Show simple item record

Optimalita prostorů funkcí pro klasické integrální operátory
dc.contributor.advisorPick, Luboš
dc.creatorMihula, Zdeněk
dc.date.accessioned2017-07-03T10:01:05Z
dc.date.available2017-07-03T10:01:05Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11956/85757
dc.description.abstractV práci je zkoumána otázka optimality prostorů funkcí invariantních vůči ne- rostoucímu přerovnání vzhledem k Hilbertově transformaci a Rieszovu potenciálu. Pro tyto operátory je zde plně charakterizována optimalita v rámci této třídy pro- storů funkcí. Získané výsledky nám umožňují konstruovat optimální zdrojové (tj. co největší) a optimální cílové (tj. co nejmenší) prostory, když je druhý prostor zafixován. Tyto výsledky jsou ilustrovány na netriviálních příkladech pomocí zo- becněných Lorentz-Zygmundových prostorů se " zlomenou logaritmickou funkcí" (broken logarithmic function). Použité metody jsou prezentovány tak, aby je bylo možné snadno upravit na další operátory podobného typu. 1cs_CZ
dc.description.abstractWe investigate optimal partnership of rearrangement-invariant Banach func- tion spaces for the Hilbert transform and the Riesz potential. We establish sharp theorems which characterize optimal action of these operators on such spaces. These results enable us to construct optimal domain (i.e. the largest) and op- timal range (i.e. the smallest) partner spaces when the other space is given. We illustrate the obtained results by non-trivial examples involving Generalized Lorentz-Zygmund spaces with broken logarithmic functions. The method is pre- sented in such a way that it should be easily adaptable to other appropriate operators. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectprostory funkcí invariantní vůči nerostoucímu přerovnánícs_CZ
dc.subjectintegrální operátorycs_CZ
dc.subjectoptimalitacs_CZ
dc.subjectHilbertova transformacecs_CZ
dc.subjectRieszův potenciálcs_CZ
dc.subjectrearrangement-invariant spacesen_US
dc.subjectintegral operatorsen_US
dc.subjectoptimalityen_US
dc.subjectHilbert transformen_US
dc.subjectRiesz potentialen_US
dc.titleOptimality of function spaces for classical integral operatorsen_US
dc.typediplomová prácecs_CZ
dcterms.created2017
dcterms.dateAccepted2017-06-12
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId180597
dc.title.translatedOptimalita prostorů funkcí pro klasické integrální operátorycs_CZ
dc.contributor.refereeVybíral, Jan
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV práci je zkoumána otázka optimality prostorů funkcí invariantních vůči ne- rostoucímu přerovnání vzhledem k Hilbertově transformaci a Rieszovu potenciálu. Pro tyto operátory je zde plně charakterizována optimalita v rámci této třídy pro- storů funkcí. Získané výsledky nám umožňují konstruovat optimální zdrojové (tj. co největší) a optimální cílové (tj. co nejmenší) prostory, když je druhý prostor zafixován. Tyto výsledky jsou ilustrovány na netriviálních příkladech pomocí zo- becněných Lorentz-Zygmundových prostorů se " zlomenou logaritmickou funkcí" (broken logarithmic function). Použité metody jsou prezentovány tak, aby je bylo možné snadno upravit na další operátory podobného typu. 1cs_CZ
uk.abstract.enWe investigate optimal partnership of rearrangement-invariant Banach func- tion spaces for the Hilbert transform and the Riesz potential. We establish sharp theorems which characterize optimal action of these operators on such spaces. These results enable us to construct optimal domain (i.e. the largest) and op- timal range (i.e. the smallest) partner spaces when the other space is given. We illustrate the obtained results by non-trivial examples involving Generalized Lorentz-Zygmund spaces with broken logarithmic functions. The method is pre- sented in such a way that it should be easily adaptable to other appropriate operators. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV