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Samuel Mokrǐs
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entovanými grafy s násobnými hranami a kontrukce monoidu asociovaného s grafem, který
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Introduction

With V (R) denoting the abelian monoid of finitely generated projective mod-
ules over a unital ring R, where the monoid operation is induced by direct sums,
the following is still an outstanding open problem:

Fundamental open problem ((Goodearl, c1995, p. 254)). Which abelian
monoids arise as V (R)’s for unital von Neumann regular rings R?

The motivation of the problem is the effort to understand what direct sum
decomposition properties hold in proj -R, the category of finitely generated pro-
jective R-modules, for unital von Neumann regular rings R. The transition to
monoids is based on the premise that some pathological decomposition properties
are constructed more easily in the language of monoids rather than von Neumann
regular rings. Hence, should one fully aximoatize the monoids arising as V (R)’s
in monoid-theoretic terms, then there would be no need to construct rings when
demontrating decomposition properties of the category proj -R (with R unital
von Neumann regular).

We leave further discussion regarding the realization problem and some open
problems related with it to Section 1.2. Given some recent results on nonunital
von Neumann regular algebras, we state some variations on the problems to in-
corporate nonunital rings there. Before doing so, we shall write down all required
monoid-related definitions in Section 1.1. The monoid-theoretic terminology used
is standard; for convenience, we sum it up in one place nevertheless.

In Chapter 2, we shall discuss nonunital von Neumann regular rings and rings
with local units. We will not need any class of nonunital rings more general
than rings with local units due to the fact that every von Neumann regular ring
has local units (Proposition 2.7). We define the category of unitary modules
over a ring with local units and deal with nonunital Morita equivalence. Then
we present two equivalent generalizations of the functor V (−) to the nonunital
context and verify some of the functor’s properties in detail. Namely, we show
that it is continuous (Proposition 2.26), that every ring is mapped by V (−) to the
same monoid as the opposite ring (Proposition 2.27), that the two generalizations
are indeed equivalent (Proposition 2.34), and that Morita equivalent rings are
mapped to the same monoid (Theorem 2.45).

In Chapter 3, we overview recent results on the so-called Leavitt path algebras
that contribute greatly to solving the realization problem, as they yield a class
of abelian monoids that can be realized even by von Neumann regular algebras
over arbitrary fields. We use the construcion of Leavitt path algebras to realize
the additive monoid of nonnegative rational numbers as V (−) of a nonunital von
Neumann regular algebra in a nonstandard fashion (Subsection 3.2.2). We also
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show how any directed union of finitely generated free abelian monoids can be
realized in a similar way.

Then, in Chapter 4, we present a criterion by Goodearl for an abelian monoid
to not be realizable by von Neumann regular algebras over any uncountable
fields (Proposition 4.11). We also present a way of constructing such monoids
(Proposition 4.12).

In the final chapter, we compute the monoid V (R) for the regular unital ring
R constructed in Chuang – Lee (1990), as, to our knowledge, this monoid has not
been computed anywhere in the literature.

Some conventions

Throughout the thesis, a ring always means an associative ring, but not neces-
sarily with a unit; we denote the category of (possibly nonunital) rings by Rng.

We allow the singleton 0 := { 0 } as a nonunital ring; it is the zero object inRng.
However, for unital rings (and for fields in particular), we assume that 0 6= 1.

A module will always mean a right module, unitary in the sense of Defini-
tion 2.8; nevertheless, we shall sometimes add the adjective “right” or “unitary”
for emphasis. For a ring I, we denote the category of unitary right I-modules by
Mod -I. For a unital ring R, proj -R denotes the category of finitely generated
projective right R-modules.

For a ring I, we denote by Iop the ring opposite to I, and by Idemp I the set
of all idempotents from I. If x ∈ I, we denote by xI the set { xr | r ∈ I }; we will
see that if I has local units, then xI coincides with the principal right ideal in I
generated by x (Remark 2.6).

For rings and algebras, “regular” will always mean “von Neumann regular”
(Definition 2.1). All monoids in the thesis are abelian; hence, whenever we speak
of monoids, we mean abelian monoids, and denote the monoid operation by +.
The category of abelian monoids is denoted by Mon. We use N0, Q

≥0 and R+

to denote the additive monoids of nonnegative integers, nonnegative rational
numbers and real numbers, respectively. We also use N0 as a set when we do
not need its monoid structure, and we use N to denote the set of strictly positive
integers (i.e., N = N0 \ { 0 }) and Z for the set of all integers. For I a ring and
n ∈ N, by Mn(I) we mean the ring of n× n matrices over I.

Throughout the text, we use “iff” as an abbreviation of “if and only if”, and
we use “UMP” for the “universal mapping property” (of direct limits, kernels
etc.). “SES” stands for “short exact sequence”, and we write “w.l.o.g.” in place
of “without loss of generality”.

We use X ⊆fin M to denote that X is a finite subset of M , regardless of any
algebraic structure on M . We use the symbol ∪̇ for disjoint unions.

By Id
C

we denote the identity functor on a category C, while idM will be
the identity morphism of an algebraic object M (monoid, ring, module, algebra).
Also, Id will denote the identity matrix, either finite or infinite; whenever we
need to specify its size, an appropriate subscript is be added. The symbol Kerϕ
denotes the module-theoretic kernel of a ring or module homomorphism ϕ (in
particular, it is a submodule of the domain of ϕ), while kerϕ stands for the
congruence generated by { (a, b) | ϕa = ϕb }. We use the latter only for monoid
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homomorphisms.
We use the symbol � in the following contexts:

• to signify the end of a proof of a claim within another proof (in this context,
� is followed by Claim and the number of the claim);

• to signify the end of a proof;

• to signify that a result taken from the literature is provided without proof;

• to signify that we will comment no further on the proof of a statement. This
includes observations, direct corollaries of preceding results, and statements
proofs of which have been hinted at enough prior to the statements in
question.

Whenever we say that a set is countable, we mean it is either finite or count-
ably infinite. If we need to stress that some set is of cardinality ℵ0, we say it is
countably infinite. In particular, when discussing quivers, we always imply that
they are finite or countably infinite.
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Chapter 1

The problem

1.1 Monoid properties used

Given a monoid M , putting x ≤ y for x, y ∈ M iff there exists a z ∈ M
satisfying x+z = y defines a preorder relation onM , called the algebraic preorder.
An order-unit in a monoid M is an element u ∈ M such that for each x ∈ M ,
there exists an n ∈ N satisfying x ≤ nu1 in the algebraic preorder (i.e., for each
x ∈ M , there exist a z ∈M and an n ∈ N such that x+ z = nu). An order-ideal
in a monoid M is a submonoid S of M such that whenever x ∈ S and y ≤ x in
the algebraic preorder on M , then y ∈ S.

A monoid is conical if whenver x+ y = 0, then x = 0 = y.

Observation 1.1. A finite subdirect product of conical monoids (that is, a sub-
monoid of a direct product of finitely many conical monoids) is a conical monoid
as well.

A monoid M satisfies the Riesz refinement property if whenever y1 + y2 =
x1+x2 is an equality of sums inM , then there exist elements z11, z12, z21, z22 ∈M
such that

x1 = z11 + z12, x2 = z21 + z22,

y1 = z11 + z21, y2 = z12 + z22.

Instead of writing down the above equalities, we use the following matrix notation:

y1 y2
x1 z11 z12
x2 z21 z22

. (1.1)

We say that (1.1) is a refinement of the equality y1 + y2 = x1 + x2 in M . A
monoid satisfying the Riesz refinement property is called a refinement monoid.

Observation 1.2. An order-ideal in a refinement monoid is a refinement monoid.

1We use multiplication of an element u of an abelian monoid by an element n ∈ N0 as a
short-hand notation for taking the sum of n copies of u.

6



A monoid M is unperforated if whenever nx ≤ ny holds for x, y ∈ M and
n ∈ N, then x ≤ y also holds. A cancellative monoid is a monoid M such that
whenever x, y, z ∈ M satisfy x+z = y+z, then x = y holds. A separative monoid
is a monoid M such that whenever x, y ∈M satisfy x+ x = x+ y = y + y, then
x = y holds.

A monoid M is stably finite if for all x, y ∈M , x+ y = x implies that y = 0.

1.2 The realization problem and some of its vari-

ations

We say that a monoid is realizable or realized by R if it is isomorphic to
the monoid V (R). In order for a monoid M to be realizable by some unital
regular ring R, there are—apart from M being abelian—three known necessary
conditions:

(V1) M is conical by Proposition 2.36;

(V2) M is a refinement monoid by Proposition 2.37; and

(V3) M has an order-unit by Observation 2.38.

Hence, a question to ask is whether all conical refinement monoids with
order-unit are realizable by unital regular rings. This would be in analogy with
(Bergman, 1974, Theorem 6.4), where it is shown that every conical abelian
monoid with order-unit is realizable by an algebra over any given field. However,
in the context of regular rings, not all monoids satisfying (V1), (V2) and (V3)
are realizable: It is proved in Wehrung (1998) that there exists a conical refine-
ment monoid of cardinality ℵ2 with order-unit that cannot be realized by any
unital regular ring (Wehrung, 1998, Corollary 2.12 and the paragraph following
it). Still, it is of interest what the situation in smaller cardinalities is. Hence, the
question is the following:

Open problem 1.3 ((Ara, c2009, Realization problem for von Neumann regular
rings)). Is every countable conical refinement monoid realizable by a regular ring?

Let us take note that there is no mention of the monoids having order-unit
or the rings being unital in Open problem 1.3; we will get back to this in a little
while.

As Bergman’s realization result actually yields algebras over arbitrary fields,
there is a natural variation on Open problem 1.3.

Problem 1.4 ((Ara, c2009, Realization problem for von Neumann regular K-
algebras)). Let K be a fixed field. Is every countable conical refinement monoid
realizable by a von Neumann regular K-algebra?

For uncountable fields, Problem 1.4 has already been answered in the nega-
tive, as shown in Proposition 4.16—in fact, we devote Chapter 4 to developing
ways of constructing countable conical refinement monoids not realizable by reg-
ular algebras over uncountable fields. However, for the monoids constructed in
Chapter 4, we do not a priori know whether they can be realized by regular rings
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or regular algebras over countable fields. For countable fields, Problem 1.4 is still
open.

Opposed to results from Chapter 4, by recent results of Ara et al. (2007) and
Ara – Brustenga (2007), there is a class of countable conical refinement monoids
realizable by unital regular algebras over any given field; we discuss the results
in Chapter 3. With a suitable generalization of V (I) to incorporate nonunital
rings I (see Section 2.3), said results include a wider class of monoids that are
realizable by (in general nonunital) regular algebras over arbitrary fields. Due to
condition (V3), monoids without order-unit cannot be realized by unital rings;
nevertheless, there are such monoids that are realizable by nonunital regular
algebras, see e.g. Example 3.4. Not including conditions of order-units and
unital rings in Open problem 1.3 thus makes the problem more general.

Since results presented in Chapter 3 also include realizations of monoids with
order-units by nonunital regular algebras, while we do not know whether they
are realizable by unital ones (Example 3.18), we state the following variation on
Open problem 1.3:

Problem 1.5. Is there a countable conical refinement monoid with order-unit
that is realizable by a nonunital regular ring, but not by a unital regular ring?

In Goodearl (c1995), more questions on general properties of V (R) and proj -R
are raised, e.g. whether all V (R)’s are separative. We mention this problem only
briefly in connection with Chapter 3; more on recent results on problems from
Goodearl (c1995) can be found in the survey Ara (c2009).
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Chapter 2

Regular rings and rings with

local units

Definitions in generalizations of the standard module theory for modules over
nonunital rings vary from author to author. In this place, we develop some of the
theory for modules over rings with local units that we need manually.

Definition 2.1. A ring I is regular if for every x ∈ I, there exists a y ∈ I such
that xyx = x. Such (in general not unique) element y is called a quasi-inverse of
x.

Remark 2.2. As opposed to unital rings, for a general ring I, the set xI =
{ xr | r ∈ I } need not contain x as its element. However, this is not the case
when I is regular: For, if x, y ∈ I satisfy xyx = x, then x = x(yx) ∈ xI.
Since the set xI is closed under addition in I, we see that it is a right ideal
in I containing x. The element x cannot be contained in any strictly smaller
ideal (inclusion-wise), whence xI is the principal right ideal in I generated by x.
Moreover, as xyxy = xy, the element xy is an idempotent in I, and it is clear that
xI = xyI. Thus, in a regular ring, every principal right ideal is generated by an
idempotent. Similarly to unital regular rings, this extends to finitely generated
right ideals:

Proposition 2.3. For a regular ring I, each finitely generated right ideal in I is
principal, and as such generated by an idempotent.

Proof. Due to Remark 2.2, we can verbatim use the proof of implication (b)⇒(c)
from (Goodearl, 1979, Theorem 1.1).

Since the definition of regular rings is left-right symmetric, Proposition 2.3
also holds if we replace the word “right” with “left”.

Corollary 2.4. For a unital regular ring R, every finitely generated right ideal
in R is a projective R-module.

Proof. With the finitely generated right ideal expressible as eR by Proposition 2.3,
we see that R = eR ⊕ (1− e)R.

Definition 2.5. A ring I is a ring with local units provided that for every finite
subset X of I, there is an e ∈ Idemp I such that X is contained in eIe. Note that
X ⊆ eIe iff ex = x = xe holds for all x ∈ X).
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Remark 2.6. If x is an element of a ring I with local units, then applying
Definition 2.5 to the set { x } ⊆ I yields in particular that x ∈ xI. Similarly
to the case of regular rings, we can thus write xI for the principal right ideal
generated by x. Also, note that in any ring I, the empty set is contained in the
set 0 = 0I0. Hence, whenever inquiring whether a ring has local units, we only
check the defining conditions for nonempty finite subsets of I.

Proposition 2.7. Every regular ring is a ring with local units.

Proof. Let I be regular and let x1, . . . , xn ∈ I with n ≥ 1. By Proposition 2.3,
there is an idempotent g in I satisfying gI = x1I + . . . xnI. Then gxi = xi
holds for all i = 1, . . . , n. From the version of Proposition 2.3 for left ideals,
there is an idempotent f in I satisfying gf = g and xif = xi for all i. Put
e := f + g − fg; it follows from gf = g and from f and g being idempotent that
e2 = f 2 + fg− f 2g+ gf + g2 − gfg− gf 2 − gfg+ gfgf = e. For any i, we have:

exi = fxi + gxi − fgxi = fxi + xi − fxi = xi = xif + xig − xifg = xie.

Thus, given any X ⊆fin I, there is an idempotent e ∈ R satisfying X ⊆ eIe, as
desired.

2.1 Unitary modules over nonunital rings

Once we lose the condition that rings be unital, we shall seek a replacement
for the condition that modules be unitary (in the classical sense that m · 1R =
m for all elements m of a right R-module); for, by leaving it out without any
replacement, the category of I-modules would become uncomfortably large (e.g.,
every abelian group with zero multiplication would be an I-module). To obviate
this inconvenience, there is a generalization of the classical unitarity condition:

Definition 2.8. A (right) module M over a ring I is unitary provided that
MI =M , that is, for every m ∈M there are m1, . . . , mn ∈M and r1, . . . , rn ∈ I
such that m = m1r1 + · · · +mnrn. By Mod -I, we shall denote the category of
unitary right I-modules.

Remark 2.9. If R is a unital ring, if M is a unitary R-module in the sense of
Definition 2.8 and if m ∈ M , we can write m =

∑
mjrj, so

m · 1R =
(∑

mjrj

)
· 1R =

∑
mj · (rj · 1R) =

∑
mjrj = m

holds. Thus, for unital rings, unitary modules in the sense of Definition 2.8 are
precisely those that are unitary in the classical sense.

Lemma 2.10. If I is a ring with local units, then an I-module M is unitary if
and only if for each m ∈M , there is an idempotent e ∈ I such that me = m.

Proof. The if-part is clear. For the only-if-part, let m ∈ M = MI. Then m =∑
mjrj. Since I has local units, we can find an idempotent e satisfying rje = rj

for all j. Then,

m · e =
(∑

mjrj

)
e =

∑
mj(rje) =

∑
mjrj = m.

10



From now on, unless stated otherwise, by a module we always mean a unitary
module.

Very much like in the category Mod -R with R a unital ring, we may define
some categorical terms in Mod -I with I a ring with local units as concrete mod-
ules and morphisms; namely, we define kernels, images, cokernels and the zero
module in Mod -I as is standard in Mod -R. It is easy to check that a morphism
in Mod -I is injective iff its kernel is zero, and this happens iff the morphism is
a monomorphism. We give a proof that epimorphisms are precisely surjective
homomorphisms:

Lemma 2.11. Let I be a ring and A B
ϕ

a morphism in Mod -I. Then

ϕ is an epimorphism in Mod -I iff Imϕ = B.

Proof. First, suppose that ϕ is onto. Let us have

A B C
ϕ

α

β

in Mod -I with αϕ = βϕ. Then α|Im f = β|Im f ; since Imϕ = B, we conclude that
α = β. We have thus shown that ϕ is an epimorphism.

For the converse, let ϕ be an epimorphism in Mod -I. Let π : B −→ B/ Imϕ
be the canonical projection; then π is onto and πϕ = 0. We then have

A B B/ Imϕ
ϕ

π

0

in Mod -I with πϕ = 0 = 0ϕ. Since ϕ is an epimorphism, it follows that π = 0.
As π is onto, we conclude that Imϕ = B.

Also, Mod -I is an exact abelian category (in the sense of (Mitchell, 1965, §I.15
and §I.20)), and we note that ϕ : A −→ B is a monomorphism iff the sequence

0 A B
ϕ

is exact, and ϕ is an epimorphism iff A B 0
ϕ

is exact.

Lemma 2.12. If I is a ring with local units and M ∈ Mod -I, then there is a

surjective homomorphism I(A) M
f

for some set A, i.e., every I-module

is the epimorphic image of a direct sum of copies of I.

Proof. For each m ∈M , the map I M
fm

x 7−→mx is an I-module homomorphism.

Since M is unitary, there is, by Lemma 2.10, an idempotent e ∈ I satisfying m =
me = fm(e), so m is in the image of fm. Take f :=

⊕
m∈M fm : I(M) −→M .

2.2 Morita equivalence for rings with local units

Definition 2.13. We say that rings I, J are Morita equivalent if the categories
Mod -I, Mod -J are additively equivalent, i.e., there are additive functors G :
Mod -I −→ Mod -J and H : Mod -J −→ Mod -I such that GH is naturally
equivalent to IdMod -J and HG is naturally equivalent to IdMod -I .
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Remark 2.14. Our definition of Mod -I, and thus also the definition of Morita
equivalence, follows Ánh – Márki (1987). For nonunital rings, some authors
use other definitions of Mod -I, which carry over to Morita equivalence meaning
equivalence of a different pair of categories—e.g., in Goodearl (2009), Mod -I
denotes the category of unitary modules in our sense (albeit they are called “full”
instead) that are also “nondegenerate”, meaning that in any module, 0 is its only
element x satisfying xI = 0. Thus, when using results from the literature, we
have to take heed of the definitions that the particular author uses.

Proposition 2.15. Let I, J be rings with local units Morita equivalent via G :
Mod -I −→ Mod -J and H : Mod -J −→ Mod -I. Then the functors G and H
preserve direct sums.

Proof. Let, say, (Mα|α ∈ A) be a system of I-modules. Then, using the natu-
ral equivalences HG ≃ IdMod -I and GH ≃ IdMod -J and the coproduct UMP of⊕

α∈AMα in Mod -I, one verifies thatG
(⊕

α∈AMα

)
satisfies the UMP for coprod-

uct of the system (GMα|α ∈ A) in Mod -J . Thus, G
(⊕

α∈AMα

)
≃
⊕

α∈AGMα.

In the process of proving Theorem 2.45, we shall need the fact that, in analogy
with the unital case, the functors G,H in a Morita equivalence are necessarily
exact. Due to Lemma 2.20 (taken from Ánh – Márki (1987)), we only need to be
concerned by the tensor functor and by a variation on the Hom functor (for the
variation and its justification, see Remark 2.18). Let us begin with the tensor
functor:

For I, J rings and MI , INJ (unitary) modules, there is a right J-module
structure on M ⊗I N given by (m ⊗ n) · j := m ⊗ (n · j); this is proved as
in (Anderson – Fuller, 1992, Proposition 19.5) for modules over unital rings, as
multiplication by 1 does not occur in the proof. We only need to check that
M ⊗I N is, as a J-module, unitary. To that end, note that as an abelian group,
(M ⊗ N)J is generated by elements (m ⊗ n)j with m ∈ M , n ∈ N and j ∈ J .
As N is a unitary J-module, its additive group is generated by elements nj with
n ∈ N and j ∈ J ; in turn, the additive group M ⊗ (NJ) = M ⊗N is generated
by elements m⊗ (nj) (m ∈ M,n ∈ N, j ∈ J). Thus, as additive groups, M ⊗N
and (M ⊗N)J are generated by the same sets of elements, whence they coincide.

Hence, with INJ a unitary bimodule, sending M ∈ Mod -I to M ⊗I N is a
map of objects of Mod -I to objects of Mod -J . As in (Anderson – Fuller, 1992,
Theorem 19.10), one shows that:

Proposition 2.16. Let I, J be rings and INJ a bimodule. Then

−⊗I N : Mod -I −→ Mod -J

is an additive functor. �

Now that we have a well-defined tensor functor between relevant categories,
we shall prove that it is an epifunctor:

Lemma 2.17. The functor −⊗N of Proposition 2.16 preserves epimorphisms.

12



Proof. Let AI BI 0
ϕ

be exact in Mod -I; we want to prove that

then A⊗I N B ⊗I N
ϕ⊗I idN is an epimorphism in Mod -J .

Let b ∈ B, n ∈ N . By surjectivity of ϕ (Lemma 2.11), b = ϕa for some a ∈ A.
Then

b⊗ n = (ϕa)⊗ n = (ϕ⊗I idN )(a⊗ n) ∈ Imϕ⊗I idN .

Thus, the set { b⊗ n ∈ B ⊗I N | b ∈ B, n ∈ N } generating B ⊗I N is a subset
of Imϕ ⊗I idN , whence ϕ ⊗I idN is onto. Consequently, by Lemma 2.11, the
morphism ϕ⊗I idN is an epimorphism in Mod -J .

Remark 2.18. For B ∈ Mod -I and A ∈ J-Mod -I a bimodule (unitary both
as a left J-module and as a right I-module), the abelian group HomI (A,B)
can be given a (not necessarily unitary) right J-module structure in a standard
way: For ϕ ∈ HomI (A,B) and x ∈ J , put (ϕ · x)a := ϕ(x · a) for all a ∈ A.
However, the resulting right J-module need not be unitary: As an example, take
J := K(ω) for some field K. We see that J is a nonunital regular algebra with
local units. Suppose now that HomJ (J, J) is a unitary right J-module. Then,
by Lemma 2.10, there is an idempotent u ∈ J satisfying idJ ·u = idJ . However,
since J = K(ω) is an infinite direct sum, there exists a nonzero v ∈ J such that
uv = 0. Then 0 6= v = idJ v = (idJ ·u)v = idJ(uv) = uv = 0, a contradiction.
Thus, we have found an example of the J-module HomI (A,B) not being unitary.

To fix this, instead of the additive group HomI (A,B), we shall focus on
HomI (A,B) J = {

∑
ϕ · x | ϕ ∈ HomI (A,B) , x ∈ J }. Since rings with local

units are idempotent, this group—with the J-module structure from HomI (A,B)—
is a unitary J-module, i.e., an element of Mod -J .

It is easy to check that if ϕ : B −→ C is a morphism in Mod -I and if
A ∈ J-Mod -I, then the assignment

HomI (A,ϕ)J : HomI (A,B)J −→ HomI (A,C)J

ψ −→ ϕψ

is a J-module homomorphism. Clearly, if ϕ′ : C −→ D is another I-homomorphism,
then (HomI (A,ϕ

′) J)◦(HomI (A,ϕ) J) = HomI (A,ϕ
′ϕ)J , and HomI (A, idB) J =

idHomI(B,C)J , whence HomI (A,−)J is a functor from Mod -I to Mod -J .

Lemma 2.19. Let I, J be rings with local units and let A ∈ J-Mod -I. Then the
functor HomI (A,−) J : Mod -I −→ Mod -J is additive and preserves monomor-
phisms.

Proof. Additivity is clear from the definition. For preservation of monomor-
phisms, let us have

A

0 B C

ψ

ϕ

in Mod -I with the row exact and suppose that 0 = (HomI (A,ϕ)J)ψ = ϕψ.
Then, by the UMP of the kernel of ϕ, the morphism ψ factors through Kerϕ = 0,
whence ψ = 0. Thus, for ϕ a monomorphism, we have shown that HomI (A,ϕ)J
is injective.

13



Now, translating a part of (Ánh – Márki, 1987, Theorem 2.1) into the language
of right modules, we have:

Lemma 2.20. Let I, J be rings with local units Morita equivalent via

Mod -I Mod -J.
G

H

Set P := H(JJ) and Q := G(II). Then P ∈ J-Mod -I, Q ∈ I-Mod -J and:

(i) G ≃ HomI (P,−) J , H ≃ HomJ (Q,−) I;

(ii) G ≃ −⊗I Q, H ≃ −⊗J P. �

Proposition 2.21. Let I, J be rings with local units Morita equivalent via

Mod -I Mod -J.
G

H

Then the functors G and H are exact.

Proof. From part (i) of Lemma 2.20 and from Lemma 2.19, we see that the
functors G and H preserve monomorphisms, while from Lemma 2.20(ii) and from
Lemma 2.17, it follows that G and H preserve epimorphisms.

Let us have a SES 0 A B C 0α β
in Mod -I; we

want to prove that then 0 GA GB GC 0Gα Gβ
is a SES

in Mod -J . Since (Gβ)(Gα) = G(βα) = G0 = 0 and since G peserves monomor-
phisms and epimorphisms, we only need to verify that KerGβ ⊆ ImGα.

Let x ∈ KerGβ. Denote by ιx : xJ −→ GB the inclusion map of the J-
submodule of GB generated by x into GB. Applying H and the natural iso-
morphism η : HG −→ IdMod -I , we have the following commutative diagram in
Mod -I:

0 A B C 0

0 HGA HGB HGC 0

H(xJ).

α β

HGα

ηA ≃

HGβ

ηB ≃ ηC ≃

Hιx

Note that since the top row in the above diagram is exact, so is the middle one, as
ηA, ηB, ηC are isomorphisms. In particular, HGα : HGA −→ HGB satisfies the
UMP of the kernel of HGβ. Since x ∈ KerGβ, we have (Gβ)ιx = 0, whence also
(HGβ)Hιx = 0. Thus, by the UMP of the kernel of HGα, the morphism Hιx
factors through HGα, i.e., there is a morphism ξ : H(xJ) −→ HGA satisfying
Hιx = (HGα)ξ.
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Applying G and the natural isomorphism ζ : GH −→ IdMod -J , we obtain the
following commutative diagram in Mod -J :

GB

GA xJ

GHGB

GHGA GH(xJ).

Gα

ιx

ζGB ≃

ζGA ≃

GHGα

ζxJ ≃

GHιx

Gξ

Chasing this diagram, we see that

ιx = ζGB(GHιx)ζ
−1
xJ = ζGB(GHGα)(Gξ)ζ

−1
xJ = (Gα)ζGA(Gξ)ζ

−1
xJ .

In particular, we have shown that for a general x ∈ KerGβ, we have x ∈ Im ιx ⊆
ImGα, so KerGβ ⊆ ImGα, which is what was left to be proved.

2.3 The functor V (−)

In the study of unital regular rings, the monoid V (R) is defined as the monoid
of isomorphism classes of finitely generated projective right R-modules, with the
monoid operation defined by [P ] + [Q] := [P ⊕ Q] (Goodearl, c1995, §5). An
equivalent definition is as the monoid of equivalence classes of idempotent infinite
matrices over R.1 The latter definition, which we will informally call the “idem-
potent picture”,2 is easily generalized for nonunital rings (see Definition 2.24).
In Definition 2.28, we present a generalization of the construction via projective
modules (the so-called “projective picture”) for nonunital rings. We prove in
Proposition 2.34 that up to isomorphism, we end up with the same monoid either
way. Nevertheless, it is useful to keep both definitions and always use the more
convenient one; for example, we use the “idempotent picture” while proving that
V (−) is in fact a functor (moreover, a continuous one, see Proposition 2.26),
while we use the “projective picture” to prove that the resulting monoid has the
Riesz refinement property (Proposition 2.37).

2.3.1 Definition of V (−) using idempotents

Let I be a ring. For square matrices a ∈ Mn(I), b ∈ Mk(I), we denote by

a⊕ b the block sum of a and b, i.e., a⊕ b :=

(
a 0
0 b

)
∈Mn+k(I). We think of the

1This construction is also used in the study of C∗-algebras, see (Blackadar, 1998, Definition
5.1.2).

2The terminology of “idempotent” and “projective” picture is taken from Goodearl (2009).
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injective map

Mn(I) −→ Mn+1(I)

a 7−→ a⊕ 0 =

(
a 0
0 0

)

as of inclusion of rings, and we let M∞(I) be the directed union of all Mn(I)’s.
Hence, elements of M∞(I) can be viewed as (countably) infinite square matrices
over I with only finitely many nonzero entries. For idempotent matrices e, g ∈
M∞(I), we say that e and g are equivalent and write e ∼ g if there exist x, y ∈
M∞(I) such that exgye = e and gyexg = g; clearly, ∼ is an equivalence relation
on the set of all idempotent elements of M∞(I).

In the unital case, the notion of two matrices being equivalent is a way of say-
ing that the images of the endomorphisms of free modules given by the matrices
are isomorphic:

Lemma 2.22. If R is a unital ring, if e, g are idempotent matrices over R with
e ∈ Mn(R) ⊆ M∞(R) and g ∈ Mm(R) ⊆ M∞(R) and if x ∈ M∞(R), then left
multiplication by exg defines a right R-module homomorphism gRm −→ eRn.
In particular, if y ∈ M∞(R) and if exgye = e and gyexg = g hold, then the
R-modules eRn and gRm are isomorphic.

Proof. Straightforward, using that left multiplication by an element of R is a
right R-module homomorphism RR −→ RR (Anderson – Fuller, 1992, Proposition
4.11).

Observation 2.23. For a ring homomorphism ϕ : I −→ J and n ∈ { 1, 2, . . .}∪
{∞}, replacing entries in matrices over I by their respective images under ϕ
defines a ring homomorphism Mn(ϕ) :Mn(I) −→ Mn(J). Moreover, the assign-
ment Mn(−) : ϕ 7−→Mn(ϕ) is functorial.

Definition 2.24. For a ring I, we define V (I) as the monoid of equivalence
classes of idempotents from M∞(I) with addition induced from block sums, that
is, [e] + [g] := [e⊕ g].

For two rings I, J , observe that M∞(I × J) ≃ M∞(I) ×M∞(J). Moreover,
a pair of idempotent matrices from M∞(I × J) is equivalent iff both the cor-
responding pairs of matrices over I and J are equivalent. Hence we can state
that:

Observation 2.25. For I and J rings, there is a monoid isomorphism V (I × J) ≃
V (I)× V (J).

We shall now provide a detailed proof that V (−) can be also defined on ring
homomorphisms in a way that it forms a continuous functor from the category
of nonunital rings to the category of abelian monoids:

Proposition 2.26. V (−) is a functor from Rng to Mon that preserves direct
limits.

Proof. For a ring homomorphism ϕ : I −→ J and [e] ∈ V (I), let us put

V (ϕ) [e] := [M∞(ϕ)(e)] . (2.1)
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Claim 1. The assignment [e] 7−→ V (ϕ) [e] is a well-defined map V (ϕ) : V (I) −→
V (J).

Proof of Claim. If e ∼ g in M∞(I), then we have exgye = e and gyexg =
g for some x, y ∈ M∞(I). Applying the homomorphism M∞(ϕ), we obtain
M∞(ϕ)(e) ∼M∞(ϕ)(g) via M∞(ϕ)(x) and M∞(ϕ)(y), so the assignment [e] 7−→
[M∞(ϕ)(e)] is independent of the choice of representative of [e]. Since M∞(ϕ) is
a homomorphism, we also see that if e is an idempotent, then so is M∞(ϕ)(e),
whence V (ϕ) [e] ∈ V (J). � Claim 1.

Observe that the ring homomorphism M∞(ϕ) commutes with taking block
sums.From the definition of V (ϕ), we then arrive at

V (ϕ) ([e] + [g]) = V (ϕ) [e⊕ g] = [M∞(ϕ)(e⊕ g)] = [M∞(ϕ)(e)⊕M∞(ϕ)(g)]

= V (ϕ) [e] + V (ϕ) [g]

for any e, g ∈ IdempM∞(I). Thus, the map V (ϕ) : V (I) −→ V (J) above is in
fact a monoid homomorphism.

The functoriality of V (−) follows from M∞(−) being functorial.
To establish that V (−) preserves direct limits, we use the following explicit

construction of direct limits inRng: Let (Iα|α ∈ A) be a directed system of rings
with transition maps fβα : Iα −→ Iβ for α ≤ β. We define a ring I as follows:

• Elements of I: Equivalence classes of elements of the disjoint union
·⋃

α∈A

Iα,

where x ∈ Iα, y ∈ Iβ are equivalent if and only if there is a γ ≥ α, β
satisfying f γαx = f γβ y.

• Ring operations in I: For x ∈ Iα, y ∈ Iβ, there is a γ ≥ α, β in A; we define
the product and sum of [x] and [y] in I as [x] · [y] := [f γα(x) · f

γ
β (y)] and

[x] + [y] := [f γα(x) + f γβ (y)], respectively.

It is routine to check that the operations above are well-defined (independent of
the choice of represenatives of [x] and [y], as well as of the choice of γ), that the
neutral element in the sum operation is the common class of all 0’s in Iα’s, that
−[x] = [−x] and that I with these operations constitutes a ring. It is also easy
to verify that I with the canonical maps

fα : Iα −→ I

x 7−→ [x]

satisfies the UMP defining the direct limit of the system (Iα|α ∈ A) in Rng,
whence we can write I = lim

−→
Iα.

Suppose now that we have a directed system (Iα|α ∈ A) in Rng with direct
limit I = lim−→ Iα constructed as above. We want to prove that V (I) with the maps

V (fα) : V (Iα) −→ V (I) satisfy the UMP defining lim−→V (Iα) in Mon. Suppose
M is an abelian monoid and suppose ψα : V (Iα) −→ M , α ∈ A, are monoid
homorphisms satisfying

ψα = ψβV
(
fβα
)
whenever α ≤ β; (2.2)
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we are looking for a morphism ψ : V (I) −→ M satisfying ψV (fα) = ψα for all
α ∈ A, and we want to show that it is unique.

Until the end of the proof, let us write Fα instead of M∞(fα) for any α ∈ A,
and F β

α instead of M∞(fβα ) whenever α ≤ β. We thus have Fα : M∞(Iα) −→
M∞(I) and F β

α : M∞(Iα) −→ M∞(Iβ) replacing entries of matrices over Iα by
their images under fα and fβα , respectively. We will find this short-hand notation
particularly useful when writing down (2.3) and its consequences.

Let e ∈ IdempM∞(I). Since entries of e are in I = lim
−→

Iα and only finitely
many of them are nonzero, there exists a β ∈ A such that all entries of e are
in Im fβ. Hence, there is a matrix ê ∈ M∞(Iβ) such that Fβ ê = e. However,
the matrix ê need not be idempotent. Still, for any i, j, we have

fβ((ê
2)ij) = (e2)ij = e2ij = fβ((ê)ij)

by idempotence of e. Then, by the construction of I, there is a γij ≥ β such that
f
γij
β ((ê2)ij) = f

γij
β ((ê)ij). Take

γ := max { γij | i,j ∈ N such that (ê)ij 6= 0 or (ê2)ij 6= 0 } ;

note that we are taking maximum from a finite set. Then

F γ
β ê = F γ

β (ê
2) = (F γ

β ê)
2

holds. Hence, ẽ := F γ
β ê ∈ M∞(Iγ) is idempotent, so its equivalence class [ẽ] is an

element of V (Iγ). Moreover, since fβ = fγf
γ
β holds and since V (−) is a functor,

[ẽ] is a preimage of [e] under V (fγ) : V (Iγ) −→ V (I). In order for ψV (fγ) = ψγ
to hold, we then have no choice but to put ψ([e]) = ψγ([ẽ]). Hence, once we
verify that by iterating this construction for every [e] ∈ V (I), we obtain a well-
defined homomorphism ψ : V (I) −→ M of abelian monoids (Claims 2 through
4), it is clear that ψ will be the unique homomorphism from V (I) toM to satisfy
ψα = ψV (fα) for all α ∈ A.

Claim 2. For e ∈ IdempM∞(I), if a, b ∈ A and a ∈ IdempM∞(Iα) and b ∈
IdempM∞(Iβ) satisfy V (fα) [a] = [e] = V (fβ) [b], then ψα[a] = ψβ [b].

Proof of Claim. From the definition of V (−) on morphisms, we have

[Fαa] = V (fα) [a] = V (fβ) [b] = [Fβb] .

Then, by the definition of equivalence of idempotents in M∞(I), there are x, y ∈
M∞(I) satisfying

Fαa = (Fαa)x(Fβb)y(Fαa) and
Fβb = (Fβb)y(Fαa)x(Fβb).

}
(2.3)

Since x and y have only finitely many nonzero entries, there are γ ∈ A (w.l.o.g.,
γ ≥ α, β) and x̂, ŷ ∈ Iγ such that x = Fγx̂, y = Fγ ŷ. From (2.3), from the equality
fα = fγf

γ
α and from Fγ =M∞(fγ) being a ring homomorphism, we obtain

Fα = (FγF
γ
αa)(Fγ x̂)(FγF

γ
β b)(Fγ ŷ)(FγF

γ
αa) = Fγ

(
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
)

(2.4)

and, similarly,
Fαb = Fγ

(
(F γ

β b)ŷ(F
γ
αa)x̂(F

γ
β b)
)
. (2.5)
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In particular, for any i, j, we obtain from (2.4) that

(Fαa)ij = fα(aij) =
(
Fγ
(
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
))

ij
= fγ

((
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
)
ij

)

holds in I. Then, from the construction of I, there is a ζij ≥ γ such that

f ζijα (aij) = f ζijγ

((
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
)
ij

)

Take

ζ := max { ζij | i, j ∈ N such that aij 6= 0 or
(
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
)
ij
6= 0 } ;

then
F ζ
αa = F ζ

γ

(
(F γ

αa)x̂(F
γ
β b)ŷ(F

γ
αa)
)
.

hold. Similarly, from (2.5) we derive that

F η
β b = F η

γ

(
(F γ

β b)ŷ(F
γ
αa)x̂(F

γ
β b)
)

holds for some η ≥ γ. For ξ := max { ζ, η }, we then have

F ξ
αa = (F ξ

αa)(F
ξ
γ x̂)(F

ξ
βb)(F

ξ
γ y)(F

ξ
αa) and

F ξ
βb = (F ξ

βb)(F
ξ
γ ŷ)(F

ξ
αa)(F

ξ
γx)(F

ξ
βb),

whence we conclude that
[
F ξ
αa
]
=
[
F ξ
βb
]
holds in V (Iξ). Thus:

ψα[a] = ψξ
(
V
(
f ξα
)
[a]
)

by (2.2),

= ψξ
[
F ξ
α(a)

]
by (2.1),

= ψξ

[
F ξ
β (b)

]

= ψξ

(
V
(
f ξβ

)
[b]
)

by (2.1),

= ψβ[b] by (2.2),

as desired. � Claim 2.

Claim 3. For e, g ∈ IdempM∞(I) with [e] = [g] in V (I), if β, γ ∈ A and
ẽ ∈ IdempM∞(Iβ), g̃ ∈ IdempM∞(Iγ) satisfy V (fβ) [ẽ] = [e] and [g] = V (fγ) [g̃],
then ψβ [ẽ] = ψγ [g̃].

Proof of Claim. By the definition of equivalence in M∞(I), there are x, y ∈
M∞(I) such that both

Fβ ẽ = (Fβ ẽ)x(Fγ g̃)y(Fβẽ) and
Fγ g̃ = (Fγ g̃)y(Fβẽ)x(Fγ g̃)

hold. As in the proof of Claim 2, we find a ξ ≥ β, γ and x̃, ỹ ∈ M∞(Iξ) satisfying

F ξ
β ẽ = (F ξ

β ẽ)x̃(F
ξ
γ g̃)ỹ(F

ξ
β ẽ) and

F ξ
γ g̃ = (F ξ

γ g̃)ỹ(F
ξ
β ẽ)x̃(F

ξ
γ g̃);
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thence, [F ξ
β ẽ] = [F ξ

γ g] holds in V (Iξ). We conclude that

ψβ[ẽ] = ψξV
(
f ξβ

)
[ẽ] = ψβ[F

ξ
β ẽ] = ψγ [F

ξ
γ g̃] = ψξV

(
f ξγ
)
[g̃] = ψγ [g̃]. � Claim 3.

By Claims 2 a 3, we have a well-defined map ψ : V (I) −→ M . To conclude
the proof of Proposition 2.26, it now only remains to verify that ψ is in fact a
morphism in Mon.

Claim 4. The map ψ : V (I) −→ M is a monoid homomorphism.

Proof of Claim. For any α ∈ A, we have [Fα(0)] = [0], whence ψ[0] = ψα[0] = 0 ∈
M . Let now [e], [g] ∈ V (I). Again, there are idempotents ẽ, g̃ ∈ IdempM∞(Iα)
for some α ∈ A satisfying [Fαẽ] = V (fα) [ẽ] = [e] and [Fαg̃] = V (fα) [g̃] = [g].
Since V (fα) is a monoid homomorphism, we have

[e⊕ g] = [e] + [g] = V (fα) ([ẽ] + [g̃]) = V (fα) [ẽ⊕ g̃].

Hence, ψ[e⊕ g] = ψα[ẽ⊕ g̃] = ψα[ẽ] + ψα[g̃] = ψ[e] + ψ[g]. � Claim 4.

Next, we shall show that applying the functor V (−) to either a nonunital ring
I or to the ring opposite to I, Iop, yields the same monoid:

Proposition 2.27. Let I be a ring. Then V (I) ≃ V (Iop).

Proof. Throughout this proof, we shall denote multiplication in Iop by ·op, i.e.,
for x, y ∈ I, x ·op y := yx (with concatenation denoting multiplication in I). For
matrices over I, ·op will mean matrix multiplication as matrices over Iop. For any
matrixm, the symbol m⊺ will denote the matrix transpose ofm, i.e., (m⊺)ij = mji

for all i, j.

