Approximations by low-rank matrices and their applications
Aproximace maticemi malé hodnosti a jejich aplikace
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/101046Identifikátory
SIS: 193118
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Rozložník, Miroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Numerická a výpočtová matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
5. 9. 2018
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
aproximace maticemi nízké hodnosti, řídké matice, iterační metody pro řešení rozsáhlých soustav algebraických rovnic, předpodmíněníKlíčová slova (anglicky)
low-rank matrix approximations, sparse matrices, iterative methods for solving large linear algebraic equations, preconditioningMetody Krylovovských podprostorů představují jeden z běžně používaných přístupů k řešení soustav lineárních algebraických rovnic. K dosažení efek- tivní metody je často zapotřebí tzv. předpodmínění celé soustavy, tedy trans- formace daného problému před aplikací samotné iterační metody. Jednou z vlastností původní soustavy, která často umožňuje konstrukci efektivních předpodmínění, je strukturální řídkost matice systému. Vývoj a výzkum po- sledních let přinesl nový, související fenomén tzv. datovou řídkost matice. Na rozdíl od strukturální řídkosti, datová řídkost odkazuje na nevyváže- nost informací, které jsou při výpočtu využitelné. U většiny problémů toto odpovídá tomu, že bloky dané matice jsou dobře aproximovatelné maticemi nízkých hodností. Úprava klasických metod tak, aby využívaly tohoto speci- fického rysu výrazně mění jejich charakter. Tato práce se zaobírá možnostmi, jak navrhnout a zkonstruovat předpodmínění pro metodu sdružených gradi- entů pro problémy se symetrickou a pozitivně definitní matice, založené na Choleského faktorizaci pro datově řídké matice. Metody využívající datovou řídkost se vyvíjejí velmi rychle a ovlivňují nikoliv pouze oblast iterativních metod a jejich předpodmínění. Hierarchické maticové formáty založené právě na datové řídkosti mohou být odvozeny jak na základě...
Consider the problem of solving a large system of linear algebraic equations, using the Krylov subspace methods. In order to find the solution efficiently, the system often needs to be preconditioned, i.e., transformed prior to the iterative scheme. A feature of the system that often enables fast solution with efficient preconditioners is the structural sparsity of the corresponding matrix. A recent development brought another and a slightly different phe- nomenon called the data sparsity. In contrast to the classical (structural) sparsity, the data sparsity refers to an uneven distribution of extractable information inside the matrix. In practice, the data sparsity of a matrix ty- pically means that its blocks can be successfully approximated by matrices of low rank. Naturally, this may significantly change the character of the numerical computations involving the matrix. The thesis focuses on finding ways to construct Cholesky-based preconditioners for the conjugate gradi- ent method to solve systems with symmetric and positive definite matrices, exploiting a combination of the data and structural sparsity. Methods to exploit the data sparsity are evolving very fast, influencing not only iterative solvers but direct solvers as well. Hierarchical schemes based on the data sparsity concepts can be derived...
