
MASTER THESIS

Michal Outrata

Approximations by low-rank matrices
and their applications

Department of Numerical Mathematics

Supervisor of the master thesis: prof. Ing. Miroslav Tůma, CSc.
Study programme: Mathematics

Study branch: Numerical and Computational Mathematics

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank to my supervisor, who provided me with every support,
inspiration and guidance one could possibly ask for. I would like to express
equal gratitude to all of my family and friends who supported me throughout my
studies.

ii

Title: Approximations by low-rank matrices and their applications

Author: Michal Outrata

Department: Department of Numerical Mathematics

Supervisor: prof. Ing. Miroslav Tůma, CSc., Department of Numerical Mathe-
matics

Abstract: Consider the problem of solving a large system of linear algebraic
equations, using the Krylov subspace methods. In order to find the solution ef-
ficiently, the system often needs to be preconditioned, i.e., transformed prior to
the iterative scheme. A feature of the system that often enables fast solution with
efficient preconditioners is the structural sparsity of the corresponding matrix. A
recent development brought another and a slightly different phenomenon called
the data sparsity. In contrast to the classical (structural) sparsity, the data spar-
sity refers to an uneven distribution of extractable information inside the matrix.
In practice, the data sparsity of a matrix typically means that its blocks can be
successfully approximated by matrices of low rank. Naturally, this may signifi-
cantly change the character of the numerical computations involving the matrix.
The thesis focuses on finding ways to construct Cholesky-based preconditioners
for the conjugate gradient method to solve systems with symmetric and positive
definite matrices, exploiting a combination of the data and structural sparsity.

Methods to exploit the data sparsity are evolving very fast, influencing not only
iterative solvers but direct solvers as well. Hierarchical schemes based on the
data sparsity concepts can be derived both from applications or algebraically
(see, e.g., Hackbusch, 1999; Enquist and Ying, 2011). As for the Cholesky fac-
torization as a subtask of such schemes, while the general trend seems to move
towards recurrently-based approaches, possibly combined with nested-dissection
reorderings that introduce incompleteness via low-rank approximations (see, e.g.,
Grasedyck, Kriemann and Le Borne 2008 or Kriemann and Le Borne 2014). The
focus in this thesis is on the column-oriented approach that allows for combination
of the two mentioned types of approximations. On one hand, one can approxi-
mate factor blocks using low-rank approximations. On the other hand classical
concepts of incomplete factorizations can be used. But in order to put these ideas
into practice, new algorithmic approaches have to be introduced. Our starting
point is the classical sparse incomplete column-oriented Cholesky factorization
that is significantly modified in the above spirit.

Keywords: low-rank matrix approximations, sparse matrices, iterative methods
for solving large linear algebraic equations, preconditioning

iii

Contents

1 Introduction 2
1.1 Basic notation and preliminaries 2

1.1.1 Matrix sparsity . 3
1.1.2 The Singular Value Decomposition (SVD) 4
1.1.3 The QR factorization . 5
1.1.4 The LU factorization . 5
1.1.5 The Cholesky factorization 7

1.2 Structurally sparse Cholesky factorization 9
1.2.1 Graph theory point of view 10
1.2.2 Fill-in and reorderings . 17

1.3 Iterative methods and preconditioning 18
1.4 Preconditioners . 20

1.4.1 Cholesky-based preconditioners 21
1.4.2 Alternative approaches . 23

2 The need for approximation 24
2.1 The role of blocks . 24
2.2 The role of hierarchy . 25
2.3 Algebraic low-rank decompositions and approximations 26
2.4 Data-sparse block matrix formats 30

2.4.1 Hierarchical matrix formats 31
2.4.2 Non-hierarchical matrix formats 37

3 Towards incomplete data-sparse Cholesky factorization 42
3.1 Incomplete recursion-based Cholesky factorization 42
3.2 Incomplete sequential column-oriented Cholesky factorization . . . 44
3.3 Explicit search for the srtucture 45
3.4 Implicit search for the structure 46

3.4.1 Row structure . 47
3.4.2 Column structure . 52

3.5 Exploiting data-sparsity . 56
3.5.1 Double sparsification . 56

3.6 The proposed preconditioner . 60

4 Analysis of the proposed preconditioner 69
4.1 Costs analysis . 69
4.2 Accuracy, stability and convergence 73
4.3 IFCM vs. CFIM . 73

5 Numerical experiments 75
5.1 Structurally block-sparse matrices 76
5.2 Block-column unit matrices . 78

Conclusion 83

Bibliography 84

1

1. Introduction

1.1 Basic notation and preliminaries
Let us first recall some of the basic notions, mostly in order to unify terminol-
ogy and notation. The work follows the commonly used notation that can be
found in, e.g., the textbook of Demmel [22] or in the clasical book of Golub and
van Loan [40].

The whole work will assume the real n-dimensional Euclidean space Rn. Vec-
tors will be denoted by small letters, e.g., x P Rn. If not stated otherwise,
}x}2 ” }x} is to the Euclidean norm of the vector x. Linear operators from Rn

to Rm will be represented by m-by-n real matrices, denoted by capital letters.
The identity operator from Rn to Rn will be denoted In or simply I. Having an
m-by-n matrix A, one often uses either its Frobenius norm }A}F or the spectral
norm (2-matrix-norm) denoted by }A}2 or simply }A}. The condition number of
a matrix with respect to some given norm } ¨ } is denoted by κpAq and defined
as κpAq “ }A}}A´1}. If not stated otherwise, the norm is again considered to be
the spectral norm as above. The j-th column of A will be denoted by A˚,j (i-th
row by Ai,˚); its entry at the position pi, jq is denoted by aij. Furthermore, the
square j-by-j matrix formed by the first j rows of the first j columns of A is called
the j-th leading principal submatrix. If another submatrix of A is considered, the
classical MATLAB notation will be used, e.g., A1:j,1:j is the j-th leading principal
submatrix and Ai:n,j is composed from the entries of the j-th column with row
indices i and higher.

There are several important classes of matrices that should be mentioned here.
First, square matrix A is called symmetric, provided AT “ A, where AT stands
for the transposed matrix to A. Any square matrix U is called unitary, provided
UT U “ UUT “ I. Special subclass of unitary matrices are permutation matrices,
i.e., matrices that have in each column and row only one nonzero element equal
to one. A square matrix A is called symmetric, positive-definite (SPD), provided
that AT “ A and satisfies xT Ax ą 0 for any x ‰ 0.

The number of linearly independent columns of A is the rank of A, denoted
by rankpAq. The linear hull of the columns of A is called the image of A or the
range of A and is denoted by RpAq. The set of the preimages of the zero vector
with respect to the matrix A is called the null space of A or the kernel of A
and is denoted by N pAq. If N pAq “ t0u, A is said to be regular or nonsingular,
otherwise A is said to be singular or rank-deficient. If all of the leading principal
submatrices of A are regular, then A is called strongly regular.

It is often the case that a given matrix is nonsingular but its columns are
almost linearly dependent. In practice, this often means that one has to work
with the matrix as though it is rank-deficient. This leads to the notion of the
numerical rank of A, which captures the amount of information present in A. To
be more specific, if a matrix A is very accurately approximated by a matrix of
exact rank p, then the numerical rank of A is said to be p. It is, for a small ε ą 0
the numerical rank of A is defined as

min
}E}ďε

rankpA ´ Eq.

2

Here ε is a desired numerical precision. The lower the numerical rank, the less
information the matrix contains and vice versa. One can analogously introduce
numerical range of A and numerical kernel of A.

Having an m-by-n matrix A of (exact) rank p, one can always find its p-rank
decomposition, i.e., find rectangular matrices U and V (m-by-p and n-by-p) such
that A “ UV T , as sketched in Figure 1.1.

U“A V T

Figure 1.1: Low-rank decomposition of a rectangular matrix.

The main advantage of working with p-rank decompositions instead of the
original (possibly large) matrices lies in potential massive reduction of computa-
tional and memory costs. Assuming p ! minpm, nq, the low-rank decomposition
requires only ppn ` mq numbers to be stored instead of the usual mn numbers.
Substantial savings can be also achieved when it comes to standard operations,
e.g., matrix-matrix multiplication. Computing the product of A “ UV T with a
general n-by-m matrix, the result can be achieved in pm`nqmp operations instead
of m2n of the classical case. These easy observations have been exploited to a
considerable level by many authors (see, e.g., [2] or [6]) and have been motivation
for this work as well.

1.1.1 Matrix sparsity
Although working with rank deficient matrices (numerically or exactly) brings
the above mentioned benefits, their presence may not be apparent in some ap-
plications. However, there are surprisingly many applications, where the system
matrix itself, even when it is not rank deficient, can be divided into blocks such
that most of the blocks are low-rank (either exactly or numerically). This was
first observed and exploited by Greengard and Rokhlin in [44], where the fast
multipole method was introduced. This method later inspired many authors and
consequently lead to the term of data-sparse matrices as it is commonly used
now.

Definition 1.1.1. Each n-by-m matrix can be characterized by n ˆ m numbers.
If the matrix with generally Opn ˆ mq nonzero numbers can be described also by
significantly less numbers, e.g., only n ` m or Cpn ` mq with reasonable constant
C, then we refer to that matrix as data-sparse.

Sometimes the data-sparsity is identified with the blockwise rank deficiency. This
definition follows the work of Hackbusch [46], where we have found the first notion
of the data-sparsity. We believe that it captures the spirit of the data-sparsity
phenomenon accurately. While it is clear that the blockwise low-rank matrices
fit the definition, one can also observe that other specific classes of matrices are
data-sparse as Toeplitz matrices, Hankel matrices or circulant matrices1. Here

1See [53, p. 26-27] for definition of these classes of matrices

3

we will focus exclusively on the blockwise low-rank matrices as representatives of
the data-sparse matrices. However, we wanted to stress out this distinction and
we will try to distinct between these clearly and as much as possible.

Second, we would like to emphasize the difference of the just defined data-
sparsity of a matrix and standard structural sparsity of a matrix.

Definition 1.1.2. An n-by-m matrix is called structurally sparse, provided the
structure of its nonzero entries can be exploited to develop a more efficient algo-
rithm for a given purpose, usually a matrix factorization or multiplication.

Both of the defined sparsity properties are similarly motivated, i.e., exploiting
particular features of a given matrix so that the computation and storage costs
of the given matrix are cheap in comparison to the naive standard approach. At
the same time though, the techniques and methods that take these two sparsity
properties into account are quite different and sometimes not compatible. In
this work we will try to bridge this gap to some extent and combine both of the
approaches for solving a particular problem.

Having introduced the basic notions, let us recall basic matrix decompositions.
In the four following subsections are briefly summarized the three most relevant
factorizations and decompositions. The summary follows Golub and van Loan [40]
and Demmel [22]. As the LU factorization and the Cholesky factorization are
closely related to the topic of this thesis, they are considered in more depth than
the other two.

1.1.2 The Singular Value Decomposition (SVD)
For any m-by-n matrix A the singular value decomposition (SVD) of A consists
of square unitary matrices U (m-by-m) and V (n-by-n) and an m-by-n matrix Σ
such that

A “ UΣV T , with Σ “

»

—

—

—

—

—

–

σ1
. . .

σminpm,nq

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rmˆn,

where σ1 ě . . . ě σminpm,nq ě 0 are nonnegative real numbers called singular
values of A. The column vectors ui and vi of U and V are called the i-th left
and right singular vectors of A, respectively. Moreover, the singular values of A
correspond to eigenvalues of the matrix AT A.

It is easy to see that A has (exact) rank p if and only if σp ą 0 and σp`1 “ 0.
One of the reasons why SVD is so important can be viewed by the well-known
Young-Mirsky Theorem2 that is a powerful tool connected to the numerical rank-
deficiency.

Theorem 1.1.1 (Young-Mirsky Theorem, [40, Corollary 2.3-3., p.19]). Having
an m-by-n matrix A with SVD of the form A “ UΣV T and given any 1 ď p ď

2Also known as Schmidt-Mirsky Theorem.

4

minpm, nq, the best p-rank approximation of A with respect to either Frobenius or
Euclidean norm is the matrix Ã given by

Ã “

p
ÿ

i“1
σiuiv

T
i “ UΣpV T , with ΣP “

»

—

—

—

—

—

–

σ1
. . .

σp

fi

ffi

ffi

ffi

ffi

ffi

fl

.

A substantial drawback of SVD is number of operations necessary to compute the
decomposition even for a structurally sparse A. The clasical proces of computing
the SVD of a given m-by-n matrix involves bidiagonalization proces followed by
the QR algorithm, resulting together in Opmn minpm, nqq see [22, Section 5.4,
p. 237 - 254]. Great deal of work has been devoted to speed the computation
up. For further details on the classical approach one can see the original work of
Golub and Reinsch [39].

1.1.3 The QR factorization
Another important matrix factorization is the QR factorization. Assuming m ě n
and having an m-by-n matrix A (i.e., it is “tall”), the QR-factorization of A
consists of an m-by-n matrix Q and an n-by-n upper triangular matrix R with
nonnegative diagonal such that A “ QR. If A has full column rank, then Q has
orthonormal columns. There are three basic approaches to obtain this factor-
ization - Gram-Schmidt orthogonalization process (classical - CGS, or modified -
MGS), Householder reflections or Givens rotations - all of which can be found in
the cited references. Each of the approaches has certain advantages and disad-
vantages, e.g., time and memory costs or numerical behaviour in the sense of the
loss of orthogonality.

In general, the QR-decomposition amounts to Opmn minpm, nqq operations.
However, this can be relaxed for some classes of matrices and many applications
allow for such savings. A prime example would be the problem of solving linear
systems with an upper Hessenberg matricx3, where one can make use Givens
rotations, see [22, Section 4.4.8] or [22, p. 320]. The QR-decomposition can be
modified also for other classes of matrices that have a particular structure of the
nonzero entries or have only few of them, see [21] or [19].

1.1.4 The LU factorization
The third standard matrix factorization we will mention here is the LU factor-
ization, closely related to the Gaussian elimination. We will restrict ourselves to
the square matrix case here, following the work of Demmel [22, Section 2.3]. For
LU-decomposition of general m-by-n matrix, one can refer, e.g., to [40, Chapter
4]. Having a strongly regular n-by-n matrix A, the LU factorization computes an
n-by-n unit4 lower triangular matrix L and an n-by-n upper triangular matrix U
such that A “ LU .

3Any square matrix with zeros below the first subdiagonal is called upper Hessenberg.
4A square lower triangular matrix is called unit provided it has all diagonal entries equal to

one.

5

A natural way of computing the decomposition is to eliminate all the subdi-
agonal entries of A column by column. Provided the elimination can be done by
adding multiples of rows to the ones below them, one indeed obtains the desired
factorization. The elimination of the first column can be given as

»

—

—

—

–

1 a12 . . . a1n

´a21
a11... . . .

´an1
a11

1

fi

ffi

ffi

ffi

fl

A “

»

—

—

—

–

a11
0
... Ã22
0

fi

ffi

ffi

ffi

fl

, (1.1)

provided a11 ‰ 0. After elimination of the first k columns one can write the
partial factorization as

„

L̃11 0
L̃21 In´k

ȷ „

A11 A12
A21 A22

ȷ

“

„

U11 U21
0 Ã22

ȷ

, (1.2)

where L̃11 is k-by-k unit lower triangular and U11 is k-by-k upper triangular. In
both cases, Ã22 denotes the part of A yet to be factorized, which, however, has
been already changed comparing to the original part of the matrix A. Once all
n columns are processed, one arrives at

L̃A “ U, i. e., A “ LU,

with L “ L̃´1. The Gaussian elimination can be viewed as an application of this
decomposition. Indeed, solving Ax “ b and having A “ LU , one can proceed in
two steps

• forward substitution - solve Ly “ b for y;

• backward substitution - solve Ux “ y for x.

As for the factorization A “ LU , the procedure sketched above can be written
down, resulting in Algorithm 1.

Algorithm 1 LU factorization
Input: A strongly regular matrix A.

1: function LU
2: Initialize: L Ð In;
3: for j “ 2, . . . , n do
4: for s “ j, . . . n do
5: ls,j´1 Ð

as,j´1
aj´1,j´1

;
6: end for
7: for k “ 1, . . . , j ´ 1 do
8: for i “ k ` 1, . . . , n do
9: aij Ð aij ´ likakj;

10: end for
11: end for
12: end for
13: Return the factors L and U (U is stored in the upper triangle of A);
14: end function

6

Observing the above Algorithm 1, there are several remarks. First, the entries
of both of the factors are usually stored instead of the original entries of the matrix
A (the diagonal is reserved for the U factor). Second, the computation of the
entries of L on lines 4-6 can be moved inside the for-loop on lines 7-11. The
difference between the consequent variations gives the name to the right-looking
and left-looking versions of the LU factorization (see, e.g., [3, Section 1.2.4]).
Let us now also point out the convenient notation of [3], which we will adopt
later on. The for-loop on lines 4-6 is referred to as factorize(A˚,j) procedure
and the for-loop on lines 7-11 is referred to as update(A˚,j, A˚,k) procedure. It is
also worth noting that the three main for-loops of indicies j,k and i can be in
principle reshuffled, resulting into row-, column- or submatrix-based version of LU
factorization, see, e.g., [63, Appendix 1]. This classification is even more general
than just distinguishing the left- and right-looking variants.

The fourth straightforward observation regarding Algorithm 1 is that it breaks
down if and only if any of the pivots is equal to zero, i.e., if somewhere during
the factorization Ã22 has its first diagonal entry equal to zero. It is well-known
that this occurs if and only if at least one of its leading principal submatrices is
singular (see [22, Theorem 2.4, p. 39]). This can obviously happen even though
the matrix is nonsingular. However, it is also known that for any nonsingular
matrix A there exists a permutation matrix P such that PA has all the principal
leading submatrices nonsingular (see [22, Theorem 2.5, p. 39]).

Last but not least, even if all the principal leading submatrices are nonsingu-
lar the above procedure may still result into a numerically unsound algorithm.
Indeed, nonzero pivots may be much smaller (in absolute value) then the rest of
the entries of the column. This allows for (possible) cancellation of valid digits
and also propagation of the errors in the matrix entries. This issue is usually
addressed by the so-called partial pivoting procedure. Dealing with the k-th step,
i.e., with the k-th column, the procedure will search in the subdiagonal part of
the column (entries k to n) for the largest entry. Once it has been found, the
procedure swaps the corresponding rows so that the pivot (diagonal entry of the
column) is the largest element (in absolute value) in the subdiagonal part of the
column. In practice, the LU factorization with partial pivoting is observed to
be numerically sound, but one can construct counterexamples showing that even
the LU factorization with partial pivoting may fail due to the factor growth. For
more details on the numerical errors analysis of LU decomposition (or Gaussian
elimination) with and without the pivoting strategies, see [22, Section 2.4] or [40,
Section 4.3 and 4.4]. Following the above sketched approach would amount to
Opn3q operations. This has been relaxed on multiple levels in the general case and
even more so in particular practical cases as we will see throughout this thesis.

1.1.5 The Cholesky factorization
This section will focus on the particular case of the LU decomposition when A
is symmetric, positive definite. Although one might find the SPD property quite
restrictive, in many cases of interest one obtains such matrices. To name at least
a few, linear problems involving SPD matrices often arises from discretizatiuon of
PDE problems (see [28, Chapter 2 and 6]), optimization methods [29] or the linear
regression models. The basics were laid down above in the LU factorization. If

7

A is symmetric, positive-definite, the decomposition enjoys number of additional
preferable properties.

The Cholesky factorization of an n-by-n SPD matrix A corresponds to the LU
factorization in which U “ LT (i.e., A “ LLT), where L is no longer unit lower
triangular, but it has positive entries on diagonal. The existence of Cholesky
factorization is in fact equivalent to the SPD property of a given matrix. One
sometimes also encounters the so-called square root free Cholesky factorization
that corresponds to A “ LDLT , where the unit property of L is restored.

First obvious benefit of the Cholesky factorization in comparison to the gen-
eral LU factorization is that one needs only half of the numbers to store the fac-
torization. Another easy observation is that any SPD matrix has all its leading
submatrices symmetric, positive-definite as well5 and hence nonsingular. Conse-
quently the proposed procedure cannot break down (in exact arithmetic). The
following result is less obvious and touches upon the numerical stability and un-
necessity of the pivoting for the Cholesky factorization. The original result is due
to Wilkinson [82] and reads as follows.

Theorem 1.1.2 (Backward stability of Cholesky factorization, [82]). Computa-
tion of the Cholesky factorization of a given A in finite precision on level εmach
without pivoting yield the Cholesky factor L such that there exists a perturbation
matrix E satisfying (in exact arithmetic)

A ` E “ LLT ,

}E}2 ď 2.5
?

n3 ¨ εmach}A}2.

In other words, the finite precision result can be interpreted as an exact arithmetic
result for a matrix very close to the original one, i.e., the Cholesky decomposition
is backward stable, see [40, Section 3.2, p. 36-37]. The importance of this result
cannot be underestimated, as it both considerably reduces the overall costs of the
computation and substantially simplifies the analysis.
Bearing in mind the unnecessity of pivoting and that A is SPD, one can easily
write down the code for the column oriented Cholesky factorization as follows.

5See the Sylvester criterion [22, Proposition 2.2(2)]

8

Algorithm 2 Column-oriented, left-looking Cholesky factorization
Input: A square n-by-n SPD matrix A.

1: function chol
2: for j “ 2, . . . , n do;
3: lj´1,j´1 Ð

?
aj´1,j´1;

4: for s “ j, . . . n do
5: ls,j´1 Ð

as,j´1
lj´1,j´1

;
6: end for
7: for k “ 1, . . . , j ´ 1 do;
8: for i “ k ` 1, . . . , n do;
9: aij Ð aij ´ ljklik;

10: end for
11: end for
12: end for
13: Return the factor L;
14: end function

Algorithm 2 can be further modified to eb more efficient for many practical classes
of matrices. In the coming chapters we focus on the structurally sparse and data
sparse matrices in particular.

1.2 Structurally sparse Cholesky factorization
In many cases of interest the system matrix is structurally sparse, meaning that its
nonzero entries have a particular structure so that a substantially more efficient
algorithm can be achieved, provided this structure is taken into account. A
thoroughly studied class of such matrices are, e.g., banded matrices6, or, to be even
more specific, tridiagonal matrices or pentadiagonal matrices. Those matrices are
often encountered when discretizing simple differential operators with a three- or
five-point stencils, e.g., for solving the Poisson equation ∆u “ f .

Some authors, e.g., [66], define sparse matrices as n-by-n matrices with num-
ber of the nonzero entries proportional to n (i.e., with nnzpAq “ Opnq) or with
fixed small number of nonzero entries per row and column (i.e., with nnzpA˚,j “

nnzpAj,˚ “ Op1q). However, a common definition of structural sparsity nowa-
days is wider, i.e., given matrix is structurally sparse provided one can strongly
benefit from the structure of its nonzero elements to obtain a more efficient pro-
cedure to solve the given problem. Since neither [40] nor [22] consider this topic
with more details7, the main reference source for this section will be the book of
George and Liu [33] (and the work cited there).

In general, there are two main goals - to reduce the time and the memory
costs, i.e., to not store zero entries and to not carry out multiplications by zeros
and additions of zeros. In the Cholesky factorization case, this is achieved by
splitting the overall computation into two parts, symbolic and numerical. First,

6A square matrix A is called banded, provided there is k such that aij “ 0 for all i, j such
that |i ´ j| ą k. Minimal such number k is called bandwidth of A.

7Although in [22, Section 2.7.4, p. 83 - 92] one can find brief remarks on the overall prob-
lematic of sparse matrices.

9

the symbolic computation is carried out, i.e., the sparsity structure of the factor
L is computed assuming the non-cancellation8. The symbolic part often involves
suitable symmetric permutations to reduce the amount of the fill-in, i.e., to reduce
the amount of the nonzero entries of L that were zero in the original matrix.
Once the structure of the Cholesky factor L is computed, the necessary memory
is allocated and the numerical factorization is carried out. Let us emphasize that
this approach is not applicable if the matrix are not SPD. In general case one
has to account for pivoting that is necessary to achieve numerical stability of the
LU decomposition. However, this is a dynamical process that depends on the
computed values and cannot be computed in advance.

The following subsection is concerned with the first part of the Cholesky
decomposition - the symbolic factorization, i.e., how to determine the fill-in entries
and how to minimize their amount. Note that we have not discussed how to exploit
the structural sparsity in the computation, e.g., particular schemes of how to store
the matrix, how to carry out the multiplication etc, so far. For this, interested
reader is referred to, e.g., [33] or [66].

1.2.1 Graph theory point of view
This subsection will be focused on the Cholesky factorization from the point of
view of the graph theory. There are two basic and different ways of how to look
on the Cholesky factorization from this point of view. Both of them have their
pros and cons and both of them can be extremely effective in certain cases. For
further elaboration on this topic, one can see the book by George and Liu [33]
and the book by Duff, Erisman and and Reid [23] and the works cited in those.

Adjacency graph

Having an n-by-n SPD matrix A, one can define the graph associated with A,
denoted by GpAq or GA, as a graph GpAq “ pV A, EAq on n vertices, i.e., V A “

t1, . . . , nu and with edges corresponding to the nonzero entries of A, i.e., pi, jq

is an edge in the graph GpAq, provided aij ‰ 0, i.e., EA “ tpi, jq | aij ‰ 0u.
Note that the necessary and sufficient condition for this graph to be well-defined
is structural symmetry of A, i.e., symmetry in sense aij ‰ 0 ðñ aji ‰ 0. In
case that this property is not satisfied, one can still work with concepts of directed
graphs, i.e., graphs in which each edge has a direction. We will work with directed
graphs in later part of this work as well.

As the rest of this section deals with the symbolic computation only, the values
will not be written down into the matrices and only zeros and nonzeros will be
distinguished, although the SPD property is still assumed. An example of this
notation and a particular pair A, GpAq is in Figure 1.2 below. Considering a node
i P V A, one can define the set of vertices adjacent to i in GpAq as the set of vertices
that are connected with i by some edge in EA, i.e., AdjGpAqpiq “ tj | pi, jq P EAu.
The notion of adjacency can be extended to any subset of V A and not only a
single vertex. Considering the example from Figure 1.2, AdjGpAqp3q “ t1, 2, 4u

and AdjGpAqpt1, 4uq “ t5, 3u.
8This is a common assumption stating that sum of any two nonzero numbers is again nonzero.

Consequently, the computed sparsity structure is only upper bound, which is, however, usually
very tight.

10

A “

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5
GpAq

Figure 1.2: On left is an 5-by-5 SPD matrix A and on the right is its graph.

The following observation highlights the fact that the above example is a rather
convenient one in the sense that the graph GpAq has only one component.

Observation 1.2.1 ([33, Section 3.1, p.39]). In some cases, the graph GpAq is not
connected, i.e., there are vertices that has no path between them, i.e., the graph
has more than one component. This happens if and only if A can be permuted
to a block-diagonal form. If this is the case, one can treat each of the diagonal
blocks separately . Therefore, it is usually assumed that the graph GpAq has only
one component9. Throughout this thesis we adopt this assumption as well, i.e.,
A is assumed to be irreducible.

A simple yet crucial step is to interpret one step of the Cholesky factorization in
terms of the graph GpAq. First, one needs a suitable notation. For a given n-by-n
SPD matrix, let us first carry out the first j´1 steps of the Cholesky factorization,
as in Algorithm 2. At this point we have computed the first j columns of L (since
the j for-loop in Algorithm 2 starts with j “ 2). Apjq denotes the current matrix
stored during the j-th step of the factorization. Its lower triangular part contains
the first j columns of the Cholesky factor and the remaining n´j columns of Apjq

are columns of A yet to be factored. The upper triangle is filled symmetrically.
Moreover, denote the square pn ´ jq-by-pn ´ jq bottom-right most submatrix of
Apjq by Hj, i.e., Hj corresponds to the part of A that is yet to be factored (in
1.1-1.2 in the first sections those were labelled Ã22, regardless of the step of the
Gaussian elimination). Consider A from Figure 1.2. Ap1q ” A and Ap3q are given
below, with H3 emphasized by red color.

Ap1q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

fi

ffi

ffi

ffi

ffi

fl

, Ap3q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚

˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

Changes of the matrices throughout the elimination are described by the following
lemma.

9If GpAq has only one component, the matrix A is called irreducible, otherwise it is called
reducible.

11

Lemma 1.2.1 (The fill-in lemma, [33, p. 94-95]). Let A be an n-by-n SPD
matrix and assume j steps of the Cholesky factorization were carried out, yielding
matrices Apjq and Hj as above. Denote the row indicies of all of the subdiagonal
nonzero entries of pj`1q-th column of Apjq as i1 ă . . . ă ik, i.e., AdjGpHjqpj`1q “

ti1, . . . , iku.
Consider the following step of the factorization, i.e., elimination of the pj ` 1q-
th column of Apjq. The elimination of the element

`

Apjq
˘

l,j`1 for l P ti1, . . . , iku

modifies the graph GpHjq in the following way.

• The edge pl, j ` 1q is deleted;

• New edges are created to connect the vertex l with every vertex that is both
larger than l and is connected with j ` 1 in GpHjq.

Consequently, carrying out the pj ` 1q-th step of the factorization will modify the
graph GpHjq to GpHj`1q by deleting the vertex pj ` 1q and connecting pairwise
all of the vertices from AdjGpHjqpj ` 1q.
Working with the graph GpApjqq, the deletion step is simply omitted as the Cholesky
factor automatically inherits the structure of A, i.e., only new edges are created
in the way described above, corresponding to the newly created nonzeros, i.e., to
the fill-in.

A simple consequence of the above lemma is the classical result stating that an
element lij of the Cholesky factor is nonzero if and only if aij ‰ 0 or there exists
an index k ă minti, ju such that lik ‰ 0 and lkj ‰ 0, see [33, Lemma 5.1.1, p.95].
The second case, i.e., creation of a fill-in, is depicted in the Figure 1.3.

˚

˚

˚ ˚

i

k

i k

j

j

˚

˚

Figure 1.3: Illustration of the fill-in in a single position (symmetrically). The di-
agonal is always nonzero, but for simplicity the stars are replaced by the diagonal
line here.

The evolution of the graph of the Cholesky factor together with the corresponding
matrices for the matrix from Figure 1.2 is given below in Figure 1.4.

12

Ap1q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5
Gp1q

Ap2q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5
Gp2q

Ap3q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚ f
˚ ˚

˚ f ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5
Gp3q

f

Ap4q
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚ f
˚ ˚ g

˚ f g ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5
Gp4q

f
g

Figure 1.4: The symbolic Cholesky factorization is carried out for some 5-by-5
SPD matrix. The fill-in is illustrated both in the matrix and in the corresponding
graphs by symbols f and g.

In order to formulate the result at once and not recurrently, it is convenient to
introduce the reachable sets. Having vertices i and j in GpAq and some additional
set of vertices S, one says that j is reachable from i through S, provided there
exists a path from i to j using only vertices from S. The set of all reachable
vertices from i through S is denoted ReachGpAqpi, Sq. Having this notion, one
can connect the graph of Apn´1q (i.e., graph of the filled-in matrix F “ L ` LT ,
i.e., the graph of the Cholesky factor - copied symmetrically above the diagonal)
and the graph of A, as follows.

13

Theorem 1.2.1 ([33, Theorem 5.1.2, p.98]). Having an n-by-n SPD matrix A and
its Cholesky factorization A “ LLT , denote F “ L ` LT the matrix carrying the
structure of the Cholesky factor. Then GpF q is created from GpAq by connecting
every two vertices in GpAq that have a path between them using only lower indexed
vertices. In other words, the graph GpF q is graph on vertices t1, . . . , nu with edges
given by

EF
“
␣

pi, jq | i P ReachGpAqpj, Sijq
(

, with Sij “ tk ă minti, juu .

Elimination tree

Another important way of looking at the Cholesky factorization is through the
optic of elimination trees. As this topic is not considered in [33] nor in [23], we
refer to the overview paper by Liu [60]. Nice summary can eb also found in the
paper by George [32].

Having an n-by-n SPD matrix A and its Cholesky factorization A “ LLT , the
matrix L induces a particular rooted tree on vertices t1, . . . , nu called elimination
tree of A, denoted by T pLq. The root is always the vertex n and the tree structure
is induced by the first nonzero entries of the columns of L. To be more specific,
vertex k is the parent of vertex j (or j is a son of k), provided the first nonzero
subdiagonal entry of the j-th column L˚,j is in the k-th row, i.e.,

k “ parentpjq ðñ k “ minti | lij ‰ 0u. (1.3)

Note that this definition relies on the non-cancellation assumed earlier. An ex-
ample of the elimination tree for the previously considered 5-by-5 matrix A is
given below in Figure 1.5.

F “ L ` LT
“

»

—

—

—

—

–

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

1 2

3

4

5

T pLq

Figure 1.5: Consider the 5-by-5 SPD matrix A from 1.3. The fill-in structure of
the Cholesky factor L is given on the left by matrix F “ L`LT . The elimination
tree T pLq is given on the right.

The following observation highlights the fact that the above example was a rather
convenient one in some sense, analogously to Observation 1.2.1.

Observation 1.2.2 ([60, Section 2.2, p.137]). In some cases, the elimination tree
T pLq can be in fact an elimination forest, i.e., constructing the graph using (1.3)
results in several rooted trees. This can occur if and only if one of the columns
of the Cholesky factor has no off-diagonal nonzero entries. It is possible that this
cannot happen if A is irreducible. Hence, throughout this thesis is T pLq assumed
to be a rooted tree.

14

Having the elimination tree, it is easy to define the j-th subtree for 1 ď j ď n
as the the subtree of T pLq rooted in vertex j, denoted by T rjs. Another notion
commonly used in this area is the ancestor of a vertex as a generalization of the
term parent. The vertex i is an ancestor of the vertex j, provided that there are
vertices k1, . . . , kl such that

k1 “ parentpjq, k2 “ parentpk1q, . . . , kl “ parentpkl´1q, j “ parentpklq.

In other words, there is an oriented path in the elimination tree from one of
the vertices to another (and the orientation is important). As stated above, the
elimination tree is a powerful tool to determine the structure of the Cholesky
factor as it completely captures the structure of the fill-in propagation during the
factorization as is highlighted in the following theorem.

Theorem 1.2.2 ([32, Theorem 3.1, Theorem 3.2]). Let A be an n-by-n SPD
matrix with the Cholesky factorization A “ LLT and denote the elimination tree
of A by T pLq. Then lij ‰ 0 if and only if at least one of the following holds.

• aij ‰ 0;

• The vertex j is an ancestor of some vertex k in T pLq such that aik ‰ 0.

On the other hand, each nonzero entry aik creates a sequence of (potential) fill-in
in the i-th row in columns corresponding to the ancestors of the vertex i in the
elimination tree T pLq.

The result of the Theorem 1.2.3 can be further reformulated to provide a deeper
insight as well as a computational tool to take advantage of the elimination tree.
In order to do so it will be useful to introduce yet another definition - the structure
of a given vector. Given a vector x P Rn, the vector Structpxq is defined as set
of indices of nonzero entries in x. For example, considering x “ p´1, 0, 0, 3, 0qT ,
one has Structpxq “ t1, 4u. The key is the observation that fill-in process does
not propagate (or copy) only the nonzeros in the i-th row, but rather the entire
nonzero structure of the k-th column below the i-th row.

Theorem 1.2.3 ([32, Theorem 2.5], [60, Theorem 3.6]). Let A be an n-by-n SPD
matrix with the Cholesky factorization A “ LLT and consider the elimination
tree T pLq. The (nonzero) structure of the j-th column of the Cholesky factor L
of A is equal to the lower-triangle structure of the j-th column of A united with
the structure of already computed columns kl of L such that j “ parentpklq, from
row index j below. In short, one can write

StructpL˚,jq “ StructpAj:n,jq
ď

˜

ď

j“parentpkq

StructpLj:n,kq

¸

The above result is sometimes called the column structure replication and is key
for structural computations. However, in some instances, one might not have
the elimination tree available. Therefore, another reformulation may be useful.
Namely, one can write

StructpL˚,jq “ StructpAj:n,jq
ď

¨

˝

ď

kPStructpLj,1:jq

StructpLj:n,kq

˛

‚. (1.4)

15

This reformulation allow us to avoid traversing through the elimination tree struc-
ture, i.e., through the parent vector, provided we know the structure of the j-th
row of L. This also makes the term column structures replication more visible,
see Figure 1.6.

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ˚ ˚ ˚ ˚

2 ˚ ˚

˚ 3 ˚ ˚

4 ˚ ˚ ˚

˚ 5 ˚

˚ ˚ 6
7 ˚

˚ ˚ ˚ 8
˚ ˚ ˚ 9

˚ ˚ ˚ 10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
2

˚ 3
4
˚ 5

˚ ‚ ˚ ‚ 6
7

˚ ‚ ˚ ‚ ‚ ˚ 8
˚ ˚ ˚ ‚ ‚ 9

˚ ˚ ˚ ˚ ˚ ‚ ‚ ‚ 10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 1.6: Consider the 10-by-10 sparse matrix (left) and its Cholesky factor
(right), where the fill-in entries are highlighted by the symbol ‚. The right-hand
side of the Figure illustrates the column structures replication in the sixth step
of the Cholesky factorization.

This naturally leads to the definition of the j-th row subtree Trrjs of T pLq, which
is the subtree of T pLq consisting of vertices StructpLj,1:jqq. Let us point out
here the difference between the j-th rooted subtree T rjs and the j-th row subtree
Trrjs. Due to Theorem 1.2.2 we easily obtain Trrjs Ă Trrjs. However, the equality
usually does not take place as illustrated in the Figure below.

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
2

˚ 3
4
˚ 5

˚ ‚ ˚ ‚ 6
7

˚ ‚ ˚ ‚ ‚ ˚ 8
˚ ˚ ˚ ‚ ‚ 9

˚ ˚ ˚ ˚ ˚ ‚ ‚ ‚ 10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

1

2

3

4

5

6 7

8

9

10

T pLq

Figure 1.7: Consider the same 10-by-10 sparse matrix as in Figure 1.6. Its
Cholesky factor is on the left (the fill-in is highlighted by the symbol ‚). On
the right is the elimination tree T pLq. The 9-th rooted subtree T r9s contains
vertices t1, . . . , 9u, whereas the 9-th row subtree is highlighted and contains only
vertices t2, 3, 5, 6, 8, 9u.

Also, it might not be quite obvious at the first sight that vertices corresponding
to StructpLj,1:jqq form a rooted subtree of T pLq but this can be easily observed
from Theorem 1.2.2 and Theorem 1.2.3 as well. For further references one can
consult either [60] or [32]. The main contribution of row subtrees lies in the

16

formulation above, i.e., as long as we can cheaply obtain the row subtrees (in fact
their leaves already characterize the whole tree), the above formula (1.4) can be
used to quickly determine the nonzero structure of the j-th column.

Hence, the important question is, whether one can cheaply compute the leaves
of the row subtrees. Another related issue that has not been adressed is how to
construct the elimination tree itself. Note that T pLq has been defined using the
Cholesky factor L, which is not available in advance. Considerable amount of
work has been devoted to this problem and we omit this topic here simply not
to stretch into too many directions. Nonetheless, this topic is considered quite
in-depth in the paper of George [32, Section 4-7]. The row subtrees are considered
in detail in [32, Chapter 3].

1.2.2 Fill-in and reorderings
In the previous subsection we mentioned how the fill-in in the Cholesky factor-
ization can be analysed by means of the graph theory. The natural following step
is to use the analysis to reduce or minimize the amount of the fill-in. The well-
known arrow matrix example and its fill-in minimizing permutation are shown in
Figure 1.8.

A “

»

—

—

—

—

–

˚ ˚ ˚ ˚ ˚

˚ ˚

˚ ˚

˚ ˚

˚ ˚

fi

ffi

ffi

ffi

ffi

fl

F “ L ` LT
“

»

—

—

—

—

–

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

–

˚ ˚

˚ ˚

˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

F̃ “ L̃ ` L̃T
“

»

—

—

—

—

–

˚ ˚

˚ ˚

˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

Figure 1.8: The first row shows the original matrix A and the fill-in matrix
Ap5q of its Cholesky factor. The second row considers the same matrix, that is
symmetrically permuted by switching the first and the last columns and rows as
well as its fill-in matrix.

Having an n-by-n SPD matrix A, the basic idea is to apply symmetric permu-
tation to the matrix A, i.e., find a suitable n-by-n permutation matrix P and
factorize PAP T instead of A as shown above in Figure 1.8. In practice, one
usually gets the permutation matrix at the first step of the symbolic part of
the Cholesky factorization. It is important to bear in mind that finding the
fill-in minimizing permutation is in general NP-complete problem for a general
structurally symmetric matrix (see [22, Section 2.7.4, p. 84]) and one needs to
consider heuristic procedures to minimize the fill-in. Among the most popular
approaches are, e.g., minimal degree reorderings, nested dissection reordering or
reverse Cuthill-McKess reordering, see [8, Section 3.3, p.437]. Once again, this
area of research as a whole goes far beyond the scope of this text and we will not
consider it in more details.

17

To conclude this section, we present a left-looking column-oriented struc-
turally sparse version of the Algorithm 2 without symbolic considerations. Algo-
rithm 2 would be ridiculously inefficient even for a structurally sparse input.

Algorithm 3 Structurally sparse column-oriented left-looking Cholesky factor-
ization

Input: A square n-by-n SPD matrix A.
1: function schol
2: Determine a permutation matrix P ;
3: Determine the structure of the resulting factor L;
4: In particular, determine the row and column

structures StructpL˚jq, StructpLj˚q;
5: for j “ 2, . . . , n do
6: lj´1,j´1 Ð

?
aj´1,j´1;

7: for s P StructpLj:n,jq do
8: ls,j´1 Ð

as,j´1
lj´1,j´1

;
9: end for

10: for k P StructpLj,1:j´1q do
11: for i P StructpLj:n,kq do
12: aij Ð aij ´ ljklik;
13: end for
14: end for
15: end for
16: Return the factor L;
17: end function

1.3 Iterative methods and preconditioning
The previous section was devoted to the Cholesky factorization for the structurally
sparse matrices, yielding substantially more efficient procedures for solving the
linear systems. Indeed, the Cholesky factorization (regarded as a direct method
for solution of Ax “ b) is used in many cases in practice, mainly because of
its robustness and predictable time and memory requirements. Nonetheless, for
an increasing amount of problems the method is simply not feasible due to its
poor scalability with respect to the ever growing dimension of many problems.
For such problems (not exclusively), either an iterative method or perhaps a
multigrid method is a natural choice of a numerical method for solving Ax “ b.
The multigrid methods will not be considered in this text, though they are very
popular for particular applications (see, e.g., [13]). But note that a typical way
to use multigrid methods is to consider them as auxiliary procedures to improve
the behaviour of the iterative methods as we will mention later on. On the other
hand, the iterative methods, and the Krylov subspace methods in particular, open
new ways how to utilize the Cholesky factorization and its approximations, in
particular. The following section will be refering mainly to the book of Liesen
and Strakoš [58], when it comes to the Krylov subspace methods and to the survey
paper of Benzi [8], regarding the preconditioners.

The best-known iterative method in the modern history is without any doubts

18

the conjugate gradient method (CG). This method was introduced almost simul-
taneously by Hestenes and Stiefel [49] and Lanczos [57] and was at first regarded
as a direct method. Only after twenty years or so, the method gain a large amount
of interest in the numerical comunity (see the very important paper of Reid [67])
and started the skyrocketing development of the Krylov subspace methods, con-
tinuing with the methods as MINRES and SYMMLQ by Paige and Saunders [64]
, the GMRES method by Saad and Schultz [71] or the Bi-CGSTAB method by
van der Vorst [81]. As this text deals exclusively with square SPD matrices, we
will restrict ourselves to the CG method, described in the Algorithm 4 below
(see [58, Algorithm 2.5.1, p.41]).

Algorithm 4 The Conjugate Gradient Method
Input: A square SPD matrix A, right-hand side vector b, initial guess x0,
maximal number of iterations kmax, stopping criterion.

1: function CG
2: Initialize: r0 “ b ´ Ax0, p0 “ r0.
3: for k “ 1, 2 . . . , kmax do
4: αk´1 Ð }rk´1}2{pT

k´1Apk´1;
5: xk Ð xk´1 ` αk´1pk´1;
6: rk Ð rk´1 ´ αk´1Apk´1;
7: Stop the iteration provided the stopping criterion is satisfied;
8: ωk Ð }rk}2{}rk´1}2;
9: pk Ð rk ` ωnpk´1;

10: end for
11: Return the approximation xk of the solution of Ax “ b;
12: end function

The theorem below summarizes some of the vital properties of the CG mathod
in exact arithmetic.

Theorem 1.3.1 (The CG method, [58, Theorem 2.3.1, p.23]). Let A be an n-by-
n SPD matrix, b P Rn a given right-hand side vector and x0 P Rn a given initial
guess of the solution Ax “ b. Consider the initial residual r0 “ b ´ Ax0 and for
k “ 1, 2, . . . define the k-th Krylov subspace associated with A and r0 as

KkpA, r0q “ span
␣

r0, Ar0, . . . , Ak´1r0
(

.

The CG method at the k-th step yields an approximation xk to x such that

x ´ xk KA KkpA, r0q,

or, equivalently,
}x ´ xk}A “ min

zPx0KkpA,r0q
}x ´ z}A,

where } ¨ }A is the so-called energy norm given by A, induced by the energy inner
product given by A, i.e., }v}2

A “ xv, vyA “ vT Av. The orthogonality in the first
characterization is considered with respect to the A-inner product x¨, ¨yA.

19

The performance of this method is usually measured by the convergence rate, i.e.,
by the quantity }x´xk}A{}x´x0}A (for theoretical purposes) or by }rk}{}r0} (of-
ten used in the actual computation). Both of these quantities are closely related
to the distribution of the eigenvalues of A. The usual beneficial property of A
that suggests a good performance of CG is having a very small condition number.
A natural idea to improve the convergence is to transform the matrix A so that
the transformed one has considerably decreased condition number. This trans-
formation is in the terminology of the iterative methods called preconditioning
and corresponds to one of the following transformation.

• left preconditioning using a regular n-by-n matrix M :

M´1Ax “ M´1b;

• right preconditioning using a regular n-by-n matrix M :

AM´1y “ b and x “ M´1y;

• split preconditioning using regular n-by-n matrices M1, M2:

M´1
1 AM´1

2 y “ M´1
1 b and x “ M´1y.

The matrix M (or matrices M1 and M2) is called left or right preconditioner (or
split preconditioners), respectively. In practice, one usually obtains M rather than
M´1 and therefore reformulates applications of M´1 as a linear problem involving
the matrix M and a particular right-hand side. Combining this transformation
with the CG method, i.e., assuming preconditioned CG, one can see that in each
iteration one has to solve a linear system, if M´1 is not provided explicitly. This
implies that solving problems with matrix M needs to be very fast in order to
have a competitive method. On the other hand, M needs to capture well the
spectral information of A in order to fulfil the original goal, i.e., to decrease the
conditional number of the matrix of the preconditioned system and/or cluster the
eigenvalues of that matrix, hopefully around 1. Note that those two properties
required from M (or M1 and M2) are competing with each other and one has to
strive for a suitable balance of those two requirements.