Claim 1. The assignment

⊺ :M∞(I) −→M∞(Iop)

m 7−→ m⊺

is a ring antiisomorphism.

Proof of Claim. Let a,b ∈M∞(I). Then, for any i, j, we have:

(ab)ij =
∑

k

aikbkj =
∑

k

bkj ·op aik =
∑

k

(b⊺)jk ·op (a
⊺)ki = (b⊺ ·op a

⊺)ji.

Hence, (ab)⊺ = b⊺ ·opa
⊺. As m 7−→ m⊺ clearly preserves sums and the zero matrix,

it follows that it is an antihomomorphism. Starting with Iop instead of I, we also
have an antihomomorphism ⊺ : M∞(Iop) −→ M∞(I). Now that (m⊺)⊺ = m for
any m ∈M∞(I) or m ∈M∞(Iop), we conclude that ⊺ is an antiisomorphism.
� Claim 1.

For an idempotent matrix e ∈ M∞(I), we have e⊺ ·op e
⊺ = (ee)⊺ = e⊺, so ⊺

maps idempotent matrices to idempotent matrices.
Let e, g ∈ IdempM∞(I) be equivalent, i.e., by definition, e = exgye and

g = gyexg for some x, y ∈M∞(I). Then, by Claim 1,

e⊺ = (exgye)⊺ = e⊺ ·op y
⊺ ·op g

⊺ ·op x
⊺ ·op e

⊺, and

g⊺ = g⊺ ·op x
⊺ ·op e

⊺ ·op y
⊺ ·op g

⊺,
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so e⊺ ∼ g⊺ as elements of M∞(Iop). It follows that ⊺ induces a map [−⊺] :
V (I) −→ V (Iop). Since (e ⊕ g)⊺ = e⊺ ⊕ g⊺ and 0⊺ = 0, the map [−⊺] is a
monoid homomorphism. Finally, the similarly constructed homomorphism [−⊺] :
V (Iop) −→ V (I) is a two-sided inverse of the above homomorphism, whence
these two are actually isomorphisms between V (I) and V (Iop).

2.3.2 Definition of V (−) using projective modules

We shall now present a generalization of the classical definition of V (R) as the
monoid of isomorphism classes of finitely generated projective right R-modules
for a unital ring R into the nonunital setting and prove that the resulting monoid
is isomorphic to the monoid of equivalence classes of idempotent matrices.

Definition 2.28. For a ring I and a unital ring R containing I as a two-sided
ideal, we put FP (I, R) := {P ∈ proj -R | PI = P }, that is, FP (I, R) is the
class of all finitely generated projective right R-modules (unitary in the classical
sense) that are unitary as I-modules (with the I-structure defined by restriction
of scalars). We define VR(I) as the abelian monoid of isomorphism classes of
elements of FP (I, R) (as R-modules), with addition induced from direct sums.

Remark 2.29. For an arbitrary ring I, there always exists a unital ring R con-
taining I as a two-sided ideal; however, such ring R is by no means unique.
Possible constructions of R include formally adjoining a unit element to I, see
(Faith, 1973, p. 384); or, one can construct the multiplier algebra as in Ara –
Perera (2000)3; or, starting with a regular ring, it is shown in Fuchs – Halperin
(1964) how to embed it as a two-sided ideal in a regular unital ring. Nevertheless,
we show that the monoid VR(I) is, up to isomorphism, independent of the choice
of R, see Proposition 2.34 and Remark 2.35. Once this is established, we will drop
the subscript R from VR(I) and denote by V (I) either of the monoids defined in
Definition 2.24 or Definition 2.28.

Until Remark 2.35 inclusive, let us fix I and R (I still being a two-sided
ideal in a unital ring R). We assume that I is a ring with local units. For our
purposes, this assumption comes at no cost, since all regular rings have local units
(Proposition 2.7).

We start the proof by constructing a monoid homomorphism from VR(I) to
V (I); the first step is to find a suitable map from FP (I, R) to M∞(I):

Lemma 2.30. Let P ∈ FP (I, R). Then there is an n ∈ N and an e ∈ IdempMn(I)
satisfying P ≃ eRn = eIn as R-modules.

Proof. Since P is a finitely generated projective R-module, it is isomorphic to
a direct summand of Rn for some finite n. Hence, there are morphisms π, ι in
Mod -R such that the following diagram is commutative and both the row and

3Although defined only for semiprime rings in Ara – Perera (2000), the definition works
perfectly fine without the requirement of semiprimeness.
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the column in it are exact:

0

P

Rn P 0.

ι
idP

π

Since πι = idP , the morphism e := ιπ : Rn −→ Rn is idempotent. Since ι is
injective and π is surjective, we see that P ≃ eRn via ι. Identifying EndR(R

n)
with Mn(R) in the standard way (with elements of Rn viewed as column vectors
and with matrices acting on the left, since we are dealing with right modules), we
view e as an idempotent element of Mn(R) ⊆ M∞(R). Then, for any i ≤ n, the
i-th column of e is precisely the element e(bi) ∈ eRn, where bi is the i-th vector
in the canonical basis of Rn (i.e., b1 = (1, 0, . . . , 0), b2 = (0, 1, 0, . . . , 0), . . . , bn =
(0, . . . , 0, 1)).

We have eRn = ιP ≃ P ; from PI = P and from e being an R-module
homomorphism, it follows that eRn = (eRn)I. Clearly, eIn ⊆ eRn; on the other
hand, since I is an ideal in R, we have (eRn)I ⊆ eIn. Put together, we have
P ≃ eRn = eIn. It remains to show that e is in fact an element of Mn(I). From
eRn = eIn, we have that ebi ∈ eIn ⊆ In for all i ≤ n. Hence, with columns of
e being the images of bi’s, we conclude that all entries of e are elements of I, as
desired.

Remark 2.31. For an idempotent matrix e ∈ Mn(I), clearly eIn ⊆ eRn. On
the other hand, since I is an ideal in R and since e has entries in I, we have
eRn ⊆ In, so, from the idempotence of e, we obtain eRn = e(eRn) ⊆ eIn. So, as
sets, we have eIn = eRn. Henceforth, we shall write eRn when viewing this set
as an R-module and eIn when viewing it as an I-module.

Since we assume that I has local units, we see that eIn = (eIn)I: Indeed, as

an element of eIn ⊆ In is an n-tuple x =



x1
...
xn


 with x1, . . . , xn ∈ I, there is

an idempotent u ∈ I sarisfying xu = x, whence x ∈ (eIn)I. We conclude that
eRn ∈ FP (I, R).

It will be useful to have written down the following fact:

Observation 2.32. If g2 = g ∈Mm(I) and n > m, then gRm ≃

(
g 0
0 0n−m

)
Rn.�

Thanks to Lemma 2.30, whenever we deal with (isomorphism classes of) ele-
ments of FP (I, R), we can focus on idempotent matrices over I instead. However,
we should note that neither the matrix e of Lemma 2.30 nor its size is unique: for

example, (1)R ≃

(
1 0
0 0

)
R2 =

(
1 1
0 0

)
R2 for any unital ring R. Nevertheless,

the matrix is unique up to equivalence:
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Lemma 2.33. If e ∈ IdempMn(I), g ∈ IdempMm(I) satisfy eRn ≃ gRm, then
e ∼ g as elements of M∞(I).

Proof. By Observation 2.32, we may w.l.o.g. suppose that n = m.
Let x, y be mutually inverse isomorphisms between eRn and gRn:

eRn gRn.

y

x

As eRn and gRn are both direct summands of Rn, both x, y can be extended
to endomorohisms of Rn; hence, view x, y as elements of Mn(R). Since I is an
ideal of R and since e, g are matrices over I, we see that ex and gy are—as
matrices—elements of Mn(I). Since e and g are idempotent, they act as identity
on eRn and gRn, respectively. With xy = ideRn and yx = idgRn , we conclude
that e(ex)g(gy)e = (ex)(gy)e = xye = e and g(gy)e(ex)g = g, whence e ∼ g.

For [P ] ∈ VR(I), put
ϕ[P ] := [e] ∈ V (I) , (2.6)

where e is any idempotent element ofMn(I) satisfying eR
n ≃ P . By Lemma 2.30,

such e always exists; by Lemma 2.33, ϕ[P ] is independent of the choice of rep-
resentative P of [P ] and is uniquely determined by [P ]. Finally, observe that if
e2 = e ∈Mn(I), g

2 = g ∈Mm(I), then

eRn ⊕ gRm ≃

(
e 0
0 g

)
Rn+m, (2.7)

so

ϕ([eRn] + [gRm]) = ϕ[eRn ⊕ gRm] = [e⊕ g] = [e] + [g] = ϕ[eRn] + ϕ[gRm].

All put together, ϕ : VR(I) −→ V (I) is a well-defined monoid homomorphism.
Finding its inverse is easier:

For e ∈ IdempM∞(I), there is an n < ∞ such that e ∈ Mn(I); by Observa-
tion 2.32, eRn ≃ eRm for any other m < ∞ satisfying e ∈ Mm(I). Moreover, by
Remark 2.31, we have eRn ∈ FP (I, R). Hence, assigning the isomorphism class
of [eRn] to e is a well-defined map from IdempM∞(I) to VR(I).

Suppose now that e, g are equivalent idempotent matrices over I satisfying
e ∈ Mn(I) ⊆ M∞(I), g ∈ Mm(I) ⊆ M∞(I). Then, by Lemma 2.22, eRn ≃ gRm

holds, so the elements [eRn] and [gRm] of VR(I) are equal. With the preceding
paragraph, we have thus shown that mapping [e] ∈ V (I) to [eRn] ∈ VR(I) for n
large enough is a well-defined map. As above, we see from (2.7) that this map is
a monoid homomorphism. It is clearly an inverse of ϕ, so we can conclude:

Proposition 2.34. The map ϕ : VR(I) −→ V (I) defined by (2.6) is an isomor-

phism in the category Mon. �

Remark 2.35. As R plays no role in the definition of V (I) (via idempotent
matrices over I), Proposition 2.34 tells us that VR(I) is actually independent of
the choice of R. Notice that if I is unital to begin with, we can choose R = I;
then FP (I, I) = FP (I, R) becomes proj -I, and V (I) is then the classical monoid
of isomorphism classes of finitely generated projective I-modules.

From now on, we refrain from using the subscript R in VR(I) and denote either
of the isomorphic monoids by V (I).
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2.3.3 Common properties of V (−)’s of regular rings

Proposition 2.36. Let I be a ring with local units. Then the monoid V (I) is
conical.

Proof. Let R be a unital ring containing I as a two-sided ideal. For an R-module
M , note that M ≃ 0 iff M = 0 = { 0 }. Thus, if P,Q ∈ FP (I, R) satisfy
[P ⊕Q] = [0], then P ⊕Q ≃ 0, so P ⊕Q is the zero module. As P and Q can be
embedded into P ⊕Q, it follows that P = 0 = Q.

Proposition 2.37. Let I be a regular ring. Then V (I) is a refinement monoid.

Proof. Let R be a unital regular ring containing I as a two-sided ideal; such R
always exists by (Fuchs – Halperin, 1964, Theorem 1). Viewing V (R) as the
monoid of isomorphism classes of modules from FP (R,R) = proj -R, the monoid
V (R) is a refinement monoid by (Goodearl, 1979, Theorem 2.8). From (Ara et al.,
1998, Proposition 1.4), V (I) is an order-ideal in V (R).4 Thus, by Observation 1.2,
V (I) is a refinement monoid.

Finally, since every projective module over a unital ring is isomorphic to a
direct summand of a free module, we have:

Observation 2.38. If R is a unital ring, then [R] is an order-unit in V (R).

2.3.4 V (−)’s of Morita equivalent rings with local units

For unital rings, it follows from the classical constuction of V (R) as the
monoid of isomorphism classes of finitely generated projective R-modules that
the monoids V (R) ,V (S) for Morita equivalent unital rings R and S are ismo-
morphic. We shall now prove a similar statement for Morita equivalent rings with
local units, using the “projective picture”. We shall make use of the following
fact:

Proposition 2.39. Let I, J be rings with local units with I contained in J as a
two-sided ideal. Then, for any M ∈ Mod -I, there is a natural unitary J-module
structure on M extending the original I-structure. The category Mod -I is a full
subcategory of Mod -J .

Proof. Let M ∈ Mod -I. For m ∈ M , by Lemma 2.10, there is an idempotent
u ∈ I satisfying m = mu. For r ∈ J , we then have ur ∈ I, since I is an ideal in
J ; put then m · r := m · (ur).

Claim 1. The definition of m · r is independent of u.

Proof of Claim. Let u, v ∈ Idemp I satisfy mu = m = mv. Since I has local
units, there is an idempotent w ∈ I with uw = u and vw = v. Then wr ∈ I;

4A prerequisite for (Ara et al., 1998, Proposition 1.4) to apply is that R be a unital exchange
ring. Thankfully, all unital regular rings are such, as can be checked using (Nicholson, 1977,
Theorem 2.1) and (Goodearl, 1979, Theorem 1.7).
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using · to denote the I-action on M and concatenation to denote multilpication
in J , we then have

m · (ur)−m · (vr) = m · ((uw)r)−m · ((vw)r)

= m · (u(wr))−m · (v(wr))

= (m · u) · (wr)− (m · v) · (wr)

= m · (wr)−m · (wr)

= 0,

whence m · (ur) = m · (vr). � Claim 1.
By Claim 1, we have a well-defined map

M × R −→M

(m, r) 7−→ m · r.

We want to show that this map defines a J-module structure on M .

• Let m,m′ ∈M and r ∈ J . Then, since M is a unitary I-module, there are
u, u′ ∈ Idemp I satisfying mu = m and m′u′ = m′ (Lemma 2.10). Since
I has local units, there is an idempotent v ∈ I such that uv = u and
u′v = u′. Then mv = (mu)v = m(uv) = mu = m, and similarly m′v = m′,
so (m+m′)v = m+m′ holds. Hence

(m+m′) · r = (m+m′)(vr) = m(vr) +m′(vr) = m · r +m′ · r.

• Let m ∈M , r, s ∈ R and let u ∈ Idemp I satisfy mu = m. Then

m · (r + s) = m(u(r + s)) = m(ur + us) = m(ur) +m(us) = m · r +m · s.

• Let once again m ∈M , r, s ∈ J and let u ∈ Idemp I satisfy mu = m. Since
I has local units and since ur is an element of I, there is an idempotent
v ∈ I satisfying (ur)v = ur. Then (m(ur))v = m((ur)v) = m(ur) holds,
whence

m·(rs) = m(u(rs)) = m(((ur)v)s) = m((ur)(vs)) = (m(ur))(vs) = (m·r)·s.

Finally, to prove that we have defined a unitary J-module structure on M , if
m ∈ M , there is—by Lemma 2.10—an idempotent u ∈ I with mu = m; since
u ∈ I ⊆ J and m · u = m(uu) = mu = m, Lemma 2.10 yields that M as a
J-module is unitary.

We have shown how to embed objects from Mod -I into Mod -J . For Mod -I
being a subcategory of Mod -J , let ϕ : M −→ N be a homomorphism of I-
modules; we want to show—with the J-structure onM and N defined as above—
that ϕ is also a J-module homomorphism. To that end, let m ∈ M , r ∈ J ,
u ∈ Idemp I and mu = m. Then, since ϕ is an I-module homomorphism, we
have ϕ(m)u = ϕ(mu) = ϕ(m). Hence,

ϕ(m · r) = ϕ(m(ur)) = ϕ(m)(ur) = ϕ(m) · r.
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We have thus shown that taking a morphism in Mod -I, the same map between
the underlying sets is also a morphism in Mod -J . It follows that Mod -I is a
subcategory of Mod -J .

We see from the definition of the J-module structure on M that restriction
of scalars to I yields the original I-module structure on M ; in particular, every
morphism in Mod -J between I-modules is also a morphism in Mod -I, so the
subcategory Mod -I is indeed a full subcategory of Mod -J .

Remark 2.40. In general, the subcategory Mod -I in Mod -J of Proposition 2.39
is not dense: For example, if I = 0, then Mod -I, the category of unitary I-
modules, contains only one isomorphism class of objects, namely, the class of
modules isomorphic to 0. If J is any nontrivial ring, then JJ ∈ Mod -J is not
isomorohic to 0, so it is not (isomorphic to) a unitary I-module, i.e., it is not
(isomorphic to) an object from Mod -I.

Lemma 2.41. If I is a ring with local units contained in a unital ring R as a
two-sided ideal and if A ∈ FP (I, R), then, after restriction of scalars:

(i) A is finitely generated in Mod -I.

(ii) A is projective in Mod -I;

Proof. (i): By the definition of FP (I, R), A is finitely generated as an R-module.
Hence, there is a finite subset X ⊆fin A satisfying A =

∑
x∈X xR. Clearly,∑

x xI ⊆
∑

x xR = A holds. If, on the other hand, a ∈ A, it is necessarily of the
form a =

∑
x xrx with rx ∈ R. From the definition of FP (I, R), A is a unitary I-

module; thus, by Lemma 2.10, there is an e ∈ I satisfying a = ae = (
∑

x xrx) e =∑
x x(rxe), which is an element of

∑
x xI. We conclude that A =

∑
x∈X xI, so as

an I-module, A is spanned by the finite set X .
(ii): Assume there is a diagram

A

B C 0

(2.8)

in Mod -I with the row exact. By Proposition 2.39, we have the same diagram
in Mod -R; note that, by Lemma 2.11, exactness of the row in either of the
categories is equivalent to the morphism B −→ C being onto, whence the row in
(2.8) is exact in Mod -R, too. Since A is projective as an R-module, there exists
a morphism A −→ B in Mod -R making the following diagram commutative:

A

B C 0.

∃ (2.9)

By Proposition 2.39, Mod -I is a full subcategory of Mod -R; thus, (2.9) is also
a commutative diagram in Mod -I. As we have shown for an arbitrary I-module
epimorphism B −→ C that (2.8) can be completed to (2.9) in Mod -I, we conclude
that A is a projective I-module.
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Suppose now that I, J are Morita equivalent rings with local units. Then,
there are additive functors G : Mod -I −→ Mod -J and H : Mod -J −→ Mod -I
and natural isomorphisms η : HG −→ IdMod -I and ζ : GH −→ IdMod -J . From G
and H , we shall derive maps between FP (I, R) and FP (J, S) (with I a two-sided
ideal in a unital ring R and J a two-sided ideal in a unital ring S) that will induce
mutually inverse monoid homomorphisms between V (I) and V (J).

Let A ∈ FP (I, R). From the definition of FP (I, R), we have AI = A, whence,
after restriction of scalars, A is a unitary I-module. By applying Proposition 2.39
to the unitary J-module GA, we obtain GA ∈ Mod -S. We shall show that as an
S-module, GA is finitely generated and projective.

Lemma 2.42. The J-module GA is finitely generated. In particular, it is also
finitely generated as an S-module.

Proof. By Lemma 2.12, there is an exact sequence J (X) GA 0
ϕ

for some set X . Since H preserves direct sums (Proposition 2.15), we have

(HJ)(X) H
(
J (X)

)
HGA A

ξ

≃

α:=(Hϕ)◦ξ

Hϕ ηA

≃

in Mod -I, and since H is exact (Proposition 2.21), Hϕ is surjective. Since ξ
is an isomorphism, α := (Hϕ)ξ is also surjective. Since A is finitely gener-
ated in Mod -R, it is, by Lemma 2.41(i), a finitely generated I-module. From
HGA ≃ A, we infer that HGA is a finitely generated I-module, too. With
HGA = Im

(⊕
x∈X αx

)
=
∑

x∈X Imαx, where αx denotes the morphism from
the x-th copy of HJ to HGA, and with each Imαx being an I-submodule of
HGA, there is a finite subset Y ⊆fin X such that HGA =

∑
x∈Y Imαx. Hence,⊕

Y αx : (HJ)(Y ) −→ HGA is an epimorphism in Mod -I; by exactness of G
(Proposition 2.21), we have that G (

⊕
Y αx) : G

(
(HJ)(Y )

)
−→ GHGA is an

epimorphism in Mod -J . With H preserving direct limits, the following compo-
sition is a composition of an epimorphism with isomorphisms, whence it is an
epimorphism from J (Y ) to GA in Mod -J :

J (Y ) GH
(
J (Y )

)
G
(
(HJ)(Y )

)
GHGA GA.

η−1

J(Y )

≃ ≃

G(
⊕

Y αx) G(ηA)

≃

With Y being finite, we conclude that GA is a finitely generated J-module,
as desired. That it is also finitely generated as an S-module now follows from
Proposition 2.39, since a finite set spanning GA as a J-module spans it as an
S-module as well.

Lemma 2.43. As an S-module, GA is projective.

Proof. Let us have a diagram

GA

M N 0

ϕ

ψ
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in Mod -S with the row exact; we want to find a homomorphism ϕ : GA −→ M
satisfying ψϕ = ϕ.

Since GA is unitary, we have, for every x ∈ GA, an idempotent ex ∈ J
satisfying xex = x (Lemma 2.10). Then ϕx = ϕ(xex) = (ϕx)ex holds, so ϕx ∈
NJ . As this holds for any x ∈ GA, we obtain Imϕ ⊆ NJ . Denoting by ιN the
inclusion map NJ ⊆ N , we then have a commutative diagram

GA

NJ

N

ϕ

ϕ′

ιN

(2.10)

in Mod -S. Similarly, considering the S-submodule MJ of M , we see that
Im (ψ|MJ) ⊆ NJ . Hence, we have the following commutative diagram in Mod -S:

MJ NJ

M N.

ψ|MJ

ιM ιN

ψ

(2.11)

If, on the other hand, n ∈ N and e ∈ Idemp J , then, by surjectivity of ψ, there
is an m ∈ M such that ψm = n. Then ne = (ψm)e = ψ(me) ∈ Imψ|MJ . Thus,
ψ|MJ :MJ −→ NJ is surjective, and as such an epimorphism (Lemma 2.11).

By idempotence of rings with local units, MJ and NJ are unitary J-modules;
hence, in Mod -J , we have the following diagram with the row exact:

GA

MJ NJ 0.

ϕ′

ψ|MJ

Applying the exact functor H (Proposition 2.21), we obtain

HGA

H(MJ) H(NJ) 0.

Hϕ′

H(ψ|MJ )

in Mod -I with the row exact. By Lemma 2.41(ii), A is projective as an I-
module, whence, with η : HG −→ IdMod -I a natural isomorphism, there exists an
I-homomorphism ξ making the following diagram commutative:

A

HGA

H(MJ) H(NJ).

ξ

η−1
A

≃

Hϕ′

H(ψ|MJ )

28



Applying the functor G, with ζ : GH −→ IdMod -J a natural isomorphism, we
obtain the following commutative diagram in Mod -J :

GA

GHGA GA

GH(MJ) GH(NJ) NJ.

Gξ

G(η−1
A )=(GηA)−1≃

GHϕ′

ζGA

≃

ϕ′

GH(ψ|MJ ) ζNJ

≃

(2.12)

Using ζ again, (2.12) yields:

GA GHGA GA

GH(MJ) GH(NJ)

MJ NJ.

Gξ

(GηA)−1

≃

GHϕ′

ζGA

≃

ϕ′

ζMJ

GH(ψ|MJ )

ζNJ

ψ|MJ

(2.13)

Put ν := ζMJ ◦ Gξ ◦ GηA ◦ ζGA : GA −→ MJ (a morphism in Mod -J). From
the commutativity of (2.13), we then have ϕ′ = (ψ|MJ)ν. Transferring to Mod -S
(Proposition 2.39) and using commutativity of (2.10) and (2.11), we obtain the
following commutative diagram in Mod -S:

GA

MJ NJ

M N.

ν
ϕ′

ϕ

ιM

ψ|MJ

ιN

ψ

Putting ϕ := ιMν yields the desired factorization of ϕ through ψ in Mod -S.

Combining Lemmas 2.42 and 2.43 with Proposition 2.39, we conclude that:

Proposition 2.44. Let I, J be rings with local units Morita equivalent via

Mod -I Mod -J.
G

H

Let I be a two-sided ideal in a unital ring R, J a two-sided ideal in a unital ring
S and let A ∈ FP (I, R). Then GA ∈ FP (J, S) . �
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Theorem 2.45. Let I, J be rings with local units Morita equivalent via

Mod -I Mod -J.
G

H

Then V (I) ≃ V (J).

Proof. Let R, S be unital rings, R containing I and S containing J , both as two-
sided ideals. If A,B ∈ FP (I, R) satisfy A ≃ B in Mod -R, then A and B are also
isomorphic in Mod -I. Then, since G is a functor, the J-modules GA and GB
are isomorphic; notice that then they are also isomorphic as S-modules. Thus,
[GA] = [GB] holds in V (J) (due to Proposition 2.44, GA and GB are elements
of FP (J, S), whence it makes sense to consider their S-isomorphism classes as
elements of V (J)). It now follows that G induces a map

G̃ : V (I) −→ V (J)

[A] 7−→ [GA].

Similarly, there is a map H̃ : V (J) −→ V (I) induced by H . Since HGA ≃ A as
I-modules holds for any module A ∈ FP (I, R), we infer that also [A] = [HGA] in
V (I) (use Proposition 2.39). Thus, H̃G̃ = idV(I). Symmetrically, G̃H̃ = idV(J).
To conclude that the monoids V (I) and V (J) are isomorphic, it remains to
show that G̃ and H̃ are monoid homomorphisms. To that end, notice that for
A,B ∈ FP (I, R), the direct sum A⊕B in Mod -R is aslo an element of FP (I, R),
and after restriction of scalars, the same module is also the direct sum of A
and B in Mod -I; that G̃ and H̃ are homomorphisms in Mon now follows from
Proposition 2.15.
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Chapter 3

Leavitt path algebras

In this place, we overview some results on Leavitt path algebras related with
the realization problem.

3.1 Quivers and path algebras

3.1.1 Quivers and their duals

Let us first fix terminology we use later in the chapter. In our introduction of
the Leavitt path algebras, we mostly follow the outline of Goodearl (2009).

A quiver 1 E = (E0, E1, s, r) consists of disjoint sets E0 and E1 and maps
s, r : E1 −→ E0. We always assume that the set E0 is not empty. We refer to
elements of E0 as vertices of E and to elements of E1 as edges (or arrows) of E.
For an edge e, the vertex s(e) is called the source of e and r(e) is called the range
of e. We then say that e is an edge from s(e) to r(e). We also say that s(e) emits
e and that r(e) receives e. A vertex is called a receiver if it receives at least one
edge, an emitter if it emits at least one edge, and an infinite emitter if it emits
infinitely many edges. A vertex that is not an emitter is called a sink, while it
is called a source2 if it is not a receiver. A vertex is called singular if it is either
a sink or an infinite emitter, and a regular vertex is a vertex that is not singular
(that is, a vertex v ∈ E0 is regular iff 0 < |s−1

E (v)| <∞). A loop is an edge with
the same source and range.

If E = (E0, E1, sE, rE), F = (F 0, F 1, sF , rF ) are quivers, we say that F is a
subquiver of E if F 0 ⊆ E0, F 1 ⊆ E1, sF = sE |F and rF = rE |F .

Since our primary focus is on countable monoids, we restrict our attention to
countable quivers only; hence, by a quiver, we will always mean a countable one,
that is, with only countably many vertices and edges.

A path of length n in a quiver is a sequence e1, e2, . . . , en of edges satisfying
r(ei) = s(ei+1) for all i = 1, . . . , n−1. We shall often write paths in the form of a
product3, that is, p = e1e2 · · · en stands for the path above. We also say that s(e1)

1Also called “graph” or “directed graph” in papers cited.
2The disticntion between the source of an edge and a source in a quiver will be clear at all

times.
3Note that in path algebras, the product e1e2 for e1, e2 ∈ E1 will be defined even if r(e1) 6=

s(e2). By saying that p = e1e2 · · · en is a path, we imply that the ranges and sources of adjacent
edges match.
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is the source of p and r(e2) the range of p and denote these two vertices by s(p)
and r(p), respectively. We consider each vertex v to be a path in E, specifically,
a path of legth zero; the source, s(v), and range, r(v), of such path is v itself.

A cycle in a quiver E is a path p in E of length n > 0 satisfying s(p) = r(p);
an acyclic quiver is a quiver containing no cycles (so an acyclic quiver is such
that its only paths with the same source and range are the vertices, i.e., paths of
length zero).

We say that a quiver is row-finite if it has no infinite emitters.
The dual of a quiver E is the quiver4 E∗ = ((E∗)0, (E∗)1, s, r) consisting of

the same vertices as E (that is, (E∗)0 = E0) and arrows from E reversed, i.e.,
(E∗)1 := { e∗ | e ∈ E1 } with s(e∗) = r(e) and r(e∗) = s(e) for all e ∈ E1. If
p = e1e2 · · · en is a path in E, we denote by p∗ the corresponding path in E∗:
p∗ = e∗ne

∗
n−1 · · · e

∗
1.

By the double of a quiver E, denoted by Ê, we mean the union of E and its
dual, E∗, with the two sets of edges considered disjoint. We call the edges (or
paths) from E real and edges (paths) from E∗ ghosts.

For quivers E = (E0, E1, sE , rE), F = (F 0, F 1, sF , rF ), a quiver homomor-
phism from E to F is given by two maps, ϕ0 : E0 −→ F 0 and ϕ1 : E1 −→ F 1,
satisfying the following compatibility conditions:

• sF (ϕ
1e) = ϕ0(sF (e)), and

• rF (ϕ
1e) = ϕ0(rF (e)) for all e ∈ E1.

In other words, a quiver homomorphism E −→ F is a map E0 ∪̇E1 −→ F 0 ∪̇F 1

that respects sources and targets. A homomorphism ϕ is called complete if it is
injective (both on vertices and on edges) and if it maps s−1

E (v) onto s−1
F (ϕ0(v))

bijectively, whenever v ∈ E0 is a regular vertex. We say that a subquiver F of E
is a complete subquiver of E if the inclusion map F −→ E is a complete quiver
homomorphism.

Observation 3.1. (i) The identity map on a quiver is a complete homomor-
phism. If E −→ F −→ G are complete quiver homomorphisms, then so
is their composition. Hence, (countable) quivers as objects and complete
quiver homomorphisms as morphisms form a category. We denote this cat-
egory by Quiv.

(ii) If ϕ : E −→ F is a complete quiver homomorphism, then the quiver ϕ(E) =(
ϕ(E0), ϕ(E1), sF |ϕ(E1), rF |ϕ(E1

)
is a complete subquiver of F . �

We denote the full subcategory of Quiv consisting of all countable row-finite
quivers and complete homomorphisms between such by rfQuiv.5

Proposition 3.2. (i) (Goodearl, 2009, Lemma 2.5 (a)) Arbitrary direct limits
exist in the category rfQuiv.

4Some authors use E∗ to denote the set of all paths in E; we prefer the notation presented
here, with ∗ denoting what will be called “taking ghosts” of edges or paths.

5
rfQuiv is the category G of Ara et al. (2007), while Quiv is the full subcategory of countable

quivers of the category CKGr from Goodearl (2009).
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(ii) (Ara et al., 2007, Lemma 3.1) Every row-finite quiver is a direct limit in the
category rfQuiv of the directed system of all its finite complete subquivers.�

Example 3.3 (the infinite rose6 quiver). We define the “infinite rose quiver” R∞

as a quiver with one vertex and (countably) infinitely many edges, necessarily
loops from the single vertex to itself. We picture R∞ as

•(∞)

(when we depict quivers graphically, a positive integer n or the infinity sign, ∞, in
parentheses near an arrow symbolize that there are n or countably infinitely many
arrows, respectively, with the same source and range as the arrow in the picture).
Let E be a finite quiver and ϕ : E −→ R∞ a complete graph homomorpihsm.
Since ϕ is injective, E has only one vertex, say, E0 = { v }. Suppose that the
set E1 is nonempty. Then, since ϕ is complete, there is a bijection between
s−1(v) = E1 and (R∞)1, the infinite set of edges of R∞. Hence, the quiver E is
not finite, a contradiction. Thus, unlike the row-finite case (Proposition 3.2(ii)),
R∞ is not a direct limit of finite graphs in Quiv.

3.1.2 Path algebras

For a quiver E and a field K, we define the path algebra of E over K as the K-
algebra with basis the set of all paths in E, and with the following multiplication:
If p, q are paths in E, we let pq be the concatenation of p and q if r(p) = s(q),
and zero otherwise. This in particular means that:

• If p = e1 · · · en and q = f1 · · · fm are paths of strictly positive length with
r(en) = s(f1), then pq = e1 · · · enf1 · · · fm.

• If p is a path, then s(p)p = p = pr(p). In particular, for a vertex v, v2 = v.

We denote the path algebra of E over K by KE.

Example 3.4. Let V∞ denote the quiver consisting of a countably infinite set of
vertices and no edges. Then KV∞ ≃ K(ω) is a nonunital regular algebra (we’ve
already seen this algebra in Remark 2.18). We see that the monoid V (KV∞) ≃
(N0)

(ω) does not have an order-unit; in particular, it cannot be realized by any
unital regular ring.

Observe that if the set E0 is finite, then the sum of all vertices of E is a unit
in KE, irrespective of the cardinality of the set E1. On the other hand, if the set
E0 is infinite, then the algebra KE cannot have a unit: Suppose the contrary,
that is, that 1 =

∑
p a path in E

αpp is a unit in KE, with αp ∈ K. Then, for every

vertex v ∈ E0, we would have

v = v · 1 =
∑

p a path in E,
s(p) = v

αpp.

6Recall that a rose is a rose is a rose, even if it is infinite.
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Since the set of all paths in E is linearly independent over K, we conclude that
αv = 1 for every v ∈ E1, a contradiction, since only finitely many αp’s can be
nonzero. Nevertheless, even for E0 infinite, we have:

Lemma 3.5. For a quiver E and a field K, the path algebra KE has local units.

Proof. Given a finite set P of paths in E (also admitting paths of length zero,
i.e., vertices, as elements of P ), put V := { s(p) | p ∈ P }∪{ r(p) | p ∈ P }. Then,
putting x :=

∑
v∈V v, we see that x is an idempotent in KE satisfying xp = p =

px for all p ∈ P .

Definition 3.6. The Leavitt path algebra of E over K is the quotient of the path
algebra KÊ (i.e., of the path algebra of the double of E over K) modulo the ideal
generated by the following elements:

• e∗e− r(e) for every e ∈ E1;

• e∗e′ for all pairs e, e′ of distinct edges in E;

• v −
∑

e ∈ E1,

v = s(e)

ee∗ for all vertices v with 0 < |s−1(v)| <∞.

We denote said algebra by LK(E) or L(E).

Dealing with elements of L(E), we will use the same names for elements of

KÊ and their cosets in L(E). Thus, the following relations hold true in L(E):

(CK1) e∗e′ =

{
r(e) if e = e′,
0 otherwise;

(CK2) v =
∑

e ∈ E1,

v = s(e)

ee∗ for every v ∈ E0 that is neither a sink nor an infinite

emitter.

Remark 3.7. For a quiver E, applying Lemma 3.5 to the quiver Ê, we have that
KÊ is a ring with local units. As a quotient of KÊ, L(E) is always a ring with
local units, and, moreover, it is a unital ring if the set E0 is finite.

A few words on which elements of KÊ remain distinct in L(E) are in order:
Firstly, (the cosets of) vertices are not only distinct, but also linearly independent:

Lemma 3.8 ((Goodearl, 2009, Lemma 1.5)). Let K be a field and E a quiver.
Then the cosets of the vertices from E0 are K-linearly independent elements of
LK(E). �

In (Siles Molina, 2008, Lemma 1.1), it is shown that distinct real paths in
L(E) are linearly independent; in Goodearl (2009), this has been extended to
include ghost paths:

Lemma 3.9 ((Goodearl, 2009, Lemma 1.6)). Let K be a field and E a quiver.

Then the quotient map KÊ −→ LK(E) restricts to an embedding of the subspace

KE +KE∗ of KÊ into LK(E). �
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In KÊ, any set consisting of distinct real paths, distinct ghost paths and
distinct vertices is linearly independent. Thus, Lemma 3.9 tells us that the same
holds in L(E).

Regarding K-dimension of KE or LK(E), we see from the definitions that:

Observation 3.10. For a field K and a quiver E, the following are equivalent:

(i) The quiver E is finite (in the sense that both E0 and E1 are finite sets) and
acyclic;

(ii) dimK KE is finite;

(iii) dimK KE
∗ is finite.

However, if E1 6= ∅, then Ê contains a cycle, whence the K-dimension of KÊ
is infinite; nevertheless, the necessary and sufficient conditions for L(E) to be
finite-dimensional are the same as for KE by a result of Abrams et al. (2007):

Proposition 3.11 ((Abrams et al., 2007, Corollary 3.6)). For E a quiver and K
a field, the Leavitt path algebra LK(E) is a finite-dimensional K-algebra iff E is
finite and acyclic. �

Functoriality of taking Leavitt path algebras

It is shown in (Goodearl, 2009, §2.4) that for a field K, the assignment E 7−→
LK(E) can be extended to a functor LK(−) from Quiv to the category of K-
algebras, and in (Goodearl, 2009, Lemma 2.5(b)) that this functor is continuous.
This functor plays a role in the naturality of the isomorphism of Theorem 3.17.

3.1.3 Regularity conditions for Leavitt path algebras

An important question from our perspective is whether Leavitt path algebras
can be regular rings, and if so, then under what conditions. A result on this topic
is the following:

Theorem 3.12 ((Abrams – Rangaswamy, 2010, Theorem 1)). For a quiver E
and a field K, the following are equivalent:

(i) LK(E) is a regular ring;

(ii) E is acyclic;

(iii) LK(E) is locally K-matricial, i.e., it is the direct union of subrings, each
of which is isomorphic to a finite direct sum of finite matrix rings over K.

Notice that unlike Propositon 3.11, there is no finiteness condition imposed on
E in (ii) in the above theorem. Thus, there also are infinite-dimensional Leavitt
path algebras that are regular.
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3.2 V (−) of Leavitt path algebras

3.2.1 The monoid ME associated with a quiver E

Now that we have that some regular rings can be obtained as Leavitt path
algebras, we are interested in what the monoid V (−) of such rings can look like.
Fortunately, it can be described in terms of generators and relations between
them based on the quiver E (Theorem 3.17).

Definition 3.13. Let E be a (general) quiver. Let us denote by FE0 the free
abelian monoid freely generated by the set E0 (i.e., by vertices of E; cf. (Burris
– Sankappanavar, 2012, Definition 10.5)), and let ΛE be the congruence on FE0

generated by the relations

v ≡
∑

e∈s−1(v)

r(e) for every regular vertex v ∈ E0. (3.1)

We put ME to be the factor monoid FE0/ΛE ; we call ME the monoid associated
with E. When computing with the monoid ME , we shall denote the ΛE-class of
a vertex v ∈ E0 also by v.

Remark 3.14. A monoid associated with a quiver E has a presentation

〈X|∆〉 , (3.2)

where X = E0 is a countable set and ∆ = { x =
∑

y∈X nxyy | x ∈ X }, with nxy
elements of N0, all but finitely many of them nonzero for each x. Conversely,
any abelian monoid with such presentation is associated with a suitable quiver
E: Let E0 := X be the set of vertices, and for all pairs x, y ∈ X , let there be nxy
arrows from x to y in E. Then indeed ME has presentation (3.2).

Immediately from the definition, we see that we can slightly modify a quiver
without affecting the monoid ME :

Observation 3.15. Let E, F be quivers such that F can be obtained from E by
removing a regular vertex v ∈ E0 and adding an edge f(e,e′) from s(e) to r(e′) for
each pair of edges e, e′ ∈ E1 satisfying r(e) = v and s(e′) = v; that is, we take a
regular vertex v ∈ E0 and put F 0 = E0 \ { v } and

F 1 =
(
E1 \ (s−1

E (v) ∪ r−1
E (v))

)
∪̇ { f(e,e′) | e ∈ r−1

E (v), e′ ∈ s−1
E (v) } ,

where sF
(
f(e,e′)

)
= sE(e) and rF

(
f(e,e′)

)
= rE(e

′) for all relevant e, e′. Then

MF −→ME

w 7−→ w, w ∈ F 0,

is a monoid isomorphism. In particular, removing a source that is regular from
a quiver E does not affect ME.

For row-finite quivers, the following holds:
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Lemma 3.16 ((Ara et al., 2007, Lemma 3.4)). The assignment E 7−→ ME can be

extended to a continuous functor from rfQuiv to Mon. With Proposition 3.2 (ii),
it follows that every monoid of the form ME is a direct limit of finite monoids
ME′ in the category rfQuiv.

Theorem 3.17 ((Ara et al., 2007, Theorem 3.5)). For a row-finite quiver E,
there is a monoid isomorphism γE :ME −→ V (LK(E)), natural in the sense that
if ϕ :ME −→MF is a morphism in rfQuiv, then V (LK(ϕ)) γE = γFMϕ.

Example 3.18 (the binary tree quiver). Consider the infinite binary tree quiver,
E, as in the diagram:

. . .

•

. . .

•

. . .

•

. . .

•v0

. . .

•

. . .

•

. . .

•

. . .

.

Then in the algebraic preorder on ME , v ≤ v0 holds for each v ∈ E0. Thus, for a
general element x =

∑
v nvv ofME , we have x ≤ (

∑
v nv) v0. We conclude that v0

is an order-unit in ME . Since there are no cycles in E, the Leavitt path algebra
LK(E) is regular by Theorem 3.12. As E is row-finite, the monoid V (LK(E)) is
isomorphic to ME by Theorem 3.17; hence, V (LK(E)) has an order-unit. Since
the quiver E has infinitely many vertices, the algebra LK(E) is not unital. Thus,
the monoid V (LK(E)) is an example of a countable conical refinement monoid
with order-unit realizable by a nonunital regular ring, where we do not know if it
is also realizable by a unital ring.

3.2.2 A nonstandard construction of the additive monoid

of nonnegative rationals as V (A) with A a regular

Leavitt path algebra

We shall now construct an acyclic row-finite quiver E such that ME is iso-
morphic to Q≥0, the additive monoid of nonnegative rational numbers. With
E acyclic, we will have that for any filed K, the algebra LK(E) is regular (by
Theorem 3.12), and by Theorem 3.17 that Q≥0 ≃ME ≃ V (LK(E)).

For i ∈ N, let pi denote the i-th prime number, i.e., p1 = 2, p2 = 3, p3 = 5 etc.
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Theorem 3.19. Let E0 := { v1, v2, v3, . . . } = { vi | i ∈ N } be a countably infinite
set of vertices. Let E be a quiver with vertex set E0 such that for each n, there
are p1p2 · · · pn =

∏n
i=1 pi arrows from vn to vn+1, and such that there are no edges

from vn to any vm except vn+1. Then, for any field K, the Leavitt path algebra
LK(E) is regular and V (LK(E)) ≃ Q≥0.

Proof. The quiver E is as in the following diagram, with the number in paren-
theses above an arrow indicating the number of arrows with the same source and
range:

•v1 •v2 •v3 •v4 . . . .
(2) (6) (30) (210)

Claim 1. For m > n, the equality

vn =

(
m−1∏

j=n

j∏

i=1

pi

)
vm = (pm−n

1 pm−n
2 · · · pm−n

n )(pm−n−1
n+1 pm−n−2

n+2 · · ·p2m−2pm−1)vm

holds in ME.

Proof of Claim. By (3.1), vn =
∑

e∈s−1(vn)
vn+1 holds in E, so vn = kvn+1, where

k is the number of arrows from vn to vn+1 in E. From the definition of E,
k =

∏n

i=1 pi. Proceed by induction. � Claim 1.
It is clear that E is acyclic, so LK(E) is regular by Theorem 3.12. By The-

orem 3.17, we only need to show that the monoids ME and Q≥0 are isomor-
phic. To that end, we shall construct monoid homomorphisms ME −→ Q≥0 and
Q≥0 −→ ME that compose to identities on ME and Q≥0, respectively. Let us
begin with the one from ME to Q≥0:

With the set E0 freely generating FE0 , the assingnemnt

vn 7−→
n∏

i=1

pi−ni =
1

pn−1
1 · pn−2

2 · · · · · p2n−2 · pn−1

(3.3)

for each n ∈ N defines a monoid homomorphism ψ : FE0 −→ Q≥0. Notice that
then, for each n,

ψ(vn+1) =
1

p1p2 · · · pn
ψ(vn)

holds. Thus, since there are
∏n

i=1 pi distinct arrows from vn to vn+1 in E and
since ψ is a monoid homomorphism, we have

ψ(vn) =

(
n∏

i=1

pi

)
ψ(vn+1) =

∑

e∈s−1(vn)

ψ(vn+1) = ψ


 ∑

e∈s−1(vn)

vn+1




for each n ∈ N. Hence, ψ respects the congruence ΛE, whence (3.3) also defines
a monoid homomorphism ψ :ME −→ Q≥0.

For the opposite direction, let us first define a map ϕ from N0×N toME . For
a q ∈ N, with q = pa11 p

a2
2 · · · pann and with an 6= 0, put

jq := max { ai + i | i = 1, . . . , n }
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and

πq :=

jq∏

i=1

p
jq−ai−i
i . (3.4)

From the definition of jq, the inequality jq − ai − i ≥ 0 holds for all i ≤ jq. Also,

jq − ajq − jq = 0 holds, so we can write πq =
∏jq−1

i=1 p
jq−ai−i
i instead of (3.4). We

let j1 := 1 and π1 := 1. Now, for any (p, q) ∈ N0 × N, put

ϕ((p, q)) := (p · πq) · vjq . (3.5)

Claim 2. For (p, q) ∈ N0 × N and m ∈ N, ϕ((p, q)) = ϕ((mp,mq)) holds.

Proof of Claim. For m = 1, the assertion is trivial.
Suppose now that m is a prime, that is, m = pk for some k ∈ N. If q = 1,

then jqm = jpk = k + 1 and

πqm = πpk =
k−1∏

i=1

pk+1−i
i = pk1p

k−1
2 · · · p2k−1; (3.6)

hence,

ϕ((mp,mq)) = ϕ((p · pk, pk))

= ((ppk)πpk)vk+1 by (3.5),

=

(
p

k∏

i=1

pk+1−i
i

)
vk+1 by (3.6),

= p

(
k∏

j=1

j∏

i=1

pi

)
vk+1

= pv1 by Claim 1,

= pπ1v1 from π1 = 1,

= ϕ((p, q)) from q = 1 and (3.5),

as asserted.
Let now q 6= 1, so we can write q = pa11 · · · pann with an 6= 0. Let us divide the

situation into three cases, depending on the relationship between jq and ak + k:

• If jq > ak + k, then jq = jmq. We see from (3.4) that πqm = πq
m
, whence

ϕ((pm, qm)) = (pmπq
m
)vjqm = (pπq)vjq = ϕ((p, q)).

• If jq = ak + k, then jqm = jq + 1, so

πqm = πq · p1p2 · · · pk−1 · pk+1 · · · pjq = πq ·
1

m
·

jq∏

i=1

pi.
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Thus,

ϕ((pm, qm)) =

(
pm

πq
m

jq∏

i=1

pi

)
vjqm by (3.5),

= pπq

(
jq∏

i=1

pi

)
vjq+1 from jqm = jq + 1,

= pπqvjq by Claim 1,

= ϕ((p, q)).

• If jq < ak + k, then we see from the definition of jq that k > n, and that
jqm = k + 1 holds. Defining ai := 0 for all n < i < k and ak := 1 (so that
qm = pa11 p

a2
2 · · ·pakk ), we then have:

πqm =
k∏

i=1

pk+1−ai−i
i =

k−1∏

i=1

pk+1−ai−i
i

=

(
jq∏

i=1

((
p
jq−ai−1
i

)(
p
k+1−jq
i

)))



k−1∏

i=jq+1

pk+1−i
i




=

(
jq∏

i=1

p
jq−ai−1
i

)(
jq∏

i=1

p
k+1−jq
i

)


k−1∏

i=jq+1

pk+1−i
i


 pk
pk

= πq

(
jq∏

i=1

p
k+1−jq
i

)


k∏

i=jq+1

pk+1−i
i


 1

pk

=
πq
pk

k∏

j=jq

j∏

i=1

pi,

whence, using Claim 1 once again,

ϕ((pm, qm)) = ppk


πq
pk

k∏

j=jq

j∏

i=1

pi


 vk+1 = pπqvjq = ϕ((p, q))

holds.

As one of the three cases above must occur, we have proved that for m a prime,
ϕ((pm, qm)) = ϕ((p, q)) holds. Decomposing a general m > 1 to a product of
primes, the general assertion of the claim follows. � Claim 2.

It follows from Claim 2 that the assignment p

q
7−→ ϕ((p, q)) is a well-defined

map from Q≥0 to ME ; let us denote it by ϕ. Next, we show that this map is in
fact a monoid homomorphism. It is clear that ϕ(0) = 0. Let now p

q
, p

′

q′
∈ Q≥0;
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then

ϕ

(
p

q
+
p′

q′

)
= ϕ

(
pq′ + p′q

qq′

)

= (pq′ + p′q)πqq′vjqq′ by (3.5),

= pq′πqq′vjqq′ + p′qπqq′vjqq′

= ϕ

(
pq′

qq′

)
+ ϕ

(
p′q

qq′

)
= ϕ

(
p

q

)
+ ϕ

(
p′

q′

)
.

We conclude that ϕ : Q≥0 −→ ME is indeed a monoid homomorphism.
For any n ∈ N, we have ψ(vn) =

1
q
, where q =

∏n
i=1 p

n−i
i by (3.3). Observe

that then jq = n, so πq =
∏n

i=1 p
n−(n−i)−i
i = 1, so ϕ

(
1
q

)
= 1 · 1 · vjq = vn; as we

have shown that ϕ◦ψ maps each of the generators vn ofME to itself, we conclude
that ϕ ◦ ψ = idME

.
As for the composition ψ ◦ϕ, for any p ∈ N0, we see that ψ◦ϕ

(
p

1

)
= ψ(pv1) =

p. If p

q
∈ Q≥0 with q = pa11 · · · pann and an 6= 0, then

ψ

(
ϕ

(
p

q

))
= ψ

(
pπqvjq

)
= pπqψ(vjq)

= p

(
jq∏

i=1

p
jq−ai−i
i

)(
jq∏

i=1

p
i−jq
i

)
= p

jq∏

i=1

p−aii =
p

q
,

so ψ ◦ ϕ = idQ≥0. We have shown that ME ≃ Q≥0, as required.

Remark 3.20. With little effort, one can see that in Theorem 3.19, if instead
of the sequence p1, p2, . . . going through all prime numbers, we only chose some
(be it finitely or infinitely many), and if we adjusted the quiver E accordingly, a
similar proof would yield a regular Leavitt path algebra LK(E) over an arbitrary
field K such that the monoid V (LK(E)) would be isomorphic to the submonoid
of Q≥0, consisting only of rational numbers that can be expressed as fractions
having only products of powers of the chosen primes in the denominator. Such
submonoids of Q≥0 have “nonzero refinements” in the sense of Remark 4.13 (for
a proof, also see said remark), so they can be used in generalizations of the
constructions of Proposition 4.12 presented in Remark 4.13.

For an alternative proof of Theorem 3.19, see Remark 3.34.

3.2.3 Desingularization and V (LK(E)) for E a general quiver

Example 3.21 (the infinite edges quiver). Let E∞ denote the “infinite edges
quiver”, consisting of two vertices v, w, (countably) infinitely many edges from v
to w and no other edges, pictured as

•v •w.
(∞)

For this particular quiver, the algebra L(E∞) is unital, regular by Theorem 3.12,
and isomorphic to the ring {A+ k Id | A ∈M∞(K), k ∈ K } (see (Abrams –
Aranda Pino, 2008, Lemma 1.1)). That set aside, a fact of interest to us is that
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L(E∞) is not isomorphic to any Leavitt path algebra over a row-finite quiver
(Abrams – Aranda Pino, 2008, Proposition 5.5). Thus, it witnesses that there
are quivers E ∈ Quiv whose Leavitt path algebras cannot be realized as Leavitt
path algebras of row-finite quivers; as Theorem 3.17 then does not apply to these
quivers, we might wonder what the monoids V (−) of such Leavitt path algebras
look like. As we will see in Corollary 3.24, the process of desingularization of a
quiver answers this question.

For a quiver E, a desingularization of E is a quiver F obtained from E in the
following way:

• For every sink v0 in E, an infinite quiver of the form

•v0 •v1 •v2 •v3 · · · (3.7)

is attached at v0.

• For every infinite emitter v0 in E, write s
−1
E (v0) = { e1, e2, e3, . . . }; an infinite

quiver of the form (3.7) is attached at v0, and for every i ∈ N, the edge ei
is removed, while a new edge from vi−1 to rE(ei) is added.

Remark 3.22. All vertices of a desingularization of a quiver are clearly regular;
in particular, a desingularization of a quiver E is a row-finite quiver. We speak of
a desingularization of E and not of the desingularization of E, since, in general,
the order in which we “desingularize” the vertices, or even different ordering of the
set s−1

E (v0) for an infinite emitter v0 may yield different (nonisomorhic) quivers:
For example, consider the infinite rose quiver, R∞, of Example 3.3, and attach
to it one new vertex and one new edge e from the original vertex to the new one.
The resulting quiver is

•v •w.(∞)
e

Taking the edge e as “e1”, the desingularization process yields

· · · • • • •v •w • • · · · ,

while taking it as “e2”, desingularization yields

•v

· · · • • • • •w • • · · · .

For our purposes, an important fact about desingularizations is the following:

Theorem 3.23 ((Abrams – Aranda Pino, 2008, Theorem 5.2)). Let K be a field,
E an arbitrary quiver and F a desingularization of E. Then the algebras LK(E)
and LK(F ) are Morita equivalent.
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Let us note here that Theorem 3.23 is proved in Abrams – Aranda Pino
(2008) using results from Ánh – Márki (1987); in particular, it works with the
same definition of the category Mod -I for I a ring with local units as we do, as we
have adopted the definitions of Ánh – Márki (1987). Thus, Theorem 3.23 states
that the algebras LK(E) and LK(F ) are indeed Morita equivalent in our sense.
Hence, Theorem 2.45 applies, so we immediately obtain from Theorem 3.23 that:

Corollary 3.24. For K a field, E a quiver and F a desingularization of E, the
monoids V (LK(E)) and V (LK(F )) are isomorphic.

Even for quivers E such as E∞ of Example 3.21, whose Leavitt path algebras
cannot be realized as Leavitt path algebras over any row-finite quiver, Corol-
lary 3.24 states that the monoid V (LK(E)) can be computed as V (LK(F )) for
a suitable row-finite quiver F . In particular, Corollary 3.24 together with Theo-
rem 3.17 yield:

Corollary 3.25. For any countable quiver E and any field K, ME ≃ V (LK(E))
holds.

3.2.4 A näıve alternative to desingularization

From Definition 3.13, we can derive a simpler alernative to desingularization
for finding a row-finite quiver F such that ME ≃ MF for an arbitrary quiver E.
Let us call it the crop7 of the quiver E.

Definition 3.26. For a quiver E, the crop of E is the quiver F obtained from E
by removing all edges whose source is an infinite emitter in E.

As only edges emitted by regular vertices play a role in the definition of ΛE
(see (3.1)), we see that:

Observation 3.27. If F is the crop of a quiver E, then F is a row-finite quiver
satisfying ME ≃ MF .

It now follows from Theorem 3.17 that applying the functor V (−) to E and
to its crop, we obtain, up to isomorphism, the same monoid. Apart from being
a much simpler method than desingularization (with no need of results such as
Theorem 2.45), another advantage of “cropping” over desingularization is that
the resulting quiver is unique. However, even in the unital case, “cropping” does
not preserve some properties of the Leavitt path algebras that desingularization
does, such as LK(E) being simeple (cf. (Anderson – Fuller, 1992, Proposition
21.8(1)) and Theorem 3.23). An example of this phenomenon is the quiver E
with two vertices, v and w, one arrow from v to w, one from w to v and infinitely
many loops from v to itself:

•v •w(∞) .

The crop of E is then the quiver F = •v •w . One can use (Abrams –

Aranda Pino, 2008, Theorem 3.1) to show that LK(E) is simple, while LK(F ) is
not.

7The word “crop” is chosen to be as suggestive as possible, hopefully not interfering with
any standard graph-theoretic terminology.
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Nevertheless, Observation 3.27 can be used instead of Corollary 3.24 to prove
Corollary 3.25.

3.2.5 Properties of V (LK(E))

General properties of monoids associated with quivers

Either using desingularization or cropping, we have seen in Corollary 3.25 that
any monoid associated with a quiver is isomorphic to a monoid associated with
a row-finite quiver. Hence, even though originally stated for row-finite quivers,
(Ara et al., 2007, Proposition 4.4, Theorem 6.3 and Proposition 6.4) also hold for
any countable quiver. We can thus sum these three statements into:

Theorem 3.28. Let E be a quiver and K a field. Then ME ≃ V (LK(E)) is an
unperforated separative refinement monoid.

Stable finiteness for monoids associated with acyclic quivers

Proposition 3.29 ((Abrams – Aranda Pino, 2006, Proposition 4)). Let E be
a row-finite quiver. Then E is acyclic iff L(E) is a union of a chain of finite-
dimensional subalgebras.

Remark 3.30. In the proof of Proposition 3.29 in Abrams – Aranda Pino (2006),
it is shown that for any acyclic row-finite quiver E, it is possible to find a chain
of finite complete subquivers (Fi|i ∈ N) such that L(E) =

⋃∞
i=1 L(Fi). In partic-

ular, since each Fi is finite, the subalgebra L(Fi) of L(E) is unital (and finite-
dimensional, cf. Theorem 3.12). Hence, we can restate Proposition 3.29 as:

Corollary 3.31. A row-finite quiver is acyclic iff it is a union of a chain of
finite-dimensional subalgebras that are unital.8

Theorem 3.32. Let K be a field and A a K-algebra such that A is the union of
a chain of finite-dimensional unital subalgebras. Then the monoid V (A) is stably
finite. In particular, for an acyclic row-finite quiver E, the monoid V (LK(E)) is
stably finite.

Proof. Suppose the contrary, that is, that there are idempotents e, g ∈ M∞(A)
satisfying [g] 6= 0 (in particular, g 6= 0) and [e] = [e] + [g] = [e ⊕ g] in V (A).
Then, there are x, y ∈ M∞(A) such that both ex(e ⊕ g)ye = e and (e ⊕ g) =
(e ⊕ g)yex(e ⊕ g). Since the matrices e, g, x, y have only finitely many nonzero
entries and since A is the union of a chain of finite-dimensional unital subalgebras,
there is a finite-dimensional unital subalgebra B of A such that e, g, x, y can be
viewed as elements of M∞(B). However, as e ∈ Mn(B) and g ∈ Mm(B) for
suitable m,n ∈ N, we have (e ⊕ g) ∈ IdempMn+m(B), so Lemma 2.22 yields
that ex(e ⊕ g) : (e ⊕ g)Bn+m −→ eBn is a B-module isomorphism. We thus
have eBn ≃ (e ⊕ g)Bn+m ≃ eBn ⊕ gBm. In particular, the finitely generated
B-modules eBn and eBn ⊕ gBm are, as vector spaces over K, of the same finite
dimension, whence gBm = 0. But that is only possible for g = 0, a contradiction.

The assertion for acyclic row-finite quivers follows from Corollary 3.31.

8In general, even for a unital algebra, a finite-dimensional subalgebra in our sense (i.e., a
subring closed under multilpication by scalars) need not be unital: Consider e.g. the subalgebra
of a Leavitt path algebra generated by a single edge.
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3.2.6 Realizing directed unions of free abelian monoids by

regular Leavitt path algebras

Directed unions of chains of finitely generated free abelian monoids are a
particular example of stably finite monoids; hence, the following proposition is a
partial reversal of Theorem 3.32 (cf. also Theorem 3.12 (iii)):

Proposition 3.33. Each directed union of monoids of the form (N0)
k (with each

k a strictly positive integer) is realizable as the monoid V (LK(E)) for some acyclic
row-finite quiver E.

Proof. Let

M1 M2 M3 · · ·
ϕ1 ϕ2 ϕ3

be a directed system in Mon, with Mi = (N0)
ki for all i and with every ϕi

injective. For each i, let { vi1, . . . , viki } be the canonical generating set of Mi.
For vertices of E, take E0 := { vij | i ∈ N, 1 ≤ j ≤ ki }. From each vertex vij , we

have ϕi(vij) =
∑ki+1

l=1 nijlvi+1,l for some nijl ∈ N0; in E, let there be nijl edges
from vij to vi+1,l and no edges from vij to any vml with m 6= i + 1. We have
defined E in such a way that

ϕi(vij) =
∑

e∈s−1
E

(vij)

r(e) (3.8)

holds for each i, j. We claim that for any field K, V (LK(E)) ≃ lim−→Mi holds.
By Theorem 3.17, it is sufficient to show thatME satisfies the UMP of lim

−→
Mi.

To that end, let N ∈Mon, let there be monoid homomorphisms ψi : Mi −→ N
satisfying ψi = ψi+1ϕi for all i, let ιi : Mi −→ FE0 be the inclusion map, and
let π : FE0 −→ ME = FE0/ΛE be the canonical projection (cf. Definition 3.13).
We are looking for a unique filler φ : ME −→ N of the following commutative
diagram in Mon:

ME

M1 M2 M3 · · ·

N

?φ
ϕ1

πι1

ψ1

ϕ2

πι2

ψ2

ϕ3

πι3

ψ3

(3.9)

For φπιi = ψi to hold for each i, there is no option but

φ(πvij) = ψi(vij) for each i, j. (3.10)

Since the set E0 freely generates the monoid FE0, the assignment φ(vij) := ψi(vij)
for each i, j induces a unique monoid homomorphism φ : FE0 −→ N (cf. (Burris –
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Sankappanavar, 2012, Lemma 10.6)); moreover, φιi = ψi holds for each i. Observe
that then for each vij ∈ E0,

φιi+1


 ∑

e∈s−1(vij )

r(e)


 = ψi+1


 ∑

e∈s−1(vij)

r(e)




= ψi+1ϕi(vij) by (3.8),

= ψi(vij) = φιi+1(vij)

holds. In particular, ΛE ⊆ ker φ, whence there is a monoid homomorphism
φ : ME −→ N satisfying φ = φπ. We have thus shown that there exists a
monoid homomorphism φ making the diagram (3.9) commutative; from (3.10),
such homomorphism is already unique. We conclude that the monoid ME indeed
satisfies the UMP defining lim−→Mi, whence lim−→Mi ≃ME ≃ V (LK(E)).

Remark 3.34. The previous proposition gives an alternative—and, admittedly,
a more structural—way of proving Theorem 3.19. More specifically, the proof of
Proposition 3.33 explains the origin of the graph E in Theorem 3.19 and of its
variations from Remark 3.20. To see this, let P = { p1, p2, . . . } be a set of primes
and consider the directed system

N0 N0 N0 . . . ,
ϕ1 ϕ2 ϕ3

(3.11)

where ϕn(1) =
∏n

i=1 pi for each n. Then the monoid Q≥0
P is the direct limit of

the system (3.11) (with Q≥0
P = Q≥0 if P is the set of all prime numbers).

3.3 The regular algebra of a quiver containing

a cycle

Thus far, we have presented how the monoid V (−) of a Leavitt path alge-
bra can be constructed (Theorem 3.17 for row-finite quivers, generalized to any
quivers from Quiv in Corollary 3.25), and we know that for acyclic quivers, the
Leavitt path algebra is regular (Theorem 3.12). The Leavitt path algebras for
quivers with cycles are not regular; nevertheless, there is a construction realizing
ME as V (−) of a regular algebra for any row-finite quiver E (including quivers
with cycles):

Theorem 3.35 ((Ara – Brustenga, 2007, Theorems 4.4 and 4.2)). If E is a
row-finite quiver and K a field, then there is a regular algebra QK(E) satisfying
V (QK(E)) ≃ME. If the quiver E is finite, then the algebra QK(E) is unital.

