equivalent. O
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Let us note here that Theorem [3.23] is proved in [Abrams — Aranda Pino
(2008) using results from Anh — Marki (1987); in particular, it works with the
same definition of the category Mod -1 for I a ring with local units as we do, as we
have adopted the definitions of |Anh — Mérki (1987). Thus, Theorem states
that the algebras Lk (F) and Li(F) are indeed Morita equivalent in our sense.
Hence, Theorem applies, so we immediately obtain from Theorem B.23] that:

Corollary 3.24. For K a field, E a quiver and F a desingularization of E, the
monoids V (Lk(E)) and V (Lk(F)) are isomorphic. O

Even for quivers E such as F, of Example [3.21] whose Leavitt path algebras
cannot be realized as Leavitt path algebras over any row-finite quiver, Corol-
lary states that the monoid V (Lk(FE)) can be computed as V (Lg(F')) for
a suitable row-finite quiver F'. In particular, Corollary together with Theo-
rem [3.17 yield:

Corollary 3.25. For any countable quiver E and any field K, Mg ~V (Lk(E))
holds. 0J

3.2.4 A naive alternative to desingularization

From Definition [3.13] we can derive a simpler alernative to desingularization
for finding a row-finite quiver F' such that Mg ~ Mp for an arbitrary quiver E.
Let us call it the croplj of the quiver F.

Definition 3.26. For a quiver E, the crop of E is the quiver F' obtained from E
by removing all edges whose source is an infinite emitter in FE.

As only edges emitted by regular vertices play a role in the definition of Ag
(see ([B.1])), we see that:

Observation 3.27. If F' is the crop of a quiver E, then F' is a row-finite quiver
satisfying Mg ~ Mp. O

It now follows from Theorem B.I7 that applying the functor V (—) to E and
to its crop, we obtain, up to isomorphism, the same monoid. Apart from being
a much simpler method than desingularization (with no need of results such as
Theorem 2.45)), another advantage of “cropping” over desingularization is that
the resulting quiver is unique. However, even in the unital case, “cropping” does
not preserve some properties of the Leavitt path algebras that desingularization
does, such as Lg(F) being simeple (cf. (Anderson — Fuller, 1992, Proposition
21.8(1)) and Theorem B.23). An example of this phenomenon is the quiver £
with two vertices, v and w, one arrow from v to w, one from w to v and infinitely
many loops from v to itself:

~ A
(00) C @, o, .
<~ __~—
The crop of E is then the quiver F' = e, «—— e, . One can use (Abrams —

Aranda Pino, 2008, Theorem 3.1) to show that Lk (F) is simple, while Lx(F) is
not.

"The word “crop” is chosen to be as suggestive as possible, hopefully not interfering with
any standard graph-theoretic terminology.
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Nevertheless, Observation [3.27] can be used instead of Corollary B.24] to prove
Corollary [3.251

3.2.5 Properties of V (Lg(FE))

General properties of monoids associated with quivers

Either using desingularization or cropping, we have seen in Corollary that
any monoid associated with a quiver is isomorphic to a monoid associated with
a row-finite quiver. Hence, even though originally stated for row-finite quivers,
(Ara et all, 2007, Proposition 4.4, Theorem 6.3 and Proposition 6.4) also hold for
any countable quiver. We can thus sum these three statements into:

Theorem 3.28. Let E be a quiver and K a field. Then Mg ~V (Lk(E)) is an
unperforated separative refinement monoid. U

Stable finiteness for monoids associated with acyclic quivers

Proposition 3.29 ((Abrams — Aranda Ping, 2006, Proposition 4)). Let E be
a row-finite quiver. Then E is acyclic iff L(F) is a union of a chain of finite-
dimensional subalgebras. O

Remark 3.30. In the proof of Proposition B.29in|Abrams — Aranda Ping (2006),
it is shown that for any acyclic row-finite quiver FE it is possible to find a chain
of finite complete subquivers (F;|i € N) such that L(E) = [J;2, L(F;). In partic-
ular, since each Fj is finite, the subalgebra L(F;) of L(FE) is unital (and finite-
dimensional, cf. Theorem B.12). Hence, we can restate Proposition as:

Corollary 3.31. A row-finite quiver is acyclic iff it is a union of a chain of
finite-dimensional subalgebras that are unitalld O

Theorem 3.32. Let K be a field and A a K-algebra such that A is the union of
a chain of finite-dimensional unital subalgebras. Then the monoid V (A) is stably
finite. In particular, for an acyclic row-finite quiver E, the monoid V (Lk(E)) is
stably finite.

Proof. Suppose the contrary, that is, that there are idempotents e,g € M (A)
satisfying [g] # 0 (in particular, g # 0) and [e] = [e] + [g] = [e ® g] in V (A).
Then, there are z,y € My (A) such that both ex(e ® g)ye = e and (e ® g) =
(e @ g)yex(e @ g). Since the matrices e, g, z,y have only finitely many nonzero
entries and since A is the union of a chain of finite-dimensional unital subalgebras,
there is a finite-dimensional unital subalgebra B of A such that e, g, x,y can be
viewed as elements of M (B). However, as e € M,(B) and g € M,,(B) for
suitable m,n € N, we have (e @ ¢g) € Idemp M, ,,(B), so Lemma yields
that ex(e @ g) : (e ® g)B"™™ — eB" is a B-module isomorphism. We thus
have eB" ~ (e @ g)B"™™ ~ eB" @ gB™. In particular, the finitely generated
B-modules eB™ and eB"™ @ gB™ are, as vector spaces over K, of the same finite
dimension, whence g B™ = 0. But that is only possible for g = 0, a contradiction.

The assertion for acyclic row-finite quivers follows from Corollary [3.31] O

8In general, even for a unital algebra, a finite-dimensional subalgebra in our sense (i.e., a
subring closed under multilpication by scalars) need not be unital: Consider e.g. the subalgebra
of a Leavitt path algebra generated by a single edge.
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3.2.6 Realizing directed unions of free abelian monoids by
regular Leavitt path algebras
Directed unions of chains of finitely generated free abelian monoids are a

particular example of stably finite monoids; hence, the following proposition is a
partial reversal of Theorem .32 (cf. also Theorem B.12|(iii))):

Proposition 3.33. Each directed union of monoids of the form (No)* (with each
k a strictly positive integer) is realizable as the monoid V (Lk (E)) for some acyclic
row-finite quiver E.

Proof. Let

Ml ¥1 ]\42 ¥2 M3 ¥3

be a directed system in .. with M; = (Ng)* for all i and with every ;
injective. For each i, let {wv;,..., vy, } be the canonical generating set of M;.
For vertices of F, take E° := {v;; | i € N,;1 < j < k; }. From each vertex v;;, we
have ¢;(v;;) = Zf:ll nijivit1, for some n;; € Ny; in E, let there be n;j; edges
from v;; to v;41,; and no edges from v;; to any v, with m # i 4+ 1. We have
defined F in such a way that

pilvg) = Y () (3.8)

eEsEl(Uij)
holds for each i, j. We claim that for any field K, V (Lg( %\/[ ; holds.
By Theorem BT it is sufficient to show that Mg satlsﬁes the UMP of li lﬂ M.

To that end, let N E%n, let there be monoid homomorphisms ; : M; — N
satisfying v; = ¥;11p; for all 2, let ¢; : M; — Fgo be the inclusion map, and
let m: Fgo — Mg = Fgo/Ag be the canonical projection (cf. Definition B.13]).
We are looking for a unique filler ¢ : My — N of the following commutative
diagram in M

™3 ME
M1 ®1 M2 (2] M3 ¥3 $ i ? (39)
b3 v
2 N
L1
For ¢mi; = 1); to hold for each 4, there is no option but
o(mvij) = ¥i(vy) for each i, j. (3.10)

Since the set E° freely generates the monoid Fpo, the assignment ¢(v;;) := 1;(v;;)
for each 7, j induces a unique monoid homomorphism ¢ : Fro — N (cf. (Burris —
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Sankappanavar, 2012, Lemma 10.6)); moreover, ¢¢; = 1; holds for each 7. Observe
that then for each v;; € E°,

Pliv Z r(e) | =i Z r(e)
e€s™1(viy) e€s~!(vg;)
= Yir10i(vij) by B.3),
= %’(Uz’j) = ¢0i+1(vij)

holds. In particular, A C ker ¢, whence there is a monoid homomorphism
¢ Mg — N satisfying ¢ = ¢m. We have thus shown that there exists a
monoid homomorphism ¢ making the diagram (3.9) commutative; from (Z.10),
such homomorphism is already unique. We conclude that the monoid Mg indeed

satisfies the UMP defining @Mm whence hﬂMZ ~ Mg~V (Lg(E)). O

Remark 3.34. The previous proposition gives an alternative—and, admittedly,
a more structural-—way of proving Theorem [3.19. More specifically, the proof of
Proposition B.33] explains the origin of the graph E in Theorem and of its
variations from Remark 320l To see this, let P = { p1,ps, ...} be a set of primes
and consider the directed system

Ny 25Ny 25Ny = .., (3.11)

where ¢, (1) = []/_, p; for each n. Then the monoid Q3’ is the direct limit of
the system (BII) (with QZ° = Q20 if P is the set of all prime numbers).

3.3 The regular algebra of a quiver containing
a cycle

Thus far, we have presented how the monoid V (=) of a Leavitt path alge-
bra can be constructed (Theorem B.I7 for row-finite quivers, generalized to any
quivers from Consiv in Corollary 3.25]), and we know that for acyclic quivers, the
Leavitt path algebra is regular (Theorem [B.12]). The Leavitt path algebras for
quivers with cycles are not regular; nevertheless, there is a construction realizing
Mg as V(=) of a regular algebra for any row-finite quiver £ (including quivers
with cycles):

Theorem 3.35 ((Ara — Brustenga, 2007, Theorems 4.4 and 4.2)). If E is a
row-finite quiver and K a field, then there is a regqular algebra Qi (E) satisfying
V(Qk(E)) ~ Mg. If the quiver E is finite, then the algebra Q(E) is unital. O

Remark 3.36. Theorems 4.2 and 4.4 of |Ara — Brustenga (2007) are stated for
column-finite quivers; it is the result of working with “opposite arrows” than we
do. For example, complete quiver homomorphisms are in|Ara — Brustenga (2007)
defined as monoid homomorphisms f that restrict to bijections between r~!(v)
and r~!(f%) for each vertex, and the monoid M (F) used in said theorems is, by
our definition, the monoid Mpg- (recall that £E* is the dual quiver of F).

Due to Theorem [3.35] and Corollary [3.25] we may conclude that:
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Theorem 3.37. Let E be a countable quiver and K a field. Then the monoid
Mg associated with E is realizable by a reqular K-algebra. If E is finite, then
M is realizable by a reqular unital K-algebra. U

Example 3.38 (rose with two petals). Let Ry denote the “rose with two petals”
quiver, that is, a quiver with a single vertex and with two edges (loops from the
single vertex to itself), pictured as:

CeD.
The monoid Mg, is seen to be the monoid 2 consisting of two elements, 0 and 1,
and with max as the monoid operation (cf. Lemma [A.14]). The algebra Lk (R>)

is not regular; nevertheless, by Theorem [3.35] there is a unital regular algebra
Qx (Rz) such that 2 ~ My ~V (Qk(Rs)).
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Chapter 4

On non-realizability by regular
algebras over arbitrary fields

By results by Friedrich Wehrung and Kenneth Goodearl, there is a criterion
for countable conical refinement monoids (with or without order-unit) to not be
realizable by regular algebras over any uncountable fields. In Section [4.2] we
present a proof of the criterion (Proposition [4.11]) based on the presentation in
(Ara, c2009, Proposition 4.1) and then we present a way of conrtucting examples
fitting the criterion. But before that, we establish some needed properties of
regular rings and algebras in Section [4.1]

4.1 Stable range 1 and cancellation in V (R)

Lemma 4.1. For a regular ring R that is unital, if v,y € R and ¢ : tR — yR
is an R-module homomorphism, then there is a z € R such that p(w) = zw for
allw € xR, i.e., v 1s in fact left multiplication by an element of R. In particular,
if x,y are idempotent, then ¢ = yzx - —.

Proof. As R is regular, there are 2,y satisfying z2'x = z,yy'y = y; then zR =
xx'R,yR = yy'R and ¢ can be extended to

S

Rr=2R®(1—22)R———— yR®d (1 —yy)R = Rpg.

As such, P is left multiplication by an element of R (Anderson — Fuller, 1992,
Proposition 4.11), hence so is ¢. If z and y are idempotent, then = - — = id,r
and y- — =idyp, so o = (y-—)opo(z-—). O

Lemma 4.2. Let I be a reqular ring and e, g € I idempotents. If e and g are
orthogonal, then el N gl = 0. Conversely, if el N gl = 0 holds and if I is unital,
then e and g are orthogonal.

Proof. Suppose first that a € el N gl; then a = eb for some b € [ and, by
idempotence of g, a = ga holds. Thus, if a # 0, then 0 # a = ga = geb, whence
ge # 0. We conclude that if el N gl # 0, then e and g cannot be orthogonal.
For the converse, let I be unital and let el N gl = 0. Then g/ C (1 —e)I;
thus, eg € egl Ce(l —e)l =01 =0, so eg = 0, and, symmetrically, ge =0. O
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Definition 4.3. A unital ring has unit 1-stable range if for any a,x,b € R
satisfying ax + b = 1, there is an invertible element u € R such that a + bu
is invertible in R. Stable range 1 is the same property as unit 1-stable range,
except that it is not required that u be invertible (hence, stable range 1 is a
weaker property than unit 1-stable range).

A zero-divisor in a (general) ring R is an element x € R such that whenever
xy = 0 or yr = 0 for some y € R, then y = 0; a non-zero-divisor is an element
that is not a zero-divisor.

Lemma 4.4 ((Goodearl — Menal, 1988, Theorem 2.2)). Let R be a unital algebra
over an uncountable field, such that all non-zero-divisors in R are invertible. If
R contains no uncountable direct sums of nonzero right or left ideals, then R has
unit 1-stable range. O

Lemma 4.5 (cf. (Goodearl, 1979, Proposition 4.13 and Theorem 4.14)). Let R
be a regular ring with unit and let R have stable range 1. Then, if A € proj-R
and B,C € Mod-R satisfy A® B ~ A® C, then B ~ C. In particular, the
monoid V (R) is cancellative.

Proof. We shall show that if R® B ~ R® C, then B ~ (|, as then, by induction,
one will obtain that whenever R™ @ B ~ R™ & C, then B ~ C. Since A is
finitely generated and projective, it is (isomorphic to) a direct summand of R
adding the complement of A in R™ to both sides of A® B ~ A® C, we will
have R™ @ B~ R™ @ C.

So, let ¢ : R®C — R® B be an isomorphism. By (Anderson — Fuller, 1992,
Proposition 4.11), there is a ring isomorphism R ~ End Rg, whence End Ry has
stable range 1. From the biproduct structure of R & B and R & C, there are
morphisms 7, T, Th, LR, LB, Ur i Mod-R as in the diagram

R® B « = RoC

¥ TR
TR B
- \ /\\/
R v B ‘R R

satisfying mptr = idg, mxty = idg, trmr + tpmp = idrep and mrtp = 0. Notice
that then R@® B = Imtg @ Kermg, B~ Imig = Kermg and C ~ Ker 7.
Put f =7y ': R® B — Rand g :=v¢/: R — R® B. Then:

idp = Tty = TRy "Wy = fg = fidrep g = f(LrTR + LBTEB)g
= (fir)(mrg) + fiBTRY.

As fir, mrg and figmpg are elements of End Ry, there exists—from End Ry
having stable range 1—a y € End Rg such that figr + fipmpgy is invertible in
End Rp (i.e., an automorphism of Rg). Putting k := tp +1pmpgy : R — R® B,
we then have that fk is an automorphism of R, whence R @& B = Ker f & Im k.
Also, since v is an isomorphism, we have Ker f = Ker(rp¢ 1) = o(Ker 7p) ~ C.

Next, observe that mrk = mrtgr + 0 = idg, whence R & B = Kernmy @ Im k.
Thus, in the module R& B, both Ker f and Ker 75 are complements of the same
submodule, Im k; as such, necessarily Ker f ~ Kerng. With Ker f ~ C and
Ker g ~ B, we conclude that B ~ (; thus, we have shown that if R&B ~ R®C
with B, C' any elements of Mod-R, then B ~ C'. 0
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Lemma 4.6. For a regular unital algebra R over an uncountable field, if R con-
tains no uncountable direct sums of nonzero right or left ideals, then the monoid
V (R) is cancellative.

Proof. For Lemma 4] to apply, we need to show that every non-zero-divisor in
R is invertible. To that end, if z is not a zero-divisor, then xy # 0 holds for
all nonzero y € R; thus, the R-module homomorphism x - — : Rg — xRy is
injective. As it clearly is onto, we have R ~ Rp, whence, by Lemma (4.1l there
is an a € R satisfying ax = 1. Symmetrically (via left modules), there is a b € R
such that zb = 1. Now a = al = axb = 1b = b is a two-sided inverse of x in R,
so, indeed, every non-zero-divisor in R is invertible. Hence, Lemma [Z.4] applies,
so R has unit 1-stable range; in particular, it has stable range 1. That V (R) is a
cancellative monoid now follows from Lemma O

Lemma 4.7. Let R be a regqular unital algebra over an uncountable field such
that there is a monoid homomorphism s : V (R) — R" satisfying s([P]) > 0 for
all nonzero [P] € V(R). Then R contains no uncountable direct sum of nonzero
right ¢deals.

Proof. Suppose the contrary, that is, that there is a direct sum @, ., Io of
nonzero right ideals in R with the set A uncountable. For each «a, choose a
nonzero idempotent e, € I, (this is possible by regularity of R: for, each I,
contains a nonzero element x,; multiplying x, from the right by its quasi-inverse
yields a nonzero idempotent contained in [a). Then each e, R is a nonzero ele-
ment of proj-R, so s([e,R]) is defined and nonzero. Also, since the sum above
is direct, e, R N egR = 0 whenever « # 3; in particular, the idempotents e, are
pairwise orthogonal (Lemma [4.2)).

For each n, put A, :=={«a € A | s([eR]) > @ }. As s([eqR]) > 0 for each

a, every a € A is contained in some A,; thus, A = (J A,,. Since the set A is
n=1
uncountable, it cannot be the union of a chain of finite subsets. Hence, there is

an m < oo such that A,, is infinite; in particular, A,, contains at least m distinct
elements, say, aq, ..., a,,. Then, by orthogonality of the e,’s,

Rr = <1 — i eai> R® éeaiR. (4.1)
i=1 i=1

The R-module P := (1 —>_", e,,) R is, as a principal right ideal in R, a finitely
generated projective R-module (Corollary 24]), whence [P] € V (R). From the
properties of s, s([P]) > 0 holds. Thus, since s is a monoid homomorphism, it

follows from (1) that s([R]) > s([D.~, eq; R]). However, from the definition of
Ap,, the inequality s([eq,]) > P holds for each i < m. Thus,

m

S([R]) = m - S(Lf]) <s ([@ eo R

a contradiction. We conclude that the assumption that there is a direct sum of
uncountably many right ideals in R cannot hold. O

) < s([R]),

LOf course, we admit the axiom of choice.
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4.2 Monoids not realizable by regular algebras
over uncountable fields

Now for the key point of this chapter, first in the unital case (cf. (Ara, (2009,
Proposition 4.1, credited to Goodearl)):

Proposition 4.8. Let R be a regular unital algebra over an uncountable field such
that there is a monoid homomorphism s : V (R) — R" satisfying s([P]) > 0 for
all nonzero [P} € V (R). Then V (R) is cancellative.

Proof. As V (R) ~V (R°?) (Proposition 2.27)), there is also a monoid homomor-
phism V (R°?) — R* mapping all nonzero elements of V (R°P) to strictly positive
real numbers. Applying Lemma [L.7 to both R and R°P, we have that R contains
no uncountable direct sums of nonzero right or left ideals. Thus, cancellation of
V (R) follows by Lemma (4.6l 0O

Lemma 4.9. Let I be a ring and v an indempotent in I. Then V (vIv) is a
submonoid of V (I).

Proof. As viv C I, we have My (vIv) C My(I). Clearly, if two idempotents
from M (vIv) are equivalent as elements of Idemp M., (vIv), then they are also
equivalent as elements of Idemp M. (7). Hence, mapping the equivalence class
of e in Idemp M (vIv) to the equivalence class of e in Idemp M. (1) for every
idempotent e € M (vIv) is a well-defined map from V (vIv) to V (I); one readily
sees that this map is a monoid homomorphism. We want to prove that it is
injective.

To that end, let e, g € Idemp M. (vIv) such that [e] = [¢] as elements of V (1),
that is, there are x,y € M, (I) satisfying exgye = e and gyerg = g; we want
to show that as elements of M, (vIv), e and g are equivalent. Since all entries
of e and g are elements of v/v, so are all entries in exg and gye, i.e., exg, gye €
M (vIv). But then, by idempotence of e and g, both e = e(exg)g(gye)e and

g = g(gye)e(exg)g hold. 0

Observation 4.10. Let K be a field, I a K-algebra and v € I an idempotent.
Then the subring viv of I is a K-algebra. 0

We are now in position to restate and prove (Ara, 2009, Proposition 4.1),
including nonunital algebras:

Proposition 4.11. Let M be a conical refinement monoid that is not cancellative
and such that there exists a monoid homomorphism s : M — Rt satisfying
s(x) > 0 for all nonzero x € M. Then there is no regular algebra I over any
uncountable field such thatV (I) ~ MEB

2In|Ara (c2009), in the proof of the same proposition only with the extra assumptions that
M have an order-unit and the condition that s maps said order-unit to 1, it is stated that
“Clearly we can assume that R is unital (...)” (with R in the role of our I). In oder to
verify the validity of said “clear” assumption, we needed Lemma [£.9] Observation 410l and the
entire proof of Proposition [£.11]to come. Should the reader see a simpler reasoning—ideally a
“clear” one—why it is sufficient to only prove Proposition [£.8] for Proposition £.I1] to hold, I'd
persnonally very much like to have it explained to me.
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Proof. Suppose the contrary, that is, that there is a regular algebra I over an
uncountable field satisfying V (I) = M. Since M is not cancellative, there are
idempotent matrices e, g, h over I satisfying e @ h ~ g @ h such that e and g
are not equivalent. By equivalence of e @ h with g @ h, there are z,y € M, (1)
satisfying (e®h)z(g@h)y(e®h) =edh and (9B h)y(e®h)z(gBh) = gHh. As
all the matrices in question have only finitely many nonzero entries and since the
regular ring I has local units (Proposition 2.7)), there is an idempotent v € I such
that e, g, h,z and y are elements of M., (vIv). We then have [e @ h] = [g @ h],
but [e] # [¢] in V (vIv), so V (vIv) is not a cancellative monoid either.

On the other hand, by Lemma A9, V (vIv) is a submonoid of V (I) = M.
Hence, the restriction s|ywry @ V(vIv) — R* is a monoid homomorphism,
again satisfying s|yrv)([a]) > 0 for all nonzero [a] € V (vIv). Since, by Observa-
tion I0, vlv is a regular unital algebra (with unit v) over an uncountable field,
and with s|y ) at hand, the monoid V (vlv) is cancellative by Proposition A8
a contradiction. O

Now that we have a criterion (that is, a sufficient condition) for a conical re-
finement monoid to not be realizable as a V (I) for any regular algebra I over an
uncountable field, a question to ask is whether there exists a monoid satisfying the
assumptions of Proposition [£.11], and if it is possible for such monoid to be count-
able. We answer both parts of this question in the affirmative in Example
(with the answer restated, for clarity, in Proposition [.16). However, instead of
argumenting only for the particular case of the monoid @y =2 x Q=°\ {(1,0) }
of Example 4.15], we instead prove that there is a more general way to build such
examples, starting with any conical refinement monoid that is not cancellative.

Proposition 4.12. Let A be a conical refinement monoid that is not cancellative.
Then the submonoid C := (A x Q=°)\ ((A\{0})x{0}) of Ax Q=" is a conical
refinement monoid that is not cancellative, and there is a monoid homomorphism
s : C — RT satisfying s(x) > 0 for all nonzero x € C. Moreover, if A has an
order-unit, then so does C'.

Proof. Firstly, we need to check that the subset C of A x Q=° is closed under the
monoid operation of A x Q=°. This follows from Q=° being a conical monoid: If
(a,q) and (d,q’) are nonzero elements of C' (with a,a’ € A, q,q € Q), then, by
the definition of C, both ¢ > 0 and ¢’ > 0. Hence, ¢+ ¢ > 0, so

(a,q9) + (d',¢)=(a+d,q+q) eC.

With 0 = (0,0) € C, we thus have that C is a submonoid of A x Q=°.
Since A and Q=° are conical monoids, so is C' by Observation [T
For the existence of s, we let s be the composition of the canonical projection

A x Q20 "5 Q20 with the two inclusion maps €' —= A x Q> and Q>0 —=3 R+,
as in the following commutative diagram in Mo

Ax Q20— Q20

AN

C - R*
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(as both the inclusions and the canonical projections are monoid homomorphisms,
so is s). Due to the exclusion of all elements of the form (a, 0) except for 0 = (0, 0)
from C, we see that s((a,q)) > 0 whenever (a,q) # 0.

To show that C' is a refinement monoid, observe that Q=° has “nonzero re-
finements” in the sense that if a +b = ¢+ d in Q=° with a, b, ¢, d # 0, then there
is a refinement in Q=° with none of the refining elements zero: indeed, supposing

w.l.o.g. that a < c,
| b

c
d

vjewie|
el

C J—
d—
is such refinement. Let a; 4+ ay = by + by in A and p; +pe = ¢1 + ¢ in Q=Y with
(a1,p1), (az,p2), (b1, q1), (b2, q2) € C. Either of the following two cases occurs:

(i) p1,p2,q1, g2 are all nonzero: Then, there are refinements

‘ ar Qg ‘ P11 P2

. . >

by | 111 112 inAand ¢ | s11 S12 in Q—O
by | To1 T g2 | S21 S22

with all s;; # 0; then

‘ (afla Pl) (a2> PQ)
(bhﬂh) (7”11,511) (7“12,512)
(52,612) (7”21,521) (7“22,522)

is a refinement in C.

(i) One of the elements of p1, pa, q1, g2 is zero, say, p; = 0, then—since (ay,p;) €
C—necessarily (a1, p;) = 0; then

‘ 0 (az,p2)
(51,%) 0 (thh)
(52, Q2) 0 (52, Q2)

is a refinement in C.

In either case, we found a refinement to (aq,p1) + (a2, p2) = (b1,q1) + (b2, ¢2) in
C, so C'is indeed a refinement monoid.

Since A is not cancellative, there are elements a, b, z € A such that a4+x = b+x
holds while a # 0. Taking (a,1), (b,1), (x,1) € C, we see that

(a,1) + (z,1) = (a+x,2) = (b+x,2) = (b, 1) + (z,1)

holds, while (a,1) # (b, 1), so C' is not a cancellative monoid.
Finally, if @ € A is an order-unit in A, then clearly (a,1) is an order-unit in
C. O

Remark 4.13. It is clear from the proof of Proposition that instead of Q=°,
we could have used any conical monoid B allowing a monoid homomorphism
¢ : B — R with ¢(x) # 0 for all nonzero x € B such that B has “nonzero
refinements” in the sense used in the proof. However, for simplicity, we keep Q=°
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in Proposition instead, as it is a countable, easy-to-imagine monoid. A par-
ticular example of a suitable monoid B is the submonoid (@1230 of Q=° consisting,
for a fixed nonempty set P of primes, of rationals expressible as fractions with
only products of powers of elements of P in the denominator, as presented in
Remark 3.20L To see that QIZDO has “nonzero refinements”, let a + b = ¢+ d in
(Q)}Z)O with a,b,¢,d # 0 and let p € P (we assume P # ()), and w.l.o.g. suppose
that a < c¢. Then the following is a refinement in (@1230 with all entries nonzero:

‘ a b
& v c—5 .
d| =D g _ (p=la
p p

Notice that we can use the inclusion map Qz° Sy Rt as ®.

However, the requirement of the existence of “nonzero refinements” in B is
necessary, as we shall show in Remark .17, Before that, for construction of
examples, the following lemma will come handy:

Lemma 4.14. For any linearly ordered set X with a least element, the monoid
X = (X,max) is a conical refinement monoid. If the set X has at least two
elements, then the monoid X is not cancellative.

Proof. Clearly, taking maximum of two elements is an associative and commuta-
tive binary operation, hence an abelian semigroup operation on X. Let 0 denote
the least element of X. Then 0 is the zero element of X, since max{0,z} ==z
for all x € X, so X is a monoid. From 0 being the least element of X, it follows
that X is a conical monoid. As for refinement, if max{a,b} = max{c,d} for
some a,b,c,d € X, suppose w.l.o.g. that a = max{a,b} = max{c,d} =c. We
then have the following refinement:

a
d

a b
a b
d min{b,d}.

Finally, if 0 # 2 € X, then the equality max {0,z } = max { z,z } is a witness to
X not being cancellative. O

Example 4.15. Taking the linearly ordered two-element set, 2 := { 0,1} (with
0 < 1), consider the countable monoid 2 = ({0,1},max). By Lemma [£.14]
it is a conical refinement monoid that is not cancellative. Thus, the monoid
Qy =2 xQ=\{(1,0)} is, by Proposition 212 a conical refinement monoid
that is not cancellative and such that there is a monoid homomorphism from @)
to R™ mapping all nonzero elements to strictly positive real numbers. Hence, the
monoid () satisfies the assumptions of Proposition .11l so it cannot be realized
by any V (1) with [ a regular algebra over an uncountable field. Thus, the monoid
Q2 =2 xQ=%\ {(1,0) } is a withess to the main result of this chapter, that is:

Proposition 4.16. There exists a countable conical refinement monoid that is not
isomorphic to any V (A) with A a regular algebra over an uncountable field. O
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Remark 4.17. The monoid 2 will serve us to show that while generalizing Propo-
sition in Remark T3], we cannot replace Q=% with a general conical refine-
ment monoid (with a suitable monoid homomorphism to R*); we show this on
the example of N.
In Ny, the only refinement of 1 +1 =141 is, up to order of columns,
11
111 0.
110 1

In 2, the only refinement of max{1,1} = max{1,0} is

1 1
1 1.
0 0

O =

Hence, the only refinement of (1,1) + (1,1) = (1,1) +(0,1) in 2 x Ny is

| (1,1)
(1,1)
(0,0)
(again, up to order of columns). Notice that while both (1,1) and (0,1) are
elements of 2 x Ny \ {(1,0) }, the element (1,0) is not. As (1,0) is necessary
in the refinement (£2)), we conclude that 2 x Ny \ {(1,0) } is not a refinement
monoid; thus, it not only fails to satisfy the assumptions of Proposition L.I1T}—in
view of Proposition 237 it also loses all relevance to us.

Replacing the equality 1 +1 = 1 4+ 1 with any equality of sums of nonzero
elements that does not have a “nonzero refinement” (provided that there is such)
in a general conical refinement monoid, we see that the assumption that the
monoid B in Remark [L.13] have “nonzero refinements” is necessary.

(1,

1,1
1 1,0) . (4.2)
(0, 0,1

(
1 (
1 (

Remark 4.18. Another remark about the construction from Propostiond.12is in
order: In the proof of said proposition, we use the exclusion of all elements of the
form (a,0) with a # 0 from the product A x Q=Y in order to easily obtain a monoid
homomorphism s : C' — R* with s(x) > 0 whenever x # 0, so that we can apply
Proposition £ IT1to C. Let us have a look at the entire product A x Q=Y instead
of C': not only that we then cannot in general ensure the existence of a suitable
monoid homomorphism for Proposition .11l to apply, but even the assertion of
said proposition—that is, that the resulting monoid cannot be realized as V (—)
of any regular algebra over an uncoutable field—could fail, as demonstrated in
the following example:

Example 4.19. For R, the “rose with two petals” quiver of Example [3.38] there
is a unital regular algebra Qi (Ry) such that Qx (Ry) ~ 2. Also, Q=° =~V (Lg(E))
for a quiver F as in Theorem 319 By Observation [2.25]

2x Q%" 2 V(Qx(R2)) x V (Lg(E)) =V (Qk(Rs) x Li(E)),

and the algebra Q (R2) X Li (F) is, as a direct product of two regular K-algebras,
also a regular algebra over K. Hence, the monoid 2 x Q=% can be realized as V (I)
with I a regular algebra over any given field.
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Note that for monoids from Proposition [4.12] we only know that they cannot
be realized by regular algebras over uncountable fields, thus witnessing the nega-
tive answer to Problem [[.4] for K uncountable. However, we do not know of any
means to prove either their realizability or non-realizability by regular rings (or
even regular algebras over countable fields).
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Chapter 5

The monoid V (R) of the
Chuang-Lee ring R

5.1 The Chuang-Lee ring R

In this section, we will reconstruct the ring R constructed in (Chuang — Lee
(1990), and in the following two, we shall compute its monoid V (R). Let us fix
some notation for this chapter first:

Let K be a countable field, K[t| the ring of polynomials over K in an indeter-
minate ¢, and K () the quotient field of Kt]. Let us define a valuation 0 on K ()
as follows: Put 00 := 400, and if ¢ divides neither f(¢) nor g(¢) and if n € Z, put
875"% =n.

Let V :={r € K(t) | Or > 0}. Note that, as a subring of K (t), the set V is a
vector space over K. Next, observe that for n € Ny, we have t"V = {r | Or > n };
subsets—subspaces, in fact—of V' of this form play a key role in what is to come.

Fixing some more notation, let £ := Endg V' and let S denote the subset of
E consisting of all x € E such that there exists a pz € K(t) and an n € Ny
satisfying (z — @x)t"V = 0. Informally speaking, we thus let S consist of all
K-endomorphisms of V' that act as multiplication by an element of K (¢) on all
elements of V' with sufficiently large valuation 0.

Along with verifying other properties of S, let us justify the name of the
element px of K(t) by the following lemma:

Lemma 5.1. (i) For each x € S, the element px € K(t) is unique and does
not depend on n.

(ii) The set S is an K-subalgebra of V., and ¢ : S — K(t) is a surjective
homomorphism of K-algebras.

Proof. Suppose (z — b)t*V = 0 for some b € K(t) and k € Ng. Then
(x — po)t"F =0 = (x — b)t"**,

whence (px — b)t""* = 0. As t"** #£ 0, we conclude that pz = b.

It follows from |(i)| that ¢ : S — K(t) is a well-defined map. Observe

that whenever z,y € S, then x —y € S with p(z — y) = vz — py. Furthermore,
suppose that (r — p2)t"V = 0 and (y — oy)t*V = 0 with k,n € Ny. Then clearly
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x(y — y)t*V = 0. Since oy € K(t), we have (¢y)t™ € V for sufficiently large
m € Ny, and thus

(zy — (SOx)(goy))thrnJrkV =z(y — (py)thrnJrkV + (z — (px)“Oy)thrnJrkV
C 2(y — etV + (x — p2)t"V = 0.

It follows that ¢ is a homomorphism of K-algebras. Finally, to show that ¢ is
onto, consider r € K (t). As with ypy above, multiplying r by a sufficient power
of t makes its valuation non-negative, that is, we have rt™V € V for some m.
Multiplication by r is then an K-homomorphism from the subspace "V of V
into V; as such, it can be extended to an endomorphism, say, x, of V. Then
(x — r)t™V =0, whence r = . O

We shall need a basis of V' that is “well-behaved” with respect to the valua-
tion 0:

Lemma 5.2. There is a basis {v; | i € Nog} of V over K such that Ov; = i holds
for all i € Ny.

Proof. As a subring of K(t), the ring V is a vector space over K. Since K is
countable, so are the rings K[t|, K(t) and V. Thus, the dimension of V' over K
is also at most countable. With 1,¢,¢2,... being a linearly independent subset!]
of V, the dimension of V' must be infinite.

Let now {u; | i € Ny} be a basis of V. Inductively, we construct a strictly
increasing sequence By C By € By C ... of linearly independent subsets of V/
satisfying the following for every i € Ny:

(i) the set B; spans the same subspace of V" as { uy,...,u; } does; and
(7i) whenever v # w in B;, then dv # Jw.

Put By := {wuo}. Now, if Ou; is different from all dw with w € B;_1, put
B; := B;_1 U {w;}; if on the other hand du; = dw; = k for some (necessarily
unique) w; € B;_1, we need to “alter” the element u; before adding it to the set
B;_1: By the definition of 0, we have

u; = tk& and wy = tkf—w

Ju Guw
for some fy, gu, fuw, gw not divisible by t in KJt]. Hence, f,g, = tp + a and
Gufw = tq+ B for some p,q € Kt] and o, f € F. Putting A\; := 5, we obtain

Un _y_ Jufe @
wq b gufw B
_ Bfugw - agu,fw
BYGutw
B(tp+ o) — a(tg+ B)
BGufuw
Bp — aq
=t L eV,
gte S0

IClearly, 0t* = i for all i € Ny.
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w1

whence 0 (ﬂ — )\1) > 1. Thus,

8(’&2 — )\111}1) = 8w1 + 0 (ﬂ — )\1) > 8’(1]1.
wq
If now O(u; — \Mqw;) = Owy with wy € B;_1, by repeating the same process, we
find a Ay € F such that

8(ul — )\1w1 — )\Q’wg) > 8w2 > 8’(1]1.

Since the valuations obtained in this process increase with every iteration and
since B;_1 is finite, we end up—after finitely many, say, k, steps—with an element

k
u::ui—Z)\jwj eV,
j=1

where \; € K and w; € B;_; for all j, such that Ju is different from Jw for all
w € B;_y. Put B;:= B;_1 U{u}.

That B; spans the same subspace of V' as { uo, ..., u; } does is obvious from
the construction of B;.

Put B :=J B;; then B is a base of V satisfying v # dw for any two distinct
elements v, w of B. After a suitable reordering of B, we obtain B = {v; | i € Ny }
with vy < vy < Juy < .. ..

For v = Z’::k av; € V owith a; € K and oy # 0, we observe that 0v = Ju.
With 1,¢, %, ... being in the span of B (that is, in V), every i € Ny thus appears
as Ov; for some j € Ny. Minding the ordering of the dv;’s above, we conclude
that dv; = 1 for every 1. O

Let us fiz a basis {v; | i € Ng} of V as in Lemma B2 that is, with dv; = i
for all i. Observe that then for any i € Ny, the set {v; | j > i} forms a basis
of t'V. By 7, we shall denote the projection of V on its “first i + 1 coordinates™
in the above basis, that is, the endomorphism of V' defined as 7;(v;) = v; for j <
and m;(v;) = 0 for j > i. Note that with this notation, (1 — m;)V = t**'V. The
Idips O

0 0

It will be convenient to characterise the classical notions of row-finiteness and

of column-finiteness in the following way:

matrix of m; is block-diagonal of the form

Observation 5.3. (i) The matriz of x € E is row-finite (i.e., each of its rows
has only finitely many non-zero entries) if and only if for any i € Ny, there
exists a j € No such that mx(l —m;) = 0.

(ii) The matriz of v € E is column-finite (each of its columns has only finitely
many non-zero entries) if and only if for any i € Ny, there exists a j € Ny
such that (1 — m;)xm; = 0. O

Clearly, the matrix of any endomorphism of V' is column-finite. We note that
matrices of elements of S are also necessarily row-finite:

2The fact that the rank of m; is 141, as well as indexing matrix entries and terms in sequences
below starting from 0 instead of 1, can admittedly get confusing. We choose this notation not
to shift indices used in [Chuang — Led (1990) and to keep indices related to the valuation 0.
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Lemma 5.4. If x € S, then the matriz of x is row-finite.

Proof. Since x € S, there is an n € Ny such that (z — pz)t"V = 0. Given i € Ny,
there is also an m € Ny satisfying (¢x)t™V C "1V, Taking j := max{m,n}, we
see that (x — p2)t/V = 2t/ V C 71V whence mz(1 — 7;) = 0. O

We put W .= § x HZOZO mEm,. Notice that we can view m, E7m, as a subset
of My1(K) C Myo(K), s0 W C Moo(K) x [[rey Mi(K).
Let R consist of all elements w = (wg, wy, wy, ...) € W satifying both:

(i) for any m > 0, there is an n > 0 such that wym,, = wsm,, for all k > n, and
(i) for any m > 0, there is an n > 0 such that m,,wy = m,ws for all k > n.

Viewing wg and all the w;’s as infinite matrices, the translation of the above
conditions is

(i) for any m € Ny, the first m columns of w; are the same as in wg for all but
finitely many ¢’s, and

(ii) for any m € Ny, the first m rows of w; are the same as in wg for all but
finitely many ¢’s.

It is shown in (Chuang — Lee, 1990, pp.18-19) that S is a regular unital ring
and that R is a regular unital K-algebra.

5.2 Idempotents of R

Before computing the monoid V (R), we shall find necessary and sufficient
conditions for principal right ideals of R to be isomorphic; the conditions are
stated in Proposition In Section B.3] we will see that—thanks to Proposi-
tion [B.I6—we will not need to work with any larger R-modules and still be able
to compute the monoid V (R).

Lemma 5.5. For an idempotent e € S, either pe =0 or pe =1 holds.

Proof. Since e € S, there is an n such that (e — ¢e)t"V = 0. For any k > n, we
then have evy = (pe)v,. Applying e, we obtain

ev, = (pe)evy. (5.1)

Now, if pe # 1, (B.1)) yields evy, = 0. Since this holds for all £ > n, we obtain
(e —0)t"V = 0, whence e = 0. O

Observation 5.6. For an idempotent e € S, if pe = 0, then the matrix of e is
block diagonal of the form
X 0
(0 0)

while if pe = 1, then the matrix of e is

X 0
0 Idy/
In either case, X is an idempotent square matriz of finite size. O
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Lemma 5.7. Let w = ( )g I((]i , Wo, Wi, - . ) be an idempotent element of R,

where X € M,,(K). Then there is an idempotent

w' = ((On_rgnkx I(()i) ,wé,wi,...) €ER

such that wR ~ w'R.

Proof. As X is an idempotent matrix from M, (K), there exists an invertible
matrix A € GL(n,K) such that

-1 _ On—rank X 0
AXA a ( 0 Idrank X ’

Put ag = 151 I(g ), for © < n, put a; := Id;41, and for ¢ > n, put a; =

A 0 . Then a := (as,ap,a1,...) € R is invertible in R: its inverse,
0 Idiy1-n

A 0 AL 0
—1 . . )
a—" € R, has its respective terms (0 Idoo)’ Id;y; and ( 0 Idiﬂn).
One readily checks that wa™'w'w’aw = w and w'ewwa'w’ = w’, so we have
mutually inverse R-isomorphisms

(Lemma 2:22)). O

Lemma 5.8. Ifw = (wg, wy, wy,...) is an idempotent in R with wg = Id, then

Wh =~ UR’ wherewu = (uS7 Ugy Upy - - ); us = 1d and U; = Idrankwi 0 H
0 Oi—l—l—rankwi
; Id, 0
Proof. For any 1, find the greatest n; € Ny such that w; = 0 i W for some

matrix W;. Since the matrix W; is idempotent, there is an invertible matrix A;

Idraak Wi 8) With ag = Id, we have

a € R, since we have lim n; = o] due to w being an element of R. Then, as in
1—00
Lemma 5.7 uaw and wa'u are the desired isomorphism and its inverse. O

of appropriate size satisfying A;W;A; ! = (

Lemma 5.9. Ifw = (wg, wy, wy, ... ) is an idempotent in R with wg = (On 0 );

0 Id
then wR ~ uR; whe’f’e u = (us7u07u17"')7 Ug = wS’ u; = (Idra(r)lsz 8)
On 0 0
for finitely many i’s and u; = | 0 Idjankw, O] for the remaining i’s.
0 0 0

3Note that if rank w; = i + 1, then the zero-block in u; is of size zero, while if rank w; = 0,
then the identity-block in u; is of size zero. Henceforth, we leave similar situations without
further comment.

4We write li}m n; = oo to state that for each [ € N, n; > [ holds for all but finitely many 4’s.

3 o0
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Proof. Find iy such that whenever i > 1, the first n rows and columns of w; are

0, O 0
zero. For i > iy, let n; > 0 be the greatest integer such that w; = | 0 Id,, 0
o 0 W

holds for some W;. For ¢ < iy, let a; be an invertible matrix satistying a;w;a; -

(Ig 8), and for ¢ > 1, take a; = (Id’g’” 12), where A; is invertible and

satisfies A;W; A7 = Igl 8 . As in the proof of Lemma 5.8 a € R is invertible
in R and uaw and wa~'u are the sought-after isomorphisms. O

Lemma 5.10. Ifw = (wg, wy, wy,...), ¥ = (ug, Uy, Uy,...) are idempotents in

R, if wg = Id and ug = (00" I(g ) and if rankw; = rankwu; for all i, then
wR ~uR.
Proof. By Lemma[b.9) we may assume that w; = (Ig 8) for all 4, u; = (I(()i 8)
0, 0 O
for finitely many i’'s and u; = | 0 Id 0] for all remaining ¢’s.
0 0 0

Consider the two following endomorphisms of V'
e « :v; — t"w; for all i;

o B:u;— t~"v; fori>n,and
ot 0 for i < n.

By the definition of 9, dav; = i + n for all ¢ and dfv; = ¢ — n whenever ¢ > n.
Thus, viewed as matrices over K, we have

(3

with the first n rows zero and with A a lower triangular matrix and
5=(0 B)

with the first n columns zero and B a lower triangular matrix. Notice that
af = ug and Ba = wg; in particular, B = A~!. Let A; and B; be the i x 4
upper-left corners of A and B, respectively. Since both A and B = A~! are lower
triangular, we see that

A7l =B (5.2)

holds for all 7.

S Id, 0
Let n; := ranku; = rankw;. For i < ig, let ¢; = d; = i

0 0
w; = u;, we need not alter the i-th coordinate when looking for an isomorphism
between wR and uR); then u;c;ww;d;u; = u; and w;d;uu;c;w; = w;. Let now
t > 1p. Let ¢; be the matrix with first n rows zero, A,, in the next n; rows

0
and first n; columns, and the rest zero, i.e., ¢; = | Ay,

O'L

(as then

0 0
0 0. Note that the
0 0
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blocks of this matrix that are necessarily square are the top-right one (size n),
the middle-left one (size n;), and the bottom-middle one (size i + 1 — n; — n).

0, 0 O
Also notice that multiplication from the left by w; = [ 0 1Id,, 0] preserves
0 0 O
the middle-row blocks in ¢; (while killing the rest; however, as the rest is already
zero, it is preserved as well) and multiplication from the right by w; = (Icén, 8)

preserves the first-column blocks in ¢; (again, killing the rest). Thus, we see that
U;C;W; = C;.

Similarly, defining d; as the matrix with the first n columns zero, B,,, in the next

0 B, 0
n; columns and first n; rows, and the rest zero, i.e., of the formd; = [0 0 0],
0 0 0
we have
Now that B, is in fact A;! by (5.2)), we conclude that
0 00 0 B, 0 0, 0 O
0 0 0 0 0 0 0 O
and
0 B, 0 0 0O 4. 0
0 0 0 0 00
Hence we have w;c;w,w;d;u; = u; and w;d;u;u;c;w; = w; for all 4. Defining

¢ = (a,co,c1,...) and d := (B,do,dy,...), we now see that ucwwdu = u and
wduucw = w. Thence, to prove that ucw and wdu are mutually inverse R-
isomorphisms of 4R and vR, it only remains to verify that ¢ and d are elements
of R.

Since the matrix of a is lower triangular, we see that for every i > ig, the first
n + n; rows of ¢; and « coincide; similarly, the first n; rows of 8 and d; coincide.
Hence we have 7,4,,-1¢; = Tpin,—10c and m,,_18 = m,,_1d;, while lim n; = 00
holds due to w € R. As for columns, since o and (3 are column—ﬁnitel, toﬁere is for
every m a k,, such that whenever k > k,,, then the first m + 1 columns of a and
¢ coincide—so ar, = ¢, for every k > k,,—and that the first m + 1 columns
of # and d; coincide, so fm,, = dym, whenever k > k,,. Hence o, f € R, which
concludes the proof. O

Proposition 5.11. Let u = (ug, ug, Uy, ...), v = (vg, Uy, vy, ...) be idempotents
in R with ug,vs of infinite rank. Then uR ~ vR if and only if rank u; = rank v;
holds for all 1.

Proof. The i-th component of an R-isomorphism is always a m; E'm;-isomorphism;
the only-if-part follows. For the if-part, due to Lemmas (.7 and (.9, we may
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assume that ug = (OO" I((]i)’ u; = (I%"Z 8) for finitely many #’s and u; =

0, 0 0 0o 0
0 Id,, 0] for the remaining i’s, and, similarly, that vg = [ " , U =
: 0 Id
0 0 O
Id,, 0 O 00
( O"" O) for finitely many ¢’sandv; = | 0 1Id,, O | for the rest. Lemmal5.10]
0 0 O
then asserts that both R and v R are isomorphic towR, where w = (wg, wy, wy, . .. )
with wg = Id and w; = (I%m 8) for all 7. O

We shall now search for an analogue of Propostion 5.11] for idempotents of R
with the S-coordinate of finite rank.

Lemma 5.12. Let w = (wg,wy, wy,...) be an idempotent in R with wg =
()0( 8) . ThenwR is isomorphic to uR for someu = (ug, ug, Uy, ...) € Idemp R

with ug = (Idraglkx 8) .

Proof. Suppose X € M,(K). Since X is idempotent, there is a matrix A €

GL(n, K) satisfying AXA™' = <IdrfglkX 8

X 0
n such that whenever ¢ > ig, w; =

M1 n(K). Let ag := <1§ I(()i)’ a; :=1d;44 for all i < 7y and a; := (61 I?i) for

all i > 4y. Then clearly a = (ag, ay, @y, ...) is an invertible element of R, and we
may put u := awa ', O

). Since w € R, there is an 75 >

holds for some matrix W, €

Lemma 5.13. In Lemmal2.12, one can findw such that u; = (Idrank w; 0 )

O Oi—l—l—rankwi
IdrankX 0 0
for finitely many i’s and u; = 0 Op—rankx O | for the remaining v’s.

0 0 Id

Proof. In the proof of Lemma [5.12]), the matrices w; are—for i > ip—in fact
X 0 0

of the foorm [ 0 0,, O | for some m; and some idempotent matrices Y; €
0 0 Y

M1 —n—m,(K). Since w € R, notice that Zlgglo m; = oo. Since the Y;’s are

idempotent, there are invertible matrices B; € GL(i + 1 —n — m;, K) such that

BZ-Y;Blfl = (8 fraSkY,-) Take then again ag := (61 I?i) and a; := Id for i < ig,
A 0 0

and for ¢ > iy, take a; := [ 0 Id,,, O |. The rest of the proof is the same as
0O 0 B

for Lemma O
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Note that in the above lemma, due to u being an element of R, the size of the
zero-block in the middle of the matrices u; gradually increases with increasing i;
this explains the nature of condition [(M3a)]

Lemma[5.13] together with the same reasoning as in the only-if-part of Propo-
sition [0.11] easily translates into the following:

Proposition 5.14. For v = (vg, vy, vq,...),w = (wg, Wy, Wy, ...) € Idemp R
with rank vg = rank wg < 0o, the modules vR and wR are isomorphic if and only
iof rank v; = rankw; for all i. O

Finally, combining Propositions 5.1l and [£.14] immediately yields:

Proposition 5.15. For v = (vg, vy, vy,...),w = (wg, wy,wy,...) € Idemp R,
the modules vR and wR are isomorphic if and only if both rank vg = rank wg and
rank v; = rankw; for all i. O

5.3 The monoid V (R) of the Chuang-Lee ring R

Let us define the binary relation = on Ny x Ny as (n,m) = (n/,m’) if either
(n,m) = (n',m’) or m = m’ > 0. Note that = is a congruence on the monoid
Ny x Ny. Let us define Mg as the factormonoid (Ny x Ny) / = and denote the
congruence class of (n,m) by [n,m].

Informally, the monoid Mg can be viewed as a copy of the semigroup N
“above” a copy of the monoid Ny. Elements of the form [n,0] are thought of as
being “downstairs” (in the copy of Ny, with its ususual addition), while elements
[0,m] are “upstairs” (in the copy of N with the usual addition), and adding an
element from downstairs to one from upstairs does not change the element from
upstairs.

It is easy to verify that Mg is a refinement monoid.

Put N := Mg x (Ng)*. Then, taking refinements component-wise, N is a
refinement monoid. Let M be the submonoid of N consisting of all sequences
([rgsma) s70s 71, - - ) € N satisfying:

(M1) there exists an n € N such that for all i € Ny, r; < n(i + 1) holds, and:
(M2) if r, > 0, then lim r; = oo;
1—00
(M3) if r, = 0, then both:
(a) lim n(i+ 1) — r; = oo for the same n as in condition [(M1)| and
11— 00
(b) there exists an ig € Ny such that for all i > iy, the inequality r; > ry4
holds.

We will show that then M ~ V (R), using the following:

Proposition 5.16 (Ruzicka, 2011, Lemma 4.4). Let R be a reqular ring, let M
be a refinement monoid, and let f: R — M be a map satisfying:

(i) aR ~ bR if and only if f(a) = f(b), for all a,b € R.
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(i) If x +y = f(c) for an idempotent ¢ € R and z,y € M, then there are
orthogonal idempotents a,b € R such that f(a) =z, f(b) =y, and a+b = c.

(1i) f(1) is an order-unit in M.
Then V (R) ~ M. O

In order to do so, we first need to show that the monoid M satisfies the
refinement property.

Lemma 5.17. The monoid M is a refinement monoid.
Proof. Suppose we have elements
ri = ([r,ri] ,rd,rd,...)
of M with j € {1,2,3,4} and with
rl4r?=r3+rt =5 =([sy,5,],505,---)- (5.3)

We search for a refinement of these sums depending on the Mg-component of s:
Case 1: s, = 0. Then clearly 0 = 77 for all j. From condition for 77,
find a common 4y such that for all ¢ > iy and all j, 7] > rJ holds. For all j, let

I gd

EYRE 8

J .

sl =0,

s1:=0 for i < 4y, and
I gd N

5] =17y for © > 1g.

As we have r} + 12 =13 +r} in Ny, there is a refinement:

i.e., there are oy, B4, 74, 0a € Ny such that ag+ Bq =73, ag+v4 =1k, ya+0a = 1]
and B4 + 84 = 3. For i < iy, find refinements of the i-th coordinate of the two

sums in (B.3)):

For i > i, find first a refinement of the of the sum (r} —rl) + (r? —1r2) =
(r —7r3) + (r} —r}) in Np:

i J—

1 1,2 2
"ﬁ‘"”d T T4

3 3 / /
/ /
Ty —Tq i 0;

Then, put «; := o} + aq, B == B, + Ba, Vi =7, + Va, 0; := 0, + g, and

a = ([ay, 0], oy, aq,...),
B = ([84,01, 55, b1, ---)
Y = (1007975 - ) 5
6 = ([04, 0] 09 01, )



We have found a refinement
1 .2
rt or
P |la B
4

rtly 6

in the monoid N; we claim that this refinement is in fact in M: We shall only
verify that, say, @« € M, as the remaining elements behave similarly. Con-
dition holds, since for each i € Ny, o; < r!. Condition is sat-
isfied automatically, as o, = 0. As for [M3)] from a; < 7}, we have that
n(i +1) —r} < n(i + 1) — a;, whence [(M3a)| holds. Finally, for i > iy (with
the iy we fixed above), a; = o} + g > ag, so @M?)b} is satisfied as well.

Case 2: s, > 0. We will still check the refinement property separately for
three different cases:

Case 2a: r. =0 and r> = 0 (and hence r?

. 2 =r!>0): wlo.g., suppose that
rl < r3 Find iy such that for all i > 4o, both v} > r} and r} > 3 hold (from

(M3))) and also that r? > 73 — 7! (from [(M2)). Put

o), ,aéo_l
o = | [rg0],0,...,0, 73,1y, , and
alo,a;0+1,...
Bty 1
B = [Tﬁ—rcll,()} , O,...,O,Z“fj —Tcll,rg—rcll,..;
B8 1y

We shall now find a suitable refinement

‘rl—a’ 1”2—,3/

1,.3 —ao — ﬂ/ o' ,B”
r 0% )
component-wise as follows: There is no choice but [0,0] = [, o] = [5], 8] =
(Y4, 7] and [64,0.) = [0,72]. For i € Ny, consider the refinement

rl—ap vt p
oA

Vi 0i

3 / /
ri_ai_ﬁi‘

T

(in Ng) with o = min {r} — o/, 7} — ol — 8/}. Then

e

1 2

| T r
1”3 a/ + a// ,BI + IB//
rt 0% é

is a refinement in M: is satisfied for 4, since for every i, either §; = r} or
6; = r2—B[. Since 4, a/j and 3] are all zero and by the choice of @’ and f', we see
that o' + a”, ' + B” and 7~ satisfy |(M3b); the remaining conditions are verified
as above.
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Case 2b: 73 = 0, while 7}, 72 and 7! are nonzero. Find iy such that for all
i > ig, both v} >r}and r? > r}. With

! /
Qo Xy 1

I 1 e T
o = | [rg0],0,...,0,r4,7g... | and
——
CONC ST
o = ([0,0],min{7’0 04077’0 ag } s {Tl ay, i —af | ) )
the resulting refinement
| ! r?
rPla+a B
ri ~ 1)

is a again in M.

Case 2c: All ) are nonzero (and thus all 7 are irrelevant). From [(M2)] for
all 77, find for each | € Ny an 4, € Ny such that whenever i > i;, the inequality
7 > [ holds for all j. Put [(4,C] == [0,1] and for all 4, ¢; := max{l]i >4 }.
Find a refinement

|r'—¢ ¢
r—C| a B
S
in N. Since all 7/ satisfy so does ¢, and we coclude that

1 2

| r
rla+( B+
Y+¢ 6+¢
is a refinement in M. O

Let us now define the map f : R — M: Let w = (wg,wy, wy,...) € R.
For all ¢, put f(w); := rank w;, and

[rank wg, 0] if the rank of wg is finite,

[f(w)a, f(w)u] == { [0, 1] otherwise.

Lemma 5.18. The assignment f above is a well-defined map from R to M.

