Show simple item record

Problém realizace von Neumannovsky regulárních okruhů
dc.contributor.advisorRůžička, Pavel
dc.creatorMokriš, Samuel
dc.date.accessioned2017-06-01T09:38:07Z
dc.date.available2017-06-01T09:38:07Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/20.500.11956/77704
dc.description.abstractNázev práce: Problém realizace von Neumannovsky regulárních okruhů Autor: Samuel Mokriš Katedra: Katedra algebry Vedoucí diplomové práce: Mgr. Pavel Růžička, Ph.D., Katedra algebry Abstrakt: Každému okruhu R s jednotkou lze přiřadit komutativní monoid V (R) tříd izomor- fismů konečně generovaných pravých projektivních R-modulů. Příslušný monoid je redukovaný s jednotkou, v případě von neumannovsky regulárních okruhů má navíc Rieszovu zjemňovací vlastnost. Práce se zabývá otázkou, za jakých podmínek je naopak redukovaný komuta- tivní zjemňovací monoid s jednotkou realizovatelný jako V (R) nějakého von neumannovsky regulárního okruhu či dokonce regulární algebry, zejména pro spočetné monoidy. Jsou uve- dena dvě možná zobecnění konstrukce V (R) pro okruhy bez jednotky a je rozebrán vztah mezi nimi. Za tímto účelem jsou rozvíjeny vlastnosti okruhů s lokálními jednotkami a modulů nad takovými okruhy. Dále je v práci předvedena konstrukce leavittovských algeber cest nad ori- entovanými grafy s násobnými hranami a kontrukce monoidu asociovaného s grafem, který je izomorfní monoidu V (R) leavittovské algebry cest nad týmž grafem. Tyto metody jsou využity k předvedení, jak realizovat direktní sjednocení konečně...cs_CZ
dc.description.abstractTitle: The realization problem for von Neumann regular rings Author: Samuel Mokriš Department: Department of Algebra Supervisor of the master thesis: Mgr. Pavel Růžička, Ph.D., Department of Algebra Abstract: With every unital ring R, one can associate the abelian monoid V (R) of isomor- phism classes of finitely generated projective right R-modules. Said monoid is a conical monoid with order-unit. Moreover, for von Neumann regular rings, it satisfies the Riesz refinement property. In the thesis, we deal with the question, under what conditions an abelian conical re- finement monoid with order-unit can be realized as V (R) for some unital von Neumann regular ring or algebra, with emphasis on countable monoids. Two generalizations of the construction of V (R) to the context of nonunital rings are presented and their interrelation is analyzed. To that end, necessary properties of rings with local units and modules over such rings are devel- oped. Further, the construction of Leavitt path algebras over quivers is presented, as well as the construction of a monoid associated with a quiver that is isomorphic to V (R) of the Leavitt path algebra over the same quiver. These methods are then used to realize directed unions of finitely generated free abelian monoids as V (R) of algebras over any given field. A method...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectRingcs_CZ
dc.subjectvon Neumannovsky regulárnícs_CZ
dc.subjectRieszův monoidcs_CZ
dc.subjectRingen_US
dc.subjectvon Neumann regularen_US
dc.subjectRiesz monoiden_US
dc.titleProblém realizace von Neumannovsky regulárních okruhůen_US
dc.typediplomová prácecs_CZ
dcterms.created2015
dcterms.dateAccepted2015-09-07
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId145816
dc.title.translatedProblém realizace von Neumannovsky regulárních okruhůcs_CZ
dc.contributor.refereeŽemlička, Jan
dc.identifier.aleph002025539
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Problém realizace von Neumannovsky regulárních okruhů Autor: Samuel Mokriš Katedra: Katedra algebry Vedoucí diplomové práce: Mgr. Pavel Růžička, Ph.D., Katedra algebry Abstrakt: Každému okruhu R s jednotkou lze přiřadit komutativní monoid V (R) tříd izomor- fismů konečně generovaných pravých projektivních R-modulů. Příslušný monoid je redukovaný s jednotkou, v případě von neumannovsky regulárních okruhů má navíc Rieszovu zjemňovací vlastnost. Práce se zabývá otázkou, za jakých podmínek je naopak redukovaný komuta- tivní zjemňovací monoid s jednotkou realizovatelný jako V (R) nějakého von neumannovsky regulárního okruhu či dokonce regulární algebry, zejména pro spočetné monoidy. Jsou uve- dena dvě možná zobecnění konstrukce V (R) pro okruhy bez jednotky a je rozebrán vztah mezi nimi. Za tímto účelem jsou rozvíjeny vlastnosti okruhů s lokálními jednotkami a modulů nad takovými okruhy. Dále je v práci předvedena konstrukce leavittovských algeber cest nad ori- entovanými grafy s násobnými hranami a kontrukce monoidu asociovaného s grafem, který je izomorfní monoidu V (R) leavittovské algebry cest nad týmž grafem. Tyto metody jsou využity k předvedení, jak realizovat direktní sjednocení konečně...cs_CZ
uk.abstract.enTitle: The realization problem for von Neumann regular rings Author: Samuel Mokriš Department: Department of Algebra Supervisor of the master thesis: Mgr. Pavel Růžička, Ph.D., Department of Algebra Abstract: With every unital ring R, one can associate the abelian monoid V (R) of isomor- phism classes of finitely generated projective right R-modules. Said monoid is a conical monoid with order-unit. Moreover, for von Neumann regular rings, it satisfies the Riesz refinement property. In the thesis, we deal with the question, under what conditions an abelian conical re- finement monoid with order-unit can be realized as V (R) for some unital von Neumann regular ring or algebra, with emphasis on countable monoids. Two generalizations of the construction of V (R) to the context of nonunital rings are presented and their interrelation is analyzed. To that end, necessary properties of rings with local units and modules over such rings are devel- oped. Further, the construction of Leavitt path algebras over quivers is presented, as well as the construction of a monoid associated with a quiver that is isomorphic to V (R) of the Leavitt path algebra over the same quiver. These methods are then used to realize directed unions of finitely generated free abelian monoids as V (R) of algebras over any given field. A method...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990020255390106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV