Show simple item record

Stochastické evoluční rovnice
dc.contributor.advisorMaslowski, Bohdan
dc.creatorČoupek, Petr
dc.date.accessioned2018-11-30T14:26:31Z
dc.date.available2018-11-30T14:26:31Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11956/92012
dc.description.abstractStochastic Evolution Equations Petr Čoupek Doctoral Thesis Abstract Linear stochastic evolution equations with additive regular Volterra noise are studied in the thesis. Regular Volterra processes need not be Gaussian, Markov or semimartingales, but they admit a certain covariance structure instead. Particular examples cover the fractional Brownian motion of H > 1/2 and, in the non-Gaussian case, the Rosenblatt process. The solution is considered in the mild form, which is given by the variation of constants formula, and takes values either in a separable Hilbert space or the space Lp(D, µ) for large p. In the Hilbert-space setting, existence, space-time regularity and large-time behaviour of the solutions are studied. In the Lp setting, existence and regularity is studied, and in concrete cases of stochastic partial differential equations, the solution is shown to be a space-time continuous random field.en_US
dc.description.abstractStochastické evoluční rovnice Petr Čoupek Disertační práce Abstrakt Tématem práce jsou lineární stochastické evoluční rovnice s aditivním regulárním volterrovským šumem. Regulární volterrovské procesy jsou stochastické procesy, které nemusejí být markovské, gaus- sovské a ani nemusejí být semimartingaly, ale namísto těchto vlastností mají jistou kovarianční struk- turu. Konkrétní příklady zahrnují frakcionální Brownův pohyb s Hurstovým parameterem H > 1/2 a, v negaussovském případě, Rosenblattův proces. Řešení uvažovaných stochastických rovnic je dáno vzorcem pro variaci konstant (v tzv. " mild" tvaru) a nabývá hodnot v separabilním Hilbertově pro- storu nebo v prostoru Lp(D; µ) pro velké p. V hilbertovském případě je studována zejména existence a regularita tohoto řešení a dále jeho chování pro velké časy. V případě, že řešení nabývá hodnot v prostoru Lp, je studována existence a regularita tohoto řešení a v konkrétních případech stochas- tických parciálních diferenciálních rovnic je ukázáno, že řešením je náhodné pole, které je spojité jak v časové, tak v prostorové proměnné.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectStochastic evolution equationen_US
dc.subjectVolterra processen_US
dc.subjectfractional Brownian motionen_US
dc.subjectRosenblatt processen_US
dc.subjectregularityen_US
dc.subjectlimiting measureen_US
dc.subjectstochastická evoluční rovnicecs_CZ
dc.subjectvolterrovský procescs_CZ
dc.subjectfrakcionální Brownův pohybcs_CZ
dc.subjectRosenblattův procescs_CZ
dc.subjectregularitacs_CZ
dc.subjectlimitní míracs_CZ
dc.titleStochastic Evolution Equationsen_US
dc.typedizertační prácecs_CZ
dcterms.created2017
dcterms.dateAccepted2017-09-22
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId136439
dc.title.translatedStochastické evoluční rovnicecs_CZ
dc.contributor.refereeGarrido-Atienza, María J.
dc.contributor.refereeHlubinka, Daniel
dc.identifier.aleph002156172
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplinePravděpodobnost a matematická statistikacs_CZ
thesis.degree.disciplineProbability and Mathematical Statisticsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost a matematická statistikacs_CZ
uk.degree-discipline.enProbability and Mathematical Statisticsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csStochastické evoluční rovnice Petr Čoupek Disertační práce Abstrakt Tématem práce jsou lineární stochastické evoluční rovnice s aditivním regulárním volterrovským šumem. Regulární volterrovské procesy jsou stochastické procesy, které nemusejí být markovské, gaus- sovské a ani nemusejí být semimartingaly, ale namísto těchto vlastností mají jistou kovarianční struk- turu. Konkrétní příklady zahrnují frakcionální Brownův pohyb s Hurstovým parameterem H > 1/2 a, v negaussovském případě, Rosenblattův proces. Řešení uvažovaných stochastických rovnic je dáno vzorcem pro variaci konstant (v tzv. " mild" tvaru) a nabývá hodnot v separabilním Hilbertově pro- storu nebo v prostoru Lp(D; µ) pro velké p. V hilbertovském případě je studována zejména existence a regularita tohoto řešení a dále jeho chování pro velké časy. V případě, že řešení nabývá hodnot v prostoru Lp, je studována existence a regularita tohoto řešení a v konkrétních případech stochas- tických parciálních diferenciálních rovnic je ukázáno, že řešením je náhodné pole, které je spojité jak v časové, tak v prostorové proměnné.cs_CZ
uk.abstract.enStochastic Evolution Equations Petr Čoupek Doctoral Thesis Abstract Linear stochastic evolution equations with additive regular Volterra noise are studied in the thesis. Regular Volterra processes need not be Gaussian, Markov or semimartingales, but they admit a certain covariance structure instead. Particular examples cover the fractional Brownian motion of H > 1/2 and, in the non-Gaussian case, the Rosenblatt process. The solution is considered in the mild form, which is given by the variation of constants formula, and takes values either in a separable Hilbert space or the space Lp(D, µ) for large p. In the Hilbert-space setting, existence, space-time regularity and large-time behaviour of the solutions are studied. In the Lp setting, existence and regularity is studied, and in concrete cases of stochastic partial differential equations, the solution is shown to be a space-time continuous random field.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV