Struktura nekomutativních těles
Structure of division rings
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/75721Identifikátory
SIS: 141241
Katalog UK: 990020253920106986
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Šaroch, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
4. 9. 2015
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
jednoduchá algebra, nekomutativní těleso, tenzorový součin, Brauerova grupaKlíčová slova (anglicky)
simple algebra, division ring, tensor product, Brauer groupV této práci se budeme zabývat zněním a důkazem věty, jež nám umožňuje z cyklických rozšíření těles, která navíc splňují jisté další podmínky, zkonstruovat nekomutativní tělesa. Text od čtenáře vyžaduje základní znalosti z oblasti lineární algebry, okruhů a modulů a k použití věty je pak potřeba jistá zručnost v počítání Galoisových grup. Práce navíc přináší dva základní příklady, které ilustrují použití věty. Během důkazu se čtenář seznámí se strukturou tenzorového součinu a Brauerových grup. Powered by TCPDF (www.tcpdf.org)
This bachelor thesis deals with a theorem and its proof, which allows construction of division ring from cyclic field extension which satisfies certain conditions. The reader is expected to have basic knowledge of linear algebra, ring and module theory. For using this theorem the reader also needs some skills in counting Galois groups. In this work there are also included two basic examples of usage the theorem. During the proof we introduce a structure of tensor product and Brauer group. Powered by TCPDF (www.tcpdf.org)
