Probabilistic Methods in Discrete Applied Mathematics
Pravděpodobnostní metody v diskrétní aplikované matematice
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/33243Identifiers
Study Information System: 43975
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Koubek, Václav
Sereni, Jean-Sébastein
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Discrete Models and Algorithms
Department
Department of Applied Mathematics
Date of defense
22. 11. 2010
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
Binární lineární kódy, Teorie grafů, Edwards-Anderson Ising model, Gray kódyKeywords (English)
Binary linear code, Graph theory, Edwards-Anderson Ising model, Gray codesJedním ze základních problémů moderní statistické fyziky je snaha porozumět \mbox{frustraci} a chaosu. Základním modelem je konečně dimenzionální Edwards-Anderson Ising model. V této práci zavádíme zobecnění tohoto modelu. Studujeme množinové systémy uzavřené na symetrické rozdíly. Ukážeme, že významnou otázku, zda groundstate v Ising modelu je jednoznačný, lze studovat v těchto množinových systémech. Krewerasova hypotéza říká, že každé perfektní párování v hyperkrychli $Q_n$ lze rozšířit na Hamiltonovskou kružnici. Tuto hypotézu jsme dokázali. Matching graf $\mg{G}$ grafu $G$ má za vrcholy perfektní párování v $G$ a hranami jsou spojeny ty dvojice perfektních párování, jejichž sjednocení tvoří Hamiltonovskou kružnici v $G$. Dokážeme, že matching graf $\mg{Q_n}$ je bipartitní a souvislý pro $n \ge 4$. Toto dokazuje Krewerasovu hypotézu, že graf $M_n$ je souvislý, kde $M_n$ vznikne z grafu $\mg{Q_n}$ kontrakcí vrcholů $\mg{Q_n}$, které odpovídají izomorfním perfektním párováním. Cesta v $Q_n$ vyhýbající se zadaným $f$ chybným vrcholům se nazývá dlouhá, jestliže její délka je alespoň $2^n - 2f - 2$. Analogicky kružnice je dlouhá, pokud její délka je alespoň $2^n - 2f$. Pokud jsou všechny chybné vrcholy ze stejné bipartitní třídy $Q_n$, pak jsou tyto délky nejlepší možné. Dokážeme, že pro každou množinu...
One of the basic streams of modern statistical physics is an effort to understand the frustration and chaos. The basic model to study these phenomena is the finite dimensional Edwards-Anderson Ising model. We present a generalization of this model. We study set systems which are closed under symmetric differences. We show that the important question whether a groundstate in Ising model is unique can be studied in these set systems. Kreweras' conjecture asserts that any perfect matching of the $n$-dimensional hypercube $Q_n$ can be extended to a Hamiltonian cycle. We prove this conjecture. The {\it matching graph} $\mg{G}$ of a graph $G$ has a vertex set of all perfect matchings of $G$, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We prove that the matching graph $\mg{Q_n}$ is bipartite and connected for $n \ge 4$. This proves Kreweras' conjecture that the graph $M_n$ is connected, where $M_n$ is obtained from $\mg{Q_n}$ by contracting all vertices of $\mg{Q_n}$ which correspond to isomorphic perfect matchings. A fault-free path in $Q_n$ with $f$ faulty vertices is said to be \emph{long} if it has length at least $2^n-2f-2$. Similarly, a fault-free cycle in $Q_n$ is long if it has length at least $2^n-2f$. If all faulty vertices are...