Remark 3.36. Theorems 4.2 and 4.4 of Ara – Brustenga (2007) are stated for
column-finite quivers; it is the result of working with “opposite arrows” than we
do. For example, complete quiver homomorphisms are in Ara – Brustenga (2007)
defined as monoid homomorphisms f that restrict to bijections between r−1(v)
and r−1(f 0v) for each vertex, and the monoid M(E) used in said theorems is, by
our definition, the monoid ME∗ (recall that E∗ is the dual quiver of E).

Due to Theorem 3.35 and Corollary 3.25, we may conclude that:
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Theorem 3.37. Let E be a countable quiver and K a field. Then the monoid
ME associated with E is realizable by a regular K-algebra. If E is finite, then
ME is realizable by a regular unital K-algebra.

Example 3.38 (rose with two petals). Let R2 denote the “rose with two petals”
quiver, that is, a quiver with a single vertex and with two edges (loops from the
single vertex to itself), pictured as:

• .

The monoid MR2 is seen to be the monoid 222 consisting of two elements, 0 and 1,
and with max as the monoid operation (cf. Lemma 4.14). The algebra LK(R2)
is not regular; nevertheless, by Theorem 3.35, there is a unital regular algebra
QK(R2) such that 222 ≃ME ≃ V (QK(R2)).
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Chapter 4

On non-realizability by regular

algebras over arbitrary fields

By results by Friedrich Wehrung and Kenneth Goodearl, there is a criterion
for countable conical refinement monoids (with or without order-unit) to not be
realizable by regular algebras over any uncountable fields. In Section 4.2, we
present a proof of the criterion (Proposition 4.11) based on the presentation in
(Ara, c2009, Proposition 4.1) and then we present a way of conrtucting examples
fitting the criterion. But before that, we establish some needed properties of
regular rings and algebras in Section 4.1

4.1 Stable range 1 and cancellation in V (R)

Lemma 4.1. For a regular ring R that is unital, if x, y ∈ R and ϕ : xR −→ yR
is an R-module homomorphism, then there is a z ∈ R such that ϕ(w) = zw for
all w ∈ xR, i.e., ϕ is in fact left multiplication by an element of R. In particular,
if x, y are idempotent, then ϕ = yzx · −.

Proof. As R is regular, there are x′, y′ satisfying xx′x = x, yy′y = y; then xR =
xx′R, yR = yy′R and ϕ can be extended to

RR = xR ⊕ (1− xx′)R yR⊕ (1− yy′)R = RR.

ϕ:=





ϕ 0

0 0





As such, ϕ is left multiplication by an element of R (Anderson – Fuller, 1992,
Proposition 4.11), hence so is ϕ. If x and y are idempotent, then x · − = idxR
and y · − = idyR, so ϕ = (y · −) ◦ ϕ ◦ (x · −).

Lemma 4.2. Let I be a regular ring and e, g ∈ I idempotents. If e and g are
orthogonal, then eI ∩ gI = 0. Conversely, if eI ∩ gI = 0 holds and if I is unital,
then e and g are orthogonal.

Proof. Suppose first that a ∈ eI ∩ gI; then a = eb for some b ∈ I and, by
idempotence of g, a = ga holds. Thus, if a 6= 0, then 0 6= a = ga = geb, whence
ge 6= 0. We conclude that if eI ∩ gI 6= 0, then e and g cannot be orthogonal.

For the converse, let I be unital and let eI ∩ gI = 0. Then gI ⊆ (1 − e)I;
thus, eg ∈ egI ⊆ e(1 − e)I = 0I = 0, so eg = 0, and, symmetrically, ge = 0.
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Definition 4.3. A unital ring has unit 1-stable range if for any a, x, b ∈ R
satisfying ax + b = 1R, there is an invertible element u ∈ R such that a + bu
is invertible in R. Stable range 1 is the same property as unit 1-stable range,
except that it is not required that u be invertible (hence, stable range 1 is a
weaker property than unit 1-stable range).

A zero-divisor in a (general) ring R is an element x ∈ R such that whenever
xy = 0 or yx = 0 for some y ∈ R, then y = 0; a non-zero-divisor is an element
that is not a zero-divisor.

Lemma 4.4 ((Goodearl – Menal, 1988, Theorem 2.2)). Let R be a unital algebra
over an uncountable field, such that all non-zero-divisors in R are invertible. If
R contains no uncountable direct sums of nonzero right or left ideals, then R has
unit 1-stable range.

Lemma 4.5 (cf. (Goodearl, 1979, Proposition 4.13 and Theorem 4.14)). Let R
be a regular ring with unit and let R have stable range 1. Then, if A ∈ proj -R
and B,C ∈ Mod -R satisfy A ⊕ B ≃ A ⊕ C, then B ≃ C. In particular, the
monoid V (R) is cancellative.

Proof. We shall show that if R⊕B ≃ R⊕C, then B ≃ C, as then, by induction,
one will obtain that whenever R(n) ⊕ B ≃ R(n) ⊕ C, then B ≃ C. Since A is
finitely generated and projective, it is (isomorphic to) a direct summand of R(n);
adding the complement of A in R(n) to both sides of A ⊕ B ≃ A ⊕ C, we will
have R(n) ⊕ B ≃ R(n) ⊕ C.

So, let ψ : R⊕C −→ R⊕B be an isomorphism. By (Anderson – Fuller, 1992,
Proposition 4.11), there is a ring isomorphism R ≃ EndRR, whence EndRR has
stable range 1. From the biproduct structure of R ⊕ B and R ⊕ C, there are
morphisms πR, πB, π

′
R, ιR, ιB, ι

′
R in Mod -R as in the diagram

R⊕ B R⊕ C

R B R

πR πB
π′
Rψ

≃

ιR
ιB ι′R

satisfying πRιR = idR, π
′
Rι

′
R = idR, ιRπR + ιBπB = idR⊕B and πRιB = 0. Notice

that then R⊕ B = Im ιR ⊕Ker πR, B ≃ Im ιB = Ker πR and C ≃ Kerπ′
R.

Put f := π′
Rψ

−1 : R⊕B −→ R and g := ψι′R : R −→ R⊕ B. Then:

idR = π′
Rι

′
R = π′

Rψ
−1ψι′R = fg = f idR⊕B g = f(ιRπR + ιBπB)g

= (fιR)(πRg) + fιBπBg.

As fιR, πRg and fιBπBg are elements of EndRR, there exists—from EndRR

having stable range 1—a y ∈ EndRR such that fιR + fιBπBgy is invertible in
EndRR (i.e., an automorphism of RR). Putting k := ιR+ ιBπBgy : R −→ R⊕B,
we then have that fk is an automorphism of R, whence R ⊕ B = Ker f ⊕ Im k.
Also, since ψ is an isomorphism, we have Ker f = Ker(π′

Rψ
−1) = ψ(Ker π′

R) ≃ C.
Next, observe that πRk = πRιR + 0 = idR, whence R ⊕ B = Ker πR ⊕ Im k.

Thus, in the module R⊕B, both Ker f and Ker πB are complements of the same
submodule, Im k; as such, necessarily Ker f ≃ Ker πB. With Ker f ≃ C and
Ker πB ≃ B, we conclude that B ≃ C; thus, we have shown that if R⊕B ≃ R⊕C
with B,C any elements of Mod -R, then B ≃ C.
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Lemma 4.6. For a regular unital algebra R over an uncountable field, if R con-
tains no uncountable direct sums of nonzero right or left ideals, then the monoid
V (R) is cancellative.

Proof. For Lemma 4.4 to apply, we need to show that every non-zero-divisor in
R is invertible. To that end, if x is not a zero-divisor, then xy 6= 0 holds for
all nonzero y ∈ R; thus, the R-module homomorphism x · − : RR −→ xRR is
injective. As it clearly is onto, we have xR ≃ RR, whence, by Lemma 4.1, there
is an a ∈ R satisfying ax = 1. Symmetrically (via left modules), there is a b ∈ R
such that xb = 1. Now a = a1 = axb = 1b = b is a two-sided inverse of x in R,
so, indeed, every non-zero-divisor in R is invertible. Hence, Lemma 4.4 applies,
so R has unit 1-stable range; in particular, it has stable range 1. That V (R) is a
cancellative monoid now follows from Lemma 4.5.

Lemma 4.7. Let R be a regular unital algebra over an uncountable field such
that there is a monoid homomorphism s : V (R) −→ R+ satisfying s([P ]) > 0 for
all nonzero [P ] ∈ V (R). Then R contains no uncountable direct sum of nonzero
right ideals.

Proof. Suppose the contrary, that is, that there is a direct sum
⊕

α∈A Iα of
nonzero right ideals in R with the set A uncountable. For each α, choose a
nonzero idempotent eα ∈ Iα (this is possible by regularity of R: for, each Iα
contains a nonzero element xα; multiplying xα from the right by its quasi-inverse
yields a nonzero idempotent contained in Iα).

1 Then each eαR is a nonzero ele-
ment of proj -R, so s([eαR]) is defined and nonzero. Also, since the sum above
is direct, eαR ∩ eβR = 0 whenever α 6= β; in particular, the idempotents eα are
pairwise orthogonal (Lemma 4.2).

For each n, put An := {α ∈ A | s([eαR]) >
s([R])
n

}. As s([eαR]) > 0 for each

α, every α ∈ A is contained in some An; thus, A =
∞⋃
n=1

An. Since the set A is

uncountable, it cannot be the union of a chain of finite subsets. Hence, there is
an m <∞ such that Am is infinite; in particular, Am contains at least m distinct
elements, say, α1, . . . , αm. Then, by orthogonality of the eα’s,

RR =

(
1−

m∑

i=1

eαi

)
R⊕

m⊕

i=1

eαi
R. (4.1)

The R-module P := (1−
∑m

i=1 eαi
)R is, as a principal right ideal in R, a finitely

generated projective R-module (Corollary 2.4), whence [P ] ∈ V (R). From the
properties of s, s([P ]) ≥ 0 holds. Thus, since s is a monoid homomorphism, it
follows from (4.1) that s([R]) ≥ s([

⊕m
i=1 eαi

R]). However, from the definition of

Am, the inequality s([eαi
]) > s([R])

m
holds for each i ≤ m. Thus,

s([R]) = m ·
s([R])

m
< s

([
m⊕

i=1

eαi
R

])
≤ s([R]),

a contradiction. We conclude that the assumption that there is a direct sum of
uncountably many right ideals in R cannot hold.

1Of course, we admit the axiom of choice.
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4.2 Monoids not realizable by regular algebras

over uncountable fields

Now for the key point of this chapter, first in the unital case (cf. (Ara, c2009,
Proposition 4.1, credited to Goodearl)):

Proposition 4.8. Let R be a regular unital algebra over an uncountable field such
that there is a monoid homomorphism s : V (R) −→ R+ satisfying s([P ]) > 0 for
all nonzero [P ] ∈ V (R). Then V (R) is cancellative.

Proof. As V (R) ≃ V (Rop) (Proposition 2.27), there is also a monoid homomor-
phism V (Rop) −→ R+ mapping all nonzero elements of V (Rop) to strictly positive
real numbers. Applying Lemma 4.7 to both R and Rop, we have that R contains
no uncountable direct sums of nonzero right or left ideals. Thus, cancellation of
V (R) follows by Lemma 4.6.

Lemma 4.9. Let I be a ring and v an indempotent in I. Then V (vIv) is a
submonoid of V (I).

Proof. As vIv ⊆ I, we have M∞(vIv) ⊆ M∞(I). Clearly, if two idempotents
from M∞(vIv) are equivalent as elements of IdempM∞(vIv), then they are also
equivalent as elements of IdempM∞(I). Hence, mapping the equivalence class
of e in IdempM∞(vIv) to the equivalence class of e in IdempM∞(I) for every
idempotent e ∈M∞(vIv) is a well-defined map from V (vIv) to V (I); one readily
sees that this map is a monoid homomorphism. We want to prove that it is
injective.

To that end, let e, g ∈ IdempM∞(vIv) such that [e] = [g] as elements of V (I),
that is, there are x, y ∈ M∞(I) satisfying exgye = e and gyexg = g; we want
to show that as elements of M∞(vIv), e and g are equivalent. Since all entries
of e and g are elements of vIv, so are all entries in exg and gye, i.e., exg, gye ∈
M∞(vIv). But then, by idempotence of e and g, both e = e(exg)g(gye)e and
g = g(gye)e(exg)g hold.

Observation 4.10. Let K be a field, I a K-algebra and v ∈ I an idempotent.
Then the subring vIv of I is a K-algebra. �

We are now in position to restate and prove (Ara, c2009, Proposition 4.1),
including nonunital algebras:

Proposition 4.11. LetM be a conical refinement monoid that is not cancellative
and such that there exists a monoid homomorphism s : M −→ R+ satisfying
s(x) > 0 for all nonzero x ∈ M . Then there is no regular algebra I over any
uncountable field such that V (I) ≃M .2

2In Ara (c2009), in the proof of the same proposition only with the extra assumptions that
M have an order-unit and the condition that s maps said order-unit to 1, it is stated that
“Clearly we can assume that R is unital (...)” (with R in the role of our I). In oder to
verify the validity of said “clear” assumption, we needed Lemma 4.9, Observation 4.10, and the
entire proof of Proposition 4.11 to come. Should the reader see a simpler reasoning—ideally a
“clear” one—why it is sufficient to only prove Proposition 4.8 for Proposition 4.11 to hold, I’d
persnonally very much like to have it explained to me.
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Proof. Suppose the contrary, that is, that there is a regular algebra I over an
uncountable field satisfying V (I) = M . Since M is not cancellative, there are
idempotent matrices e, g, h over I satisfying e ⊕ h ∼ g ⊕ h such that e and g
are not equivalent. By equivalence of e ⊕ h with g ⊕ h, there are x, y ∈ M∞(I)
satisfying (e⊕h)x(g⊕h)y(e⊕h) = e⊕h and (g⊕h)y(e⊕h)x(g⊕h) = g⊕h. As
all the matrices in question have only finitely many nonzero entries and since the
regular ring I has local units (Proposition 2.7), there is an idempotent v ∈ I such
that e, g, h, x and y are elements of M∞(vIv). We then have [e ⊕ h] = [g ⊕ h],
but [e] 6= [g] in V (vIv), so V (vIv) is not a cancellative monoid either.

On the other hand, by Lemma 4.9, V (vIv) is a submonoid of V (I) = M .
Hence, the restriction s|V(vIv) : V (vIv) −→ R+ is a monoid homomorphism,
again satisfying s|V(vIv)([a]) > 0 for all nonzero [a] ∈ V (vIv). Since, by Observa-
tion 4.10, vIv is a regular unital algebra (with unit v) over an uncountable field,
and with s|V(vIv) at hand, the monoid V (vIv) is cancellative by Proposition 4.8,
a contradiction.

Now that we have a criterion (that is, a sufficient condition) for a conical re-
finement monoid to not be realizable as a V (I) for any regular algebra I over an
uncountable field, a question to ask is whether there exists a monoid satisfying the
assumptions of Proposition 4.11, and if it is possible for such monoid to be count-
able. We answer both parts of this question in the affirmative in Example 4.15
(with the answer restated, for clarity, in Proposition 4.16). However, instead of
argumenting only for the particular case of the monoid Q2 = 222 ×Q≥0 \ { (1, 0) }
of Example 4.15, we instead prove that there is a more general way to build such
examples, starting with any conical refinement monoid that is not cancellative.

Proposition 4.12. Let A be a conical refinement monoid that is not cancellative.
Then the submonoid C := (A×Q≥0) \ ((A \ { 0 })×{ 0 }) of A×Q≥0 is a conical
refinement monoid that is not cancellative, and there is a monoid homomorphism
s : C −→ R+ satisfying s(x) > 0 for all nonzero x ∈ C. Moreover, if A has an
order-unit, then so does C.

Proof. Firstly, we need to check that the subset C of A×Q≥0 is closed under the
monoid operation of A×Q≥0. This follows from Q≥0 being a conical monoid: If
(a, q) and (a′, q′) are nonzero elements of C (with a, a′ ∈ A, q, q′ ∈ Q), then, by
the definition of C, both q ≥ 0 and q′ ≥ 0. Hence, q + q′ ≥ 0, so

(a, q) + (a′, q′) = (a+ a′, q + q′) ∈ C.

With 0 = (0, 0) ∈ C, we thus have that C is a submonoid of A×Q≥0.
Since A and Q≥0 are conical monoids, so is C by Observation 1.1.
For the existence of s, we let s be the composition of the canonical projection

A×Q≥0 π
−→ Q≥0 with the two inclusion maps C

⊆
−→ A×Q≥0 and Q≥0 ⊆

−→ R+,
as in the following commutative diagram in Mon:

A×Q≥0 Q≥0

C R+

π

⊆⊆

s
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(as both the inclusions and the canonical projections are monoid homomorphisms,
so is s). Due to the exclusion of all elements of the form (a, 0) except for 0 = (0, 0)
from C, we see that s((a, q)) > 0 whenever (a, q) 6= 0.

To show that C is a refinement monoid, observe that Q≥0 has “nonzero re-
finements” in the sense that if a+ b = c+ d in Q≥0 with a, b, c, d 6= 0, then there
is a refinement in Q≥0 with none of the refining elements zero: indeed, supposing
w.l.o.g. that a ≤ c,

a b
c a

2
c− a

2

d a
2

d− a
2

is such refinement. Let a1 + a2 = b1 + b2 in A and p1 + p2 = q1 + q2 in Q≥0 with
(a1, p1), (a2, p2), (b1, q1), (b2, q2) ∈ C. Either of the following two cases occurs:

(i) p1, p2, q1, q2 are all nonzero: Then, there are refinements

a1 a2
b1 r11 r12
b2 r21 r22

in A and
p1 p2

q1 s11 s12
q2 s21 s22

in Q≥0

with all sij 6= 0; then

(a1, p1) (a2, p2)
(b1, q1) (r11, s11) (r12, s12)
(b2, q2) (r21, s21) (r22, s22)

is a refinement in C.

(ii) One of the elements of p1, p2, q1, q2 is zero, say, p1 = 0, then—since (a1, p1) ∈
C—necessarily (a1, p1) = 0; then

0 (a2, p2)
(b1, q1) 0 (b1, q1)
(b2, q2) 0 (b2, q2)

is a refinement in C.

In either case, we found a refinement to (a1, p1) + (a2, p2) = (b1, q1) + (b2, q2) in
C, so C is indeed a refinement monoid.

Since A is not cancellative, there are elements a, b, x ∈ A such that a+x = b+x
holds while a 6= 0. Taking (a, 1), (b, 1), (x, 1) ∈ C, we see that

(a, 1) + (x, 1) = (a+ x, 2) = (b+ x, 2) = (b, 1) + (x, 1)

holds, while (a, 1) 6= (b, 1), so C is not a cancellative monoid.
Finally, if a ∈ A is an order-unit in A, then clearly (a, 1) is an order-unit in

C.

Remark 4.13. It is clear from the proof of Proposition 4.12 that instead of Q≥0,
we could have used any conical monoid B allowing a monoid homomorphism
ϕ : B −→ R+ with ϕ(x) 6= 0 for all nonzero x ∈ B such that B has “nonzero
refinements” in the sense used in the proof. However, for simplicity, we keep Q≥0
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in Proposition 4.12 instead, as it is a countable, easy-to-imagine monoid. A par-
ticular example of a suitable monoid B is the submonoid Q≥0

P of Q≥0 consisting,
for a fixed nonempty set P of primes, of rationals expressible as fractions with
only products of powers of elements of P in the denominator, as presented in
Remark 3.20. To see that Q≥0

P has “nonzero refinements”, let a + b = c + d in
Q≥0
P with a, b, c, d 6= 0 and let p ∈ P (we assume P 6= ∅), and w.l.o.g. suppose

that a ≤ c. Then the following is a refinement in Q≥0
P with all entries nonzero:

a b
c a

p
c− a

p

d (p−1)a
p

d− (p−1)a
p

.

Notice that we can use the inclusion map Q≥0
P

⊆
−→ R+ as ϕ.

However, the requirement of the existence of “nonzero refinements” in B is
necessary, as we shall show in Remark 4.17. Before that, for construction of
examples, the following lemma will come handy:

Lemma 4.14. For any linearly ordered set X with a least element, the monoid
XXX := (X,max) is a conical refinement monoid. If the set X has at least two
elements, then the monoid XXX is not cancellative.

Proof. Clearly, taking maximum of two elements is an associative and commuta-
tive binary operation, hence an abelian semigroup operation on X . Let 0 denote
the least element of X . Then 0 is the zero element of XXX, since max { 0, x } = x
for all x ∈ X , so XXX is a monoid. From 0 being the least element of X , it follows
that XXX is a conical monoid. As for refinement, if max { a, b } = max { c, d } for
some a, b, c, d ∈ X , suppose w.l.o.g. that a = max { a, b } = max { c, d } = c. We
then have the following refinement:

a b
a a b
d d min { b, d } .

Finally, if 0 6= x ∈ X , then the equality max { 0, x } = max { x, x } is a witness to
XXX not being cancellative.

Example 4.15. Taking the linearly ordered two-element set, 2 := { 0, 1 } (with
0 < 1), consider the countable monoid 222 = ({ 0, 1 } ,max). By Lemma 4.14,
it is a conical refinement monoid that is not cancellative. Thus, the monoid
Q2 := 222 × Q≥0 \ { (1, 0) } is, by Proposition 4.12, a conical refinement monoid
that is not cancellative and such that there is a monoid homomorphism from Q2

to R+ mapping all nonzero elements to strictly positive real numbers. Hence, the
monoid Q2 satisfies the assumptions of Proposition 4.11, so it cannot be realized
by any V (I) with I a regular algebra over an uncountable field. Thus, the monoid
Q2 = 222×Q≥0 \ { (1, 0) } is a withess to the main result of this chapter, that is:

Proposition 4.16. There exists a countable conical refinement monoid that is not
isomorphic to any V (A) with A a regular algebra over an uncountable field.
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Remark 4.17. The monoid 222 will serve us to show that while generalizing Propo-
sition 4.12 in Remark 4.13, we cannot replace Q≥0 with a general conical refine-
ment monoid (with a suitable monoid homomorphism to R+); we show this on
the example of N0.

In N0, the only refinement of 1 + 1 = 1 + 1 is, up to order of columns,

1 1
1 1 0
1 0 1

.

In 222, the only refinement of max { 1, 1 } = max { 1, 0 } is

1 1
1 1 1
0 0 0

.

Hence, the only refinement of (1, 1) + (1, 1) = (1, 1) + (0, 1) in 222× N0 is

(1, 1) (1, 1)
(1, 1) (1, 1) (1, 0)
(0, 1) (0, 0) (0, 1)

. (4.2)

(again, up to order of columns). Notice that while both (1, 1) and (0, 1) are
elements of 222 × N0 \ { (1, 0) }, the element (1, 0) is not. As (1, 0) is necessary
in the refinement (4.2), we conclude that 222 × N0 \ { (1, 0) } is not a refinement
monoid; thus, it not only fails to satisfy the assumptions of Proposition 4.11—in
view of Proposition 2.37, it also loses all relevance to us.

Replacing the equality 1 + 1 = 1 + 1 with any equality of sums of nonzero
elements that does not have a “nonzero refinement” (provided that there is such)
in a general conical refinement monoid, we see that the assumption that the
monoid B in Remark 4.13 have “nonzero refinements” is necessary.

Remark 4.18. Another remark about the construction from Propostion 4.12 is in
order: In the proof of said proposition, we use the exclusion of all elements of the
form (a,0) with a 6= 0 from the product A×Q≥0 in order to easily obtain a monoid
homomorphism s : C −→ R+ with s(x) > 0 whenever x 6= 0, so that we can apply
Proposition 4.11 to C. Let us have a look at the entire product A×Q≥0 instead
of C: not only that we then cannot in general ensure the existence of a suitable
monoid homomorphism for Proposition 4.11 to apply, but even the assertion of
said proposition—that is, that the resulting monoid cannot be realized as V (−)
of any regular algebra over an uncoutable field—could fail, as demonstrated in
the following example:

Example 4.19. For R2 the “rose with two petals” quiver of Example 3.38, there
is a unital regular algebraQK(R2) such thatQK(R2) ≃ 222. Also, Q≥0 ≃ V (LK(E))
for a quiver E as in Theorem 3.19. By Observation 2.25,

222×Q≥0 ≃ V (QK(R2))× V (LK(E)) ≃ V (QK(R2)× LK(E)) ,

and the algebra QK(R2)×LK(E) is, as a direct product of two regularK-algebras,
also a regular algebra over K. Hence, the monoid 222×Q≥0 can be realized as V (I)
with I a regular algebra over any given field.
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Note that for monoids from Proposition 4.12, we only know that they cannot
be realized by regular algebras over uncountable fields, thus witnessing the nega-
tive answer to Problem 1.4 for K uncountable. However, we do not know of any
means to prove either their realizability or non-realizability by regular rings (or
even regular algebras over countable fields).
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Chapter 5

The monoid V (R) of the
Chuang-Lee ring R

5.1 The Chuang-Lee ring R

In this section, we will reconstruct the ring R constructed in Chuang – Lee
(1990), and in the following two, we shall compute its monoid V (R). Let us fix
some notation for this chapter first:

Let K be a countable field, K[t] the ring of polynomials over K in an indeter-
minate t, and K(t) the quotient field of K[t]. Let us define a valuation ∂ on K(t)
as follows: Put ∂0 := +∞, and if t divides neither f(t) nor g(t) and if n ∈ Z, put

∂tn f(t)
g(t)

:= n.

Let V := { r ∈ K(t) | ∂r ≥ 0 }. Note that, as a subring of K(t), the set V is a
vector space over K. Next, observe that for n ∈ N0, we have t

nV = { r | ∂r ≥ n };
subsets—subspaces, in fact—of V of this form play a key role in what is to come.

Fixing some more notation, let E := EndK V and let S denote the subset of
E consisting of all x ∈ E such that there exists a ϕx ∈ K(t) and an n ∈ N0

satisfying (x − ϕx)tnV = 0. Informally speaking, we thus let S consist of all
K-endomorphisms of V that act as multiplication by an element of K(t) on all
elements of V with sufficiently large valuation ∂.

Along with verifying other properties of S, let us justify the name of the
element ϕx of K(t) by the following lemma:

Lemma 5.1. (i) For each x ∈ S, the element ϕx ∈ K(t) is unique and does
not depend on n.

(ii) The set S is an K-subalgebra of V , and ϕ : S −→ K(t) is a surjective
homomorphism of K-algebras.

Proof. (i) Suppose (x− b)tkV = 0 for some b ∈ K(t) and k ∈ N0. Then

(x− ϕx)tn+k = 0 = (x− b)tn+k,

whence (ϕx− b)tn+k = 0. As tn+k 6= 0, we conclude that ϕx = b.
(ii) It follows from (i) that ϕ : S −→ K(t) is a well-defined map. Observe

that whenever x, y ∈ S, then x− y ∈ S with ϕ(x− y) = ϕx− ϕy. Furthermore,
suppose that (x−ϕx)tnV = 0 and (y−ϕy)tkV = 0 with k, n ∈ N0. Then clearly
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x(y − ϕy)tkV = 0. Since ϕy ∈ K(t), we have (ϕy)tm ∈ V for sufficiently large
m ∈ N0, and thus

(xy − (ϕx)(ϕy))tm+n+kV = x(y − ϕy)tm+n+kV + (x− ϕx)(ϕy)tm+n+kV

⊆ x(y − ϕy)tkV + (x− ϕx)tnV = 0.

It follows that ϕ is a homomorphism of K-algebras. Finally, to show that ϕ is
onto, consider r ∈ K(t). As with ϕy above, multiplying r by a sufficient power
of t makes its valuation non-negative, that is, we have rtmV ∈ V for some m.
Multiplication by r is then an K-homomorphism from the subspace tmV of V
into V ; as such, it can be extended to an endomorphism, say, x, of V . Then
(x− r)tmV = 0, whence r = ϕx.

We shall need a basis of V that is “well-behaved” with respect to the valua-
tion ∂:

Lemma 5.2. There is a basis { vi | i ∈ N0 } of V over K such that ∂vi = i holds
for all i ∈ N0.

Proof. As a subring of K(t), the ring V is a vector space over K. Since K is
countable, so are the rings K[t], K(t) and V . Thus, the dimension of V over K
is also at most countable. With 1, t, t2, . . . being a linearly independent subset1

of V , the dimension of V must be infinite.
Let now { ui | i ∈ N0 } be a basis of V . Inductively, we construct a strictly

increasing sequence B0 ( B1 ( B2 ( . . . of linearly independent subsets of V
satisfying the following for every i ∈ N0:

(i) the set Bi spans the same subspace of V as { u0, . . . , ui } does; and

(ii) whenever v 6= w in Bi, then ∂v 6= ∂w.

Put B0 := { u0 }. Now, if ∂ui is different from all ∂w with w ∈ Bi−1, put
Bi := Bi−1 ∪ { ui }; if on the other hand ∂ui = ∂w1 = k for some (necessarily
unique) w1 ∈ Bi−1, we need to “alter” the element ui before adding it to the set
Bi−1: By the definition of ∂, we have

ui = tk
fu
gu

and w1 = tk
fw
gw

for some fu, gu, fw, gw not divisible by t in K[t]. Hence, fugw = tp + α and
gufw = tq + β for some p, q ∈ K[t] and α, β ∈ F . Putting λ1 :=

α
β
, we obtain

un
w1

− λ1 =
fugw
gufw

−
α

β

=
βfugw − αgufw

βgufw

=
β(tp+ α)− α (tq + β)

βgufw

= t
βp− αq

βgufw
∈ tV,

1Clearly, ∂ti = i for all i ∈ N0.
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whence ∂
(
ui
w1

− λ1

)
≥ 1. Thus,

∂(ui − λ1w1) = ∂w1 + ∂

(
ui
w1

− λ1

)
> ∂w1.

If now ∂(ui − λ1w1) = ∂w2 with w2 ∈ Bi−1, by repeating the same process, we
find a λ2 ∈ F such that

∂(ui − λ1w1 − λ2w2) > ∂w2 > ∂w1.

Since the valuations obtained in this process increase with every iteration and
since Bi−1 is finite, we end up—after finitely many, say, k, steps—with an element

u := ui −
k∑

j=1

λjwj ∈ V,

where λj ∈ K and wj ∈ Bi−1 for all j, such that ∂u is different from ∂w for all
w ∈ Bi−1. Put Bi := Bi−1 ∪ { u }.

That Bi spans the same subspace of V as { u0, . . . , ui } does is obvious from
the construction of Bi.

Put B :=
⋃
Bi; then B is a base of V satisfying ∂v 6= ∂w for any two distinct

elements v, w of B. After a suitable reordering of B, we obtain B = { vi | i ∈ N0 }
with ∂v0 < ∂v1 < ∂v2 < . . ..

For v =
∑n

i=k αivi ∈ V with αi ∈ K and αk 6= 0, we observe that ∂v = ∂vk.
With 1, t, t2, . . . being in the span of B (that is, in V ), every i ∈ N0 thus appears
as ∂vj for some j ∈ N0. Minding the ordering of the ∂vi’s above, we conclude
that ∂vi = i for every i.

Let us fix a basis { vi | i ∈ N0 } of V as in Lemma 5.2, that is, with ∂vi = i
for all i. Observe that then for any i ∈ N0, the set { vj | j ≥ i } forms a basis
of tiV . By πi, we shall denote the projection of V on its “first i+1 coordinates”2

in the above basis, that is, the endomorphism of V defined as πi(vj) = vj for j ≤ i
and πi(vj) = 0 for j > i. Note that with this notation, (1 − πi)V = ti+1V . The

matrix of πi is block-diagonal of the form

(
Idi+1 0
0 0

)
.

It will be convenient to characterise the classical notions of row-finiteness and
of column-finiteness in the following way:

Observation 5.3. (i) The matrix of x ∈ E is row-finite (i.e., each of its rows
has only finitely many non-zero entries) if and only if for any i ∈ N0, there
exists a j ∈ N0 such that πix(1− πj) = 0.

(ii) The matrix of x ∈ E is column-finite (each of its columns has only finitely
many non-zero entries) if and only if for any i ∈ N0, there exists a j ∈ N0

such that (1− πj)xπi = 0. �

Clearly, the matrix of any endomorphism of V is column-finite. We note that
matrices of elements of S are also necessarily row-finite:

2The fact that the rank of πi is i+1, as well as indexing matrix entries and terms in sequences
below starting from 0 instead of 1, can admittedly get confusing. We choose this notation not
to shift indices used in Chuang – Lee (1990) and to keep indices related to the valuation ∂.
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Lemma 5.4. If x ∈ S, then the matrix of x is row-finite.

Proof. Since x ∈ S, there is an n ∈ N0 such that (x−ϕx)tnV = 0. Given i ∈ N0,
there is also an m ∈ N0 satisfying (ϕx)tmV ⊆ ti+1V . Taking j := max{m,n}, we
see that (x− ϕx)tjV = xtjV ⊆ ti+1V , whence πix(1− πj) = 0.

We put W := S ×
∏∞

k=0 πkEπk. Notice that we can view πkEπk as a subset
of Mk+1(K) ⊆M∞(K), so W ⊆M∞(K)×

∏∞
k=0Mk(K).

Let R consist of all elements www = (wS, w0, w1, . . . ) ∈ W satifying both:

(i) for any m ≥ 0, there is an n ≥ 0 such that wkπm = wSπm for all k ≥ n, and

(ii) for any m ≥ 0, there is an n ≥ 0 such that πmwk = πmwS for all k ≥ n.

Viewing wS and all the wi’s as infinite matrices, the translation of the above
conditions is

(i) for any m ∈ N0, the first m columns of wi are the same as in wS for all but
finitely many i’s, and

(ii) for any m ∈ N0, the first m rows of wi are the same as in wS for all but
finitely many i’s.

It is shown in (Chuang – Lee, 1990, pp.18-19) that S is a regular unital ring
and that R is a regular unital K-algebra.

5.2 Idempotents of R

Before computing the monoid V (R), we shall find necessary and sufficient
conditions for principal right ideals of R to be isomorphic; the conditions are
stated in Proposition 5.15. In Section 5.3, we will see that—thanks to Proposi-
tion 5.16—we will not need to work with any larger R-modules and still be able
to compute the monoid V (R).

Lemma 5.5. For an idempotent e ∈ S, either ϕe = 0 or ϕe = 1 holds.

Proof. Since e ∈ S, there is an n such that (e− ϕe)tnV = 0. For any k ≥ n, we
then have evk = (ϕe)vk. Applying e, we obtain

evk = (ϕe)evk. (5.1)

Now, if ϕe 6= 1, (5.1) yields evk = 0. Since this holds for all k ≥ n, we obtain
(e− 0)tnV = 0, whence ϕe = 0.

Observation 5.6. For an idempotent e ∈ S, if ϕe = 0, then the matrix of e is
block diagonal of the form (

X 0
0 0

)
,

while if ϕe = 1, then the matrix of e is
(
X 0
0 Id∞

)
.

In either case, X is an idempotent square matrix of finite size. �
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Lemma 5.7. Let www =

((
X 0
0 Id

)
, w0, w1, . . .

)
be an idempotent element of R,

where X ∈Mn(K). Then there is an idempotent

www′ =

((
0n−rankX 0

0 Id

)
, w′

0, w
′
1, . . .

)
∈ R

such that wwwR ≃ www′R.

Proof. As X is an idempotent matrix from Mn(K), there exists an invertible
matrix A ∈ GL(n,K) such that

AXA−1 =

(
0n−rankX 0

0 IdrankX

)
.

Put aS :=

(
A 0
0 Id∞

)
, for i < n, put ai := Idi+1, and for i ≥ n, put ai :=

(
A 0
0 Idi+1−n

)
. Then aaa := (aS, a0, a1, . . . ) ∈ R is invertible in R: its inverse,

aaa−1 ∈ R, has its respective terms

(
A 0
0 Id∞

)
, Idi+1 and

(
A−1 0
0 Idi+1−n

)
.

One readily checks that wwwaaa−1www′www′aaawww = www and www′aaawwwwwwaaa−1www′ = www′, so we have
mutually inverse R-isomorphisms

wwwR www′R

www′aaawww

wwwaaa−1www′

(Lemma 2.22).

Lemma 5.8. If www = (wS, w0, w1, . . . ) is an idempotent in R with wS = Id, then

wwwR ≃ uuuR, where uuu = (uS, u0, u1, . . . ), uS = Id and ui =

(
Idrankwi

0
0 0i+1−rankwi

)
.3

Proof. For any i, find the greatest ni ∈ N0 such that wi =

(
Idni

0
0 Wi

)
for some

matrix Wi. Since the matrix Wi is idempotent, there is an invertible matrix Ai

of appropriate size satisfying AiWiA
−1
i =

(
IdrankWi

0
0 0

)
. With aS = Id, we have

aaa ∈ R, since we have lim
i→∞

ni = ∞4 due to www being an element of R. Then, as in

Lemma 5.7, uawuawuaw and wawawa−1uuu are the desired isomorphism and its inverse.

Lemma 5.9. Ifwww = (wS, w0, w1, . . . ) is an idempotent in R with wS =

(
0n 0
0 Id∞

)
,

then wwwR ≃ uuuR, where uuu = (uS, u0, u1, . . . ), uS = wS, ui =

(
Idrankwi

0
0 0

)

for finitely many i’s and ui =



0n 0 0
0 Idrankwi

0
0 0 0


 for the remaining i’s.

3Note that if rankwi = i+ 1, then the zero-block in ui is of size zero, while if rankwi = 0,
then the identity-block in ui is of size zero. Henceforth, we leave similar situations without
further comment.

4We write lim
i→∞

ni = ∞ to state that for each l ∈ N, ni ≥ l holds for all but finitely many i’s.
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Proof. Find i0 such that whenever i ≥ i0, the first n rows and columns of wi are

zero. For i > i0, let ni ≥ 0 be the greatest integer such that wi =



0n 0 0
0 Idni

0
0 0 Wi




holds for some Wi. For i < i0, let ai be an invertible matrix satisfying aiwia
−1
i =(

Id 0
0 0

)
, and for i ≥ i0, take ai =

(
Idn+ni

0
0 Ai

)
, where Ai is invertible and

satisfies AiWiA
−1
i =

(
Id 0
0 0

)
. As in the proof of Lemma 5.8, aaa ∈ R is invertible

in R and uawuawuaw and wawawa−1uuu are the sought-after isomorphisms.

Lemma 5.10. If www = (wS, w0, w1, . . . ), uuu = (uS, u0, u1, . . . ) are idempotents in

R, if wS = Id and uS =

(
0n 0
0 Id∞

)
and if rankwi = rankui for all i, then

wwwR ≃ uuuR.

Proof. By Lemma 5.9, we may assume that wi =

(
Id 0
0 0

)
for all i, ui =

(
Id 0
0 0

)

for finitely many i’s and ui =



0n 0 0
0 Id 0
0 0 0


 for all remaining i’s.

Consider the two following endomorphisms of V :

• α : vi 7−→ tnvi for all i;

• β : vi 7−→

{
t−nvi for i ≥ n, and
0 for i < n.

By the definition of ∂, ∂αvi = i + n for all i and ∂βvi = i − n whenever i ≥ n.
Thus, viewed as matrices over K, we have

α =

(
0
A

)

with the first n rows zero and with A a lower triangular matrix and

β =
(
0 B

)

with the first n columns zero and B a lower triangular matrix. Notice that
αβ = uS and βα = wS; in particular, B = A−1. Let Ai and Bi be the i × i
upper-left corners of A and B, respectively. Since both A and B = A−1 are lower
triangular, we see that

A−1
i = Bi (5.2)

holds for all i.

Let ni := rankui = rankwi. For i < i0, let ci = di =

(
Idni

0
0 0

)
(as then

wi = ui, we need not alter the i-th coordinate when looking for an isomorphism
between wwwR and uuuR); then uiciwiwidiui = ui and widiuiuiciwi = wi. Let now
i ≥ i0. Let ci be the matrix with first n rows zero, Ani

in the next ni rows

and first ni columns, and the rest zero, i.e., ci =




0 0 0
Ani

0 0
0 0 0


. Note that the
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blocks of this matrix that are necessarily square are the top-right one (size n),
the middle-left one (size ni), and the bottom-middle one (size i + 1 − ni − n).

Also notice that multiplication from the left by ui =



0n 0 0
0 Idni

0
0 0 0


 preserves

the middle-row blocks in ci (while killing the rest; however, as the rest is already

zero, it is preserved as well) and multiplication from the right by wi =

(
Idni 0
0 0

)

preserves the first-column blocks in ci (again, killing the rest). Thus, we see that

uiciwi = ci.

Similarly, defining di as the matrix with the first n columns zero, Bni
in the next

ni columns and first ni rows, and the rest zero, i.e., of the form di =



0 Bni

0
0 0 0
0 0 0


,

we have
widiui = di.

Now that Bni
is in fact A−1

ni
by (5.2), we conclude that

uiciwiwidiui = cidi =




0 0 0
Ani

0 0
0 0 0





0 Bni

0
0 0 0
0 0 0


 =



0n 0 0
0 Idni

0
0 0 0


 = ui

and

widiuiuiciwi = dici =



0 Bni

0
0 0 0
0 0 0






0 0 0
Ani

0 0
0 0 0


 =

(
Idni

0
0 0

)
= wi.

Hence we have uiciwiwidiui = ui and widiuiuiciwi = wi for all i. Defining
ccc := (α, c0, c1, . . . ) and ddd := (β, d0, d1, . . . ), we now see that ucwwduucwwduucwwdu = uuu and
wduucwwduucwwduucw = www. Thence, to prove that ucwucwucw and wduwduwdu are mutually inverse R-
isomorphisms of uuuR and vvvR, it only remains to verify that ccc and ddd are elements
of R.

Since the matrix of α is lower triangular, we see that for every i ≥ i0, the first
n+ ni rows of ci and α coincide; similarly, the first ni rows of β and di coincide.
Hence we have πn+ni−1ci = πn+ni−1α and πni−1β = πni−1di, while lim

i→∞
ni = ∞

holds due to www ∈ R. As for columns, since α and β are column-finite, there is for
every m a km such that whenever k ≥ km, then the first m+ 1 columns of α and
ck coincide—so απm = ckπm for every k ≥ km—and that the first m+ 1 columns
of β and di coincide, so βπm = dkπm whenever k ≥ km. Hence α, β ∈ R, which
concludes the proof.

Proposition 5.11. Let uuu = (uS, u0, u1, . . . ), vvv = (vS, v0, v1, . . . ) be idempotents
in R with uS, vS of infinite rank. Then uuuR ≃ vvvR if and only if rankui = rank vi
holds for all i.

Proof. The i-th component of an R-isomorphism is always a πiEπi-isomorphism;
the only-if-part follows. For the if-part, due to Lemmas 5.7 and 5.9, we may
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assume that uS =

(
0n 0
0 Id

)
, ui =

(
Idni

0
0 0

)
for finitely many i’s and ui =



0n 0 0
0 Idni

0
0 0 0


 for the remaining i’s, and, similarly, that vS =

(
0m 0
0 Id

)
, vi =

(
Idni

0
0 0

)
for finitely many i’s and vi =



0m 0 0
0 Idni

0
0 0 0


 for the rest. Lemma 5.10

then asserts that both uuuR and vvvR are isomorphic towwwR, wherewww = (wS, w0, w1, . . . )

with wS = Id and wi =

(
Idni

0
0 0

)
for all i.

We shall now search for an analogue of Propostion 5.11 for idempotents of R
with the S-coordinate of finite rank.

Lemma 5.12. Let www = (wS, w0, w1, . . . ) be an idempotent in R with wS =(
X 0
0 0

)
. Then wwwR is isomorphic to uuuR for some uuu = (uS, u0, u1, . . . ) ∈ IdempR

with uS =

(
IdrankX 0

0 0

)
.

Proof. Suppose X ∈ Mn(K). Since X is idempotent, there is a matrix A ∈

GL(n,K) satisfying AXA−1 =

(
IdrankX 0

0 0

)
. Since www ∈ R, there is an i0 ≥

n such that whenever i ≥ i0, wi =

(
X 0
0 Wi

)
holds for some matrix Wi ∈

Mi+1−n(K). Let aS :=

(
A 0
0 Id

)
, ai := Idi+1 for all i < i0 and ai :=

(
A 0
0 Id

)
for

all i ≥ i0. Then clearly aaa = (aS, a0, a1, . . . ) is an invertible element of R, and we
may put uuu := awaawaawa−1.

Lemma 5.13. In Lemma 5.12, one can find uuu such that ui =

(
Idrankwi

0
0 0i+1−rankwi

)

for finitely many i’s and ui =



IdrankX 0 0

0 0n−rankX 0
0 0 Id


 for the remaining i’s.

Proof. In the proof of Lemma 5.12), the matrices wi are—for i ≥ i0—in fact

of the form



X 0 0
0 0mi

0
0 0 Yi


 for some mi and some idempotent matrices Yi ∈

Mi+1−n−mi
(K). Since www ∈ R, notice that lim

i→∞
mi = ∞. Since the Yi’s are

idempotent, there are invertible matrices Bi ∈ GL(i+ 1− n−mi, K) such that

BiYiB
−1
i =

(
0 0
0 IrankYi

)
. Take then again aS :=

(
A 0
0 Id

)
and ai := Id for i < i0,

and for i ≥ i0, take ai :=



A 0 0
0 Idmi

0
0 0 Bi


. The rest of the proof is the same as

for Lemma 5.12.
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Note that in the above lemma, due to uuu being an element of R, the size of the
zero-block in the middle of the matrices ui gradually increases with increasing i;
this explains the nature of condition (M3a).

Lemma 5.13, together with the same reasoning as in the only-if-part of Propo-
sition 5.11, easily translates into the following:

Proposition 5.14. For vvv = (vS, v0, v1, . . . ) ,www = (wS, w0, w1, . . . ) ∈ IdempR
with rank vS = rankwS <∞, the modules vvvR and wwwR are isomorphic if and only
if rank vi = rankwi for all i. �

Finally, combining Propositions 5.11 and 5.14 immediately yields:

Proposition 5.15. For vvv = (vS, v0, v1, . . . ) ,www = (wS, w0, w1, . . . ) ∈ IdempR,
the modules vvvR and wwwR are isomorphic if and only if both rank vS = rankwS and
rank vi = rankwi for all i. �

5.3 The monoid V (R) of the Chuang-Lee ring R

Let us define the binary relation ≡ on N0 × N0 as (n,m) ≡ (n′, m′) if either
(n,m) = (n′, m′) or m = m′ > 0. Note that ≡ is a congruence on the monoid
N0 × N0. Let us define MS as the factormonoid (N0 × N0) / ≡ and denote the
congruence class of (n,m) by [n,m].

Informally, the monoid MS can be viewed as a copy of the semigroup N

“above” a copy of the monoid N0. Elements of the form [n,0] are thought of as
being “downstairs” (in the copy of N0, with its ususual addition), while elements
[0,m] are “upstairs” (in the copy of N with the usual addition), and adding an
element from downstairs to one from upstairs does not change the element from
upstairs.

It is easy to verify that MS is a refinement monoid.
Put N := MS × (N0)

ω. Then, taking refinements component-wise, N is a
refinement monoid. Let M be the submonoid of N consisting of all sequences
([rd, ru] , r0, r1, . . . ) ∈ N satisfying:

(M1) there exists an n ∈ N such that for all i ∈ N0, ri ≤ n(i+ 1) holds, and:

(M2) if ru > 0, then lim
i→∞

ri = ∞;

(M3) if ru = 0, then both:

(a) lim
i→∞

n(i+ 1)− ri = ∞ for the same n as in condition (M1), and

(b) there exists an i0 ∈ N0 such that for all i ≥ i0, the inequality ri ≥ rd
holds.

We will show that then M ≃ V (R), using the following:

Proposition 5.16 (Růžička, 2011, Lemma 4.4). Let R be a regular ring, let M
be a refinement monoid, and let f : R −→M be a map satisfying:

(i) aR ≃ bR if and only if f(a) = f(b), for all a, b ∈ R.
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(ii) If x + y = f(c) for an idempotent c ∈ R and x, y ∈ M , then there are
orthogonal idempotents a, b ∈ R such that f(a) = x, f(b) = y, and a+b = c.

(iii) f(1) is an order-unit in M .

Then V (R) ≃M. �

In order to do so, we first need to show that the monoid M satisfies the
refinement property.

Lemma 5.17. The monoid M is a refinement monoid.

Proof. Suppose we have elements

rrrj =
([
rjd, r

j
u

]
, rj0, r

j
1, . . .

)

of M with j ∈ { 1, 2, 3, 4} and with

rrr1 + rrr2 = rrr3 + rrr4 = sss = ([sd, su] , s0, s1, . . . ) . (5.3)

We search for a refinement of these sums depending on the MS-component of sss:
Case 1: su = 0. Then clearly 0 = rju for all j. From condition (M3) for rrrj,

find a common i0 such that for all i ≥ i0 and all j, rji ≥ rjd holds. For all j, let

sjd := rjd,

sju := 0,

sji := 0 for i < i0, and

sji := rjd for i ≥ i0.

As we have r1d + r2d = r3d + r4d in N0, there is a refinement:

r1d r2d
r3d αd βd
r4d γd δd

,

i.e., there are αd, βd, γd, δd ∈ N0 such that αd+βd = r3d, αd+ γd = r1d, γd+ δd = r4d
and βd + δd = r2d. For i < i0, find refinements of the i-th coordinate of the two
sums in (5.3):

r1i r2i
r3i αi βi
r4i γi δi

.

For i ≥ i0, find first a refinement of the of the sum (r1i − r1d) + (r2i − r2d) =
(r3i − r3d) + (r4i − r4d) in N0:

r1i − r1d r2i − r2d
r3i − r3d α′

i β ′
i

r4i − r4d γ′i δ′i

.

Then, put αi := α′
i + αd, βi := β ′

i + βd, γi := γ′i + γd, δi := δ′i + δd, and

ααα := ([αd, 0] , α0, α1, . . . ) ,

βββ := ([βd, 0] , β0, β1, . . . ) ,

γγγ := ([γd, 0] , γ0, γ1, . . . ) ,

δδδ := ([δd, 0] , δ0, δ1, . . . ) .
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We have found a refinement
rrr1 rrr2

rrr3 ααα βββ
rrr4 γγγ δδδ

in the monoid N ; we claim that this refinement is in fact in M : We shall only
verify that, say, ααα ∈ M , as the remaining elements behave similarly. Con-
dition (M1) holds, since for each i ∈ N0, αi ≤ r1i . Condition (M2) is sat-
isfied automatically, as αu = 0. As for (M3), from αi ≤ r1i , we have that
n(i + 1) − r1i ≤ n(i + 1) − αi, whence (M3a) holds. Finally, for i ≥ i0 (with
the i0 we fixed above), αi = α′

i + αd ≥ αd, so (M3b) is satisfied as well.
Case 2: su > 0. We will still check the refinement property separately for

three different cases:
Case 2a: r1u = 0 and r3u = 0 (and hence r2u = r4u > 0): w.l.o.g., suppose that

r1d ≤ r3d. Find i0 such that for all i ≥ i0, both r1i ≥ r1d and r3i ≥ r3d hold (from
(M3)) and also that r2i ≥ r3d − r1d (from (M2)). Put

ααα′ :=



[
r1d,0

]
,

α′
0,...,α

′
i0−1︷ ︸︸ ︷

0, . . . , 0 , r1d, r
1
d, . . .︸ ︷︷ ︸

α′
i0
,α′

i0+1,...


 , and

βββ′ :=



[
r3d − r1d,0

]
,

β′
0,...,β

′
i0−1︷ ︸︸ ︷

0, . . . , 0 , r3d − r1d, r
3
d − r1d, . . .︸ ︷︷ ︸

β′
i0
,β′

i0+1,...


 .

We shall now find a suitable refinement

rrr1 −ααα′ rrr2 − βββ′

rrr3 −ααα′ − βββ′ ααα′′ βββ ′′

rrr4 γγγ δδδ

component-wise as follows: There is no choice but [0,0] = [α′′
d, α

′′
u] = [β ′′

d , β
′′
u] =

[γd, γu] and [δd,δu] = [0, r2u]. For i ∈ N0, consider the refinement

r1i − α′
i r2i − β ′

i

r3i − α′
i − β ′

i α′′
i β ′′

i

r4i γi δi

(in N0) with α
′′
i = min { r1i − α′

i, r
3
i − α′

i − β ′
i }. Then

rrr1 rrr2

rrr3 ααα′ +ααα′′ βββ ′ + βββ ′′

rrr4 γγγ δδδ

is a refinement in M : (M2) is satisfied for δδδ, since for every i, either δi = r4i or
δi = r2i −β

′
i. Since γd, α

′′
d and β

′′
d are all zero and by the choice of ααα′ and βββ ′, we see

that ααα′ + ααα′′, βββ ′ + βββ ′′ and γγγ satisfy (M3b); the remaining conditions are verified
as above.
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Case 2b: r3u = 0, while r1u, r
2
u and r4u are nonzero. Find i0 such that for all

i > i0, both r
1
i ≥ r1d and r3i ≥ r1d. With

ααα′ :=



[
r1d,0

]
,

α′
0,...,α

′
i0−1︷ ︸︸ ︷

0, . . . , 0 , r1d, r
1
d, . . .︸ ︷︷ ︸

α′
i0
,α′

i0+1,...


 and

ααα′′ :=
(
[0,0],min { r10 − α′

0, r
3
0 − α′

0 } , { r
1
1 − α′

1, r
3
1 − α′

1 } , . . .
)
,

the resulting refinement
rrr1 rrr2

rrr3 ααα′ +ααα′′ βββ
rrr4 γγγ δδδ

is a again in M .
Case 2c: All rju are nonzero (and thus all rjd are irrelevant). From (M2) for

all rj, find for each l ∈ N0 an il ∈ N0 such that whenever i ≥ il, the inequality
rji ≥ l holds for all j. Put [ζd,ζu] := [0,1] and for all i, ζi := max { l | i ≥ il }.
Find a refinement

rrr1 − ζζζ rrr2 − ζζζ
rrr3 − ζζζ ααα βββ
rrr4 − ζζζ γγγ δδδ

in N . Since all rrrj satisfy (M2), so does ζζζ, and we coclude that

rrr1 rrr2

rrr3 ααα + ζζζ βββ + ζζζ
rrr4 γγγ + ζζζ δδδ + ζζζ

is a refinement in M .

Let us now define the map f : R −→ M : Let www = (wS, w0, w1, . . . ) ∈ R.
For all i, put f(www)i := rankwi, and

[f(www)d, f(www)u] :=

{
[rankwS, 0] if the rank of wS is finite,
[0, 1] otherwise.

Lemma 5.18. The assignment f above is a well-defined map from R to M .

Proof. Since the ranks of each wi is at most i+1, we have f(www) ∈ N and satisfying
(M1) (with n = 1). Condition (M2) is of interest only if the rank of wS is infinite;
then for any given a ∈ N, there is an m such that wSπm is at least of rank a; by
the definition of R, there is a k′ such that for all n ≥ k′, wnπm = wSπm. Since
wS is column-finite, ther is a k′′ such that all the non-zero entries of wSπm are
actually in πk′′wSπm. Thus, whenever n ≥ max { k′, k′′ }, the rank of wn is at
least a. We have thus shown that lim

i→∞
rankwi = ∞, whence (M2) is satisfied. As

for (M3), suppose that the rank of wS is finite. Then there is an m such that
wS = πmwS (indeed, there are only finitely many linearly independent columns in
wS and wS is column-finite, whence there are only finitely many non-zero rows in
wS). By the definition of R, there is an i0 such that for all i ≥ i0, πmwS = πmwi.
Then

rankwi ≥ rank πmwi = rank πmwS = rankwS,
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whence f(www)i ≥ f(www)d for all i ≥ i0 and f(www) satisfies (M3b). As for (M3a), given
a ∈ N, find a k ≥ m + a such that for all i ≥ k, the equality πm+awS = πm+awi
holds. Since i ≥ k ≥ m+ a and (1− πm)wS = 0, we coclude that wi has at most
i + 1 − a nonzero rows. Thus, rankwi ≤ i + 1 − a, whence a ≥ (i + 1)− f(www)i.
We have thus shown that lim

i→∞
(i+ 1)− f(www)i = ∞, as desired.

Since an R-module isomorphism is necessarily an isomorphism in each of its
components (i.e., an S-isomorphism in the S-component and a πiEπi-isomorphism
in the i-component for every i), we observe that:

Observation 5.19. If aaa,bbb ∈ R satisfy aaaR ≃ bbbR, then f(aaa) = f(bbb). �

With the map f defined, we shall now proceed with verifying the conditions
of Proposition 5.16: Verifying that condition (i) is satisfied is what Subsection 5.2
was dedicated to, namely, Proposition 5.15 translates into the desired condition.
Condition (iii) is checked easily:

Lemma 5.20. f(1) = ([0,1] , 1, 2, 3, . . . ) is an order-unit in M .

Proof. Let rrr = ([rd, ru] , r0, r1, . . . ) ∈ M . Suppose first that ru = 0. From (M1)
and (M3), there is an n such that ri ≤ n(i+ 1) for all i and that

lim
i→∞

n(i+ 1)− ri = ∞.

Putting [sd,su] := [0,n] and si = n(i+1)−ri, we see that sss = ([sd, su] , s0, s1, . . . ) ∈
M and that sss + rrr = nf(1). Let now ru > 0; then, again, there is an n with
ri ≤ n(i + 1) for all i. Put m := max { ru, n } + 1, [sd,su] := [0, m− ru] and
si := (i+ 1)m− ri. Due to the choice of m, we see that

si = (i+ 1)m− ri ≥ (i+ 1)m− (i+ 1)n ≥ i+ 1

holds for all i; thus, sss = ([sd, su] , s0, s1, . . . ) satisfies condition (M2), and so
sss ∈M . Clearly, sss+ rrr = mf(1).

Now for the remainder, which is condition (ii) of Proposition 5.16: we check
this first for the special forms of idempotents of R that we find in Lemmas 5.8
and 5.13, and then proceed with the general statement of Lemma 5.22.

Lemma 5.21. Let xxx = ([xd, xu] , x0, x1, . . . ) , yyy = ([yd, yu] , y0, y1, . . . ) ∈ M and
ccc = (cS, c0, c1, . . . ) ∈ IdempR satisfy f(ccc) = xxx+ yyy. Furthermore, let either

(i) cS =

(
Idn 0
0 0

)
(with n finite), ci =

(
Idni 0
0 0

)
for i’s satisfying xi < xd or

yi < yd, and ci =



Idn 0 0
0 0 0
0 0 Idni−n


 for the rest, or

(ii) cS = Id, and ci =

(
Idni

0
0 0

)
for all i.

Then there are orthogonal idempotents aaa,bbb ∈ R such that aaa+bbb = ccc, f(aaa) = xxx and
f(bbb) = yyy.

69



Proof. Case (i). We have f(ccc) = ([n, 0], n0, n1, . . . ), whence xu and yu are both
zero, and we see that n = xd+yd and ni = xi+yi for all i. From condition (M3b)
for both xxx and yyy, we see that both xi ≥ xd and yi ≥ yd whenever ci is of the form

Idn 0 0
0 0 0
0 0 Idni−n


 with ni > n; in particular, we then have ni − n ≥ xi − xd and

ni − n ≥ yi − yd. Put aS :=

(
Idxd 0
0 0

)
, bS :=



0xd 0 0
0 Idyd 0
0 0 0


. For i satisfying

xi < xd or yi < yd, put ai :=

(
Idxi 0
0 0

)
and bi :=



0xi 0 0
0 Idyi 0
0 0 0


, and for all

the other i’s, put ai :=




Idxd 0 0 0
0 0 0 0
0 0 Idxi 0
0 0 0 0yi


 and bi :=




0xd 0 0 0
0 Idyd 0 0
0 0 0 0
0 0 0 Idyi


.

Then aaa := (aS, a0, a1, . . . ) and bbb := (bS, b0, b1, . . . ) are elements of R, since so is ccc,
and we see that aaa and bbb are in fact orthogonal idempotents satisfying f(aaa) = x,
f(bbb) = y and aaa+ bbb = ccc.

Case (ii). We have f(ccc) = ([0,1], n0, n1, . . . ), so suppose w.l.o.g. that

[yd, yu] = [0,1] and [xd, xu] = [xd,0] with xd ≥ 0. Let aS :=

(
Idxd 0
0 0

)
and

bS :=

(
0xd 0
0 Id

)
. From condition (M3b) for xxx, we have xi < xd for only finitely

many i’s; for these, put ai :=

(
Idxi 0
0 0

)
and bi :=



0xi 0 0
0 Idyi 0
0 0 0


. For the rest,

let ai :=




Idxd 0 0 0
0 0yi 0 0
0 0 Idxi−xd 0
0 0 0 0


 and bi :=



0xd 0 0
0 Idyi 0
0 0 0


. It is obvious that

aaa = (aS, a0, a1, . . . ) and bbb = (bS, b0, b1, . . . ) are orthogonal idempotents and that
aaa + bbb = ccc. It remains to verify that aaa,bbb ∈ R; but for both aaa and bbb, this follows
from lim

i→∞
yi = ∞ (condition (M2) for yyy).

Lemma 5.22. If f(www) = xxx + yyy with www ∈ IdempR and xxx,yyy ∈ M , then there are
orthogonal idempotents uuu,vvv in R satisfying f(uuu) = x, f(vvv) = y and uuu+ vvv = www.

Proof. If rankwS is infinite, then, by Proposition 5.11, there is an R-module
isomorphism ψ : cccR −→ wwwR, where ccc is as in Lemma 5.21 (ii); if, on the other
hand, rankwS = n is finite, then, by Proposition 5.14, there is an isomorphism
ψ : cccR −→ wwwR with ccc as in Lemma 5.21 (i). In both cases, f(www) = f(ccc). Notice
that in the latter case, the fact that ccc ∈ R is checked in the proof of Lemma 5.13.

Apply Lemma 5.21 to obtain orthogonal idempotents aaa,bbb ∈ R with f(aaa) = xxx,
f(bbb) = yyy and aaa + bbb = ccc. With Observation 5.19 on mind, we infer that we can
take uuu := ψ(aaa) and vvv := ψ(bbb).

We may now conclude that the monoid M defined at the beginning of this
section is isomorphic to the monoid V (R):

70



Proposition 5.23. V (R) ≃M .

Proof. By Lemmas 5.17, 5.22 and 5.20 and by Proposition 5.15, the sufficiency
conditions of Proposition 5.16 are satisfied.

Proposition 5.24. The monoid M , and thus also V (R), is stably finite, separ-
ative and not cancellative.

Proof. InMS, the elements [1, 0] and [0, 0] are distinct, while [1, 1] = [0, 1]. Thus,
the summand on both sides of the equality

([1, 0], 1, 1, 1, . . . ) + ([0, 1], 1, 2, 3, . . . ) = ([0, 0], 1, 1, 1, . . . ) + ([0, 1], 1, 2, 3, . . . )

cannot be cancelled out.
Suppose now that 0 6= xxx ∈M . If [xd, xu] = 0, we have from xxx 6= 0 that xi 6= 0

for some i ∈ N0. If, on the other hand, [xd, xu] 6= 0, then xi > 0 for some i ∈ N0

due to (M2) or (M3b). In either case, for any yyy ∈ M , yi + xi 6= yi holds, so
xxx+ yyy 6= yyy.

Finally, if [ad, au], [bd, bu] are elements of MS satisfying 2[ad, au] = 2[bd, bu],
then, from the definition of ≡, either:

• 2au = 2bu > 0; this occurs iff au = bu > 0. Or,

• 2au = 2bu = 0, then also 2ad = 2bd. Consequently, ad = bd.

In either case, [ad, au] = [bd, bu] holds. Thus, ME is a separative monoid. Since
each N0 is separative as well, it follows that the monoids MS × (N0)

ω and M are
separative.
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List of abbreviations

Abbreviation Meaning

w.l.o.g. . . . . . . . without loss of generality
iff. . . . . . . . . . . . . if and only if
UMP . . . . . . . . . universal mapping property
SES . . . . . . . . . . short exact sequence
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