Proof. Since the ranks of each wj is at most i+1, we have f(w) € N and satisfying
(M1)[ (with n = 1). Condition is of interest only if the rank of wg is infinite;
then for any given a € N, there is an m such that wgm,, is at least of rank a; by
the definition of R, there is a k' such that for all n > k', w,n,, = wsm,,. Since
wg is column-finite, ther is a k” such that all the non-zero entries of wgm,, are
actually in mprwgm,,. Thus, whenever n > max{k’, k" }, the rank of w, is at

least a. We have thus shown that lim rank w; = oo, whence is satisfied. As
11— 00

for |(M3)| suppose that the rank of wg is finite. Then there is an m such that

wg = Tuws (indeed, there are only finitely many linearly independent columns in

wg and wg is column-finite, whence there are only finitely many non-zero rows in

wg). By the definition of R, there is an iy such that for all i > iy, m,ws = TRLw;.

Then

rank w; > rank 7w, w; = rank 7, ws = rank wg,

68



whence f(w); > f(w)q for all i > ig and f(w) satisfies|(M3b)|. As for|(M3a)| given

a € N, find a k > m + a such that for all ¢« > k, the equality 7,1 ,wWs = T raw;
holds. Since i > k > m + a and (1 — 7, )ws = 0, we coclude that w; has at most
i + 1 — a nonzero rows. Thus, rankw; < i+ 1 — a, whence a > (i + 1) — f(w);.
We have thus shown that le (1+1) — f(w); = oo, as desired. O

Since an R-module isomorphism is necessarily an isomorphism in each of its
components (i.e., an S-isomorphism in the S-component and a m; Em;-isomorphism
in the i-component for every i), we observe that:

Observation 5.19. Ifa,b € R satisfy aR ~ bR, then f(a) = f(b). OJ

With the map f defined, we shall now proceed with verifying the conditions
of Proposition 5. 16t Verifying that condition |(1)|is satisfied is what Subsection
was dedicated to, namely, Proposition translates into the desired condition.
Condition is checked easily:

Lemma 5.20. f(1)

([0,1],1,2,3,...) is an order-unit in M.

Proof. Let r = ([ry,7,] 79,71, --.) € M. Suppose first that r, = 0. From
and |(M3)] there is an n such that r; < n(i + 1) for all 7 and that

lim n(i +1) —r; = oo.

1—+00
Putting [s4,s,] := [0,n] and s; = n(i+1)—r;, we see that 8 = ([s, 5, , Sg, S1,---) €
M and that s +r = nf(1). Let now r, > 0; then, again, there is an n with
ri < n(i+ 1) for all i. Put m := max{r,,n}+ 1, [sq,s,) := [0,m —r,] and

s; := (i + 1)m — r;. Due to the choice of m, we see that
si=({+D)m—r;>(@+)m—(i+1n>i+1

holds for all i; thus, s = ([sy,s,], S, S1,---) satisfies condition [(M2), and so
s € M. Clearly, s +r =mf(1). O

Now for the remainder, which is condition of Proposition B.16F we check
this first for the special forms of idempotents of R that we find in Lemmas B.8
and [5.13], and then proceed with the general statement of Lemma [5.22)

Lemma 5.21. Let x = (['rdwru] y Loy Lyy - ) Yy = ([yd7yu] y Yoo Y1y - - ) € M and
¢ = (cg,¢q,Cq,...) € Idemp R satisfy f(c) =x +y. Furthermore, let either

(i) cs = (I((i)" 8) (with n finite), ¢; = (I%nl 8) fori’s satisfying x; < xq or
Id, 0 0
Yi <yg, andc;=1 0 0 0 for the rest, or
0 0 Idy_p

(ii) cs =1d, and ¢; = (I%"Z 8) for alli.

Then there are orthogonal idempotents a,b € R such thata+b=¢, f(a) =z and
fb) =y
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Proof. Case [(i)} We have f(¢) = ([n,0],no,n1,...), whence z, and y, are both
zero, and we see that n = x4+ vy and n; = x; +y; for all i. From condition

for both z and y, we see that both x; > x4 and y; > y4 whenever ¢; is of the form
Id, O 0

0 O 0 with n; > n; in particular, we then have n; —n > z; — x4 and
0 0 Idy,—»n
Id,, 0 Oc - 00 .
n; —n >y, —yq. Put ag = ( Oxd O)’ bs = 0 1Id,, 0]. For ¢ satisfying
0 0 O
Id,, 0 O 00
r; < xq Or Y; < Ygq, put a; := < 0“’” O) and b; := 0 Id,, 0], and for all
0O 0 0
Id,, 0 0 O Oz, 0 0 O
., 0O 0 0 0 0 Id,, 0O O
the other i’s, put a; := 0 0 Id, 0 and b; = 0 Oyd 0 0
0 0 0 0, 0 0 0 Idy,
Then a := (ag, ag, ay,...) and b := (bg, by, by, ... ) are elements of R, since so is ¢,

and we see that a and b are in fact orthogonal idempotents satisfying f(a) = =,
fb)=yanda+b=c.
Case We have f(e) = ([0,1],n0,n1,...), so suppose w.l.o.g. that

a,y) = [0,1] and [zq4,7,] = [24,0] With 24 > 0. Let as = <Idmd O) and

0 0
0,, O . .
bg = ( Od I d)' From condition for x, we have z; < 4 for only finitely
Id,, 0 O O 0
many ¢’s; for these, put a; := i and b; ;= 0 Id, 0. For the rest,
0 O ‘
0O 0 0
P W
let a; := Yi and b; := [ 0 Id,, O]. It is obvious that
0 0 Idg—s, O 0 0 ’ 0

0 0 0 0
a = (ag,ay,ay,...) and b = (bg, by, by, ... ) are orthogonal idempotents and that
a +b = c. It remains to verify that a,b € R; but for both @ and b, this follows

from Zlggo y; = 0o (condition [(M2)| for y). O

Lemma 5.22. If f(w) =z +y withw € Idemp R and x,y € M, then there are
orthogonal idempotents w,v in R satisfying f(u) =z, f(v) =y andu +v = w.

Proof. If rankwg is infinite, then, by Proposition .11l there is an R-module
isomorphism 1 : ¢R — wR, where ¢ is as in Lemma |5:Z[|; if, on the other
hand, rankwg = n is finite, then, by Proposition [5.14], there is an isomorphism
¢ : ¢R — wR with ¢ as in Lemma 5.21][()] In both cases, f(w) = f(c). Notice
that in the latter case, the fact that ¢ € R is checked in the proof of Lemma [G.13l

Apply Lemma [5.2T] to obtain orthogonal idempotents a,b € R with f(a) = z,
f(b) =y and @ + b = ¢. With Observation 5.19 on mind, we infer that we can
take u := ¢ (a) and v := ¥(b). O

We may now conclude that the monoid M defined at the beginning of this
section is isomorphic to the monoid V (R):
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Proposition 5.23. V(R) ~ M.

Proof. By Lemmas B.17 [(5.22] and (5.20] and by Proposition [5.15] the sufficiency
conditions of Proposition [G.16] are satisfied. O

Proposition 5.24. The monoid M, and thus also V (R), is stably finite, separ-
ative and not cancellative.

Proof. In Mg, the elements [1, 0] and [0, 0] are distinct, while [1, 1] = [0, 1]. Thus,
the summand on both sides of the equality

([1,0],1,1,1,...) +([0,1],1,2,3,...) = ([0,0],1,1,1,...) + ([0, 1],1,2,3, ...)

cannot be cancelled out.

Suppose now that 0 # 2 € M. If [x4, z,] = 0, we have from z # 0 that z; # 0
for some i € Ny. If, on the other hand, [z4, x,] # 0, then z; > 0 for some i € Ny
due to [(M2)| or [(M3b)l In either case, for any y € M, y; + x; # y; holds, so
T+yYF#Y.

Finally, if [ag4, a.], [ba, by] are elements of Mg satisfying 2[aq, a,] = 2[bg, b,
then, from the definition of =, either:

e 2a, = 2b, > 0; this occurs iff a, = b, > 0. Or,

e 2a, = 2b, = 0, then also 2a, = 2b;. Consequently, ag = by.

In either case, a4, a,] = [ba, b,] holds. Thus, Mg is a separative monoid. Since
each Ny is separative as well, it follows that the monoids Mg x (Ng)* and M are
separative. O
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List of abbreviations

Abbreviation Meaning

w.lo.g........ without loss of generality
it if and only if
UMP......... universal mapping property
SES .......... short exact sequence
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