Ultrafilters and independent systems
Ultrfiltry a nezávislé sytémy
dissertation thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/47087Identifiers
Study Information System: 44021
Collections
- Kvalifikační práce [11325]
Author
Advisor
Consultant
Balcar, Bohuslav
Hrušák, Michael
Referee
Zapletal, Jindřich
Thümmel, Egbert
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Geometry, Topology, Global Analysis and General Structures
Department
Department of Theoretical Computer Science and Mathematical Logic
Date of defense
5. 9. 2011
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
betaomega, irresolvabilní prostory, topologický typ, osamělý bod, silný P-bod, Canjarův ultrafiltrKeywords (English)
betaomega, irresolvable spaces, topological type, lonely points, strong P-points, Canjar ultrafiltersPráce podává přehled různých konstrukcí ultrafiltrů. V první části uvádí konstrukce, které nepotřebují dodatečné axiomy teorie množin. Je předvedena metoda nezávislých systémů pocházející od K. Kunena. Dále je předvedeno její použití v topologickém zkoumání prostoru ω∗ (důkaz existence šestnácti topologických typů J. van Milla). Tato část je zakončena předvedením nové konstrukce a důkazem autorovy věty o existenci ultrafiltrů, které mají speciální topologické vlastnosti (důkaz existence 17 typu): V ω∗ existuje bod, který není hromadným bodem spočetné diskrétní množiny, je hromadným bodem spočetné množiny a spočetné množiny, v jejichž je hromadným bodem tvoří filtr. Druhá část se zabývá konstrukcemi ultrafiltrů vyžadujícími dodatečné množinové axiomy, resp. teorii forcingu. Je předvedena klasická konstrukce P-bodů, pocházející od J. Ketonena, a konstrukce Q-bodu, pocházející od A. R. D. Mathiase. Další dvě kapitoly se zabývají silnými P-body, které zavedl C. Laflamme. V první z těchto kapitol je dokázána nová charakter- izační věta (výsledek autora společně s A. Blassem a M. Hrušákem): Ultra- filtr je Canjarův právě když je silný P-bod. Je též uveden nový důkaz věty M. Canjara o existenci...
This work presents an overview of several different methods for construct- ing ultrafilters. The first part contains constructions not needing additional assumptions beyond the usual axioms of Set Theory. K. Kunen's method using independent systems for constructing weak P-points is presented. This is followed by a presentation of its application in topology (the proof of the existence of sixteen topological types due to J. van Mill). Finally a new con- struction due to the author is presented together with a proof of his result, the existence of a seventeenth topological type: ω∗ contains a point which is discretely untouchable, is a limit point of a countable set and the countable sets having it as its limit point form a filter. The second part looks at constructions which use additional combina- torial axioms and/or forcing. J. Ketonen's construction of a P-point and A. R. D. Mathias's construction of a Q-point are presented in the first two sections. The next sections concentrate on strong P-points introduced by C. Laflamme. The first of these contains a proof of a new characterization theorem due jointly to the author, A. Blass and M. Hrušák: An ultrafilter is Canjar if and only if it is a strong P-point. A new proof of Canjar's the- orem on the existence of non-dominating filters (Canjar filters) which uses...