Some of the possible ways how to obtain such matrices, commonly used in
practice, are considered in the following section.

1.4 Preconditioners
Focusing on the case of preconditioned conjugate gradients method, an important
observation is that if one would like to use preconditioner for the CG method, the
preconditioned system has to be SPD again. A possible way to ensure this is to
consider split preconditioned CG and take M1 “ L, M2 “ LT (or any M1 “ MT

2
regular in general). In practice the preconditioner can be applied as right (or left)
preconditioner with M “ LLT . The equivalence guarantees the positive definite-
ness and symmetry of the right (or left) preconditioned system and justifies the
usage of the CG method. For detailed reasoning see, e.g., [70, Section 9.2].

20

Assuming A “ LLT is the Cholesky factorization of A, it is easy to observe
that taking M1 “ L, M2 “ LT as the split preconditioners results into a system
with identity matrix. It is also easy to check that this exactly split preconditioned
CG will converge in one iteration. On the other hand, the purpose of the iterative
methods is to avoid the computation of the complete Cholesky factorization, i.e.,
avoiding the direct method. Consequently, one can try to only approximate the
complete Cholesky factorization, i.e., alter the algorithm so that the computation
is significantly cheaper but at the same time the preconditioned matrix is close
to the identity matrix, or at least will enjoy of the key properties mentioned
previously, at least to some extent. One usually refers to such technique as to the
incomplete Cholesky factorization and it is one of the most common and easiest
ways to obtain a preconditioner for a given problem.

Since the method of conjugate gradients has become extremely popular, there
is an immense amount of preconditioning techniques, based on plethora of differ-
ent approaches and viewpoints of the original problem. The center of this sub-
section is to point out the classical, widely used ways of preconditioning, while
briefly mentioning other possibilities as well. The references are mainly from the
survey paper by Benzi [8], Chapter 3 in particular, and the works cited there.

1.4.1 Cholesky-based preconditioners
The commonly used idea is to drop some elements of the factor L during the
computation and thereby obtain a matrix L̄, the incomplete Cholesky factor L̄
such that L̄ « L. The challenges are, among others, to determine the criterion
according to which the entries will be kept or dropped and also to establish the
existence and stability theory, as the dropping makes the so far presented re-
sults not applicable. In particular, breakdowns may occur, i.e., diagonal elements
may become zero or negative during the incomplete factorization, resulting in a
preconditioner that is not SPD.

There are several different ideas how to determine the dropping criterion, but
one always needs to bear in mind that the resulting factor L̄ has to be nonsingular
in order to keep the SPD property for the preconditioned system

L̄´1A
`

L̄´1˘T
y “ L̄´1b and

`

L̄´1˘T
y “ x.

The most commonly known method to obtain an incomplete factorization is
the level of fill-in method. Each entry of the original matrix is assigned an integer
defining its level as

levij “

"

0, aij ‰ 0 or i “ j
8, otherwise

And each time an element is modified by the classical Cholesky factorization (see
Algorithm 2, 3) its level levij is updated to

levij “ mintlevij, levik ` levkj ` 1u.

The integer levij represents how many level of fill-in were used to fill-in this
particular entry of the Cholesky factor. The incompleteness is then imposed by
assuming only entries up to some fixed level.

21

lij Ð 0, for all pi, jq such that levij ą p.

The classical notation is ICppq standing for incomplete Cholesky factorization of
p-th level.

A different approach is to impose a certain sparsity structure to the Cholesky
factor (given by the user) and whenever an entry outside the pattern should be
filled-in it is dropped instead. Both of these methods can be effective in many
cases, but in general they are held back by the independence on the values of the
entries and also by reappearing possibility of a breakdown.
A possible alternative is to introduce a drop tolerance τ ą 0 and during the com-
putation drop any entry of the (approximate) Cholesky factor that has absolute
value smaller than τ - either absolutely, i.e., in the elimination of the i-th row (or
column), a fill-in aij is accepted if and only if

|aij| ď τ,

or relative to the rest of the considered row or column, i.e., in the elimination of
the i-th row (or column), the entry aij is discarded if and only if

|aij| ď τ}Ai,˚}.

Instead of the row (or column) norm one can also use only the diagonal element
norm, i.e.,

|aij| ď τ |aii|. (1.5)
This approach can be backtracked back to paper of Jennings and Tuff [79] and
have been later proven to be quite useful, especially for some classes of matrices,
e.g., M -matrices10. This criterion can be coupled with requiring only some fixed
amount of fill-in in each row or column. The resulting preconditioner can be
quite powerful, but it requires two user-defined parameters that heavily affect
the performance of the preconditioner.

A possibly better option than simply discard the dropped entries is to add
their absolute value to the diagonal entry, arriving at the so-called modified in-
complete Cholesky factorization. This can substantially improve the performance
of the preconditioner in practice as well as allowing for some theoretical results,
e.g., one can show in some cases that such incomplete factorization is breakdown-
free.

Different possibility is to establish an incomplete Cholesky factorization theory
(based on one of the previous ideas) only for certain class of matrices, for which
there are promising theoretical results. For matrices outside the class, one can
first take approximation Â from the considered matrix class and then carry out
the incomplete factorization L̄L̄T « Â. This has been done for, e.g., M -matrices
or H-matrices11 (therefore also diagonally dominant matrices as a special case of
H-matrices).

10Matrices that has all nondiagonal entries nonzero and their inverse exists and has all entries
nonnegative.

11Matrices, for which there exists an M -matrix so that those two have equal diagonal elements
and the off-diagonal elements of the H-matrix are given by the negative magnitude of the entries
of the M -matrix.

22

1.4.2 Alternative approaches
All of the above mentioned approaches were based on the classical Cholesky factor-
ization computation, i.e., Algorithm 2, 3. The difference is in the dropping crite-
rions inside the algorithm. There are also qualitatively different approaches such
as robust inverse factorization methods (RIF) based on the A-orthogonalization
process (see [9, Chapter 3]), sparse approximate inverse methods based on directly
approximating the inverse A´1 (see [9, Chapter 5]) or Schur complement-based
methods that exploit a different formulation of Algorithm 2, namely the subma-
trix one (see [9, Chapter 5,6]).

The preconditioners need not to be constructed only in purely algebraic way.
Search for analytical preconditioners for particular problems can usually outper-
form the general preconditioners, see [30]. In general, focusing on linking the
algebraic preconditioner back to the original infinite-dimensional problem is a
powerful tool for better analysis and understanding of the preconditioning process
overall, see [61]. One can also use the mentioned multigrid methods as precondi-
tioners for the CG method. The preconditioner is for this purpose generalized to
any routine or procedure that transforms the input vector u to an output vector v
so that Au « v. This routine is then called in each iteration of CG instead of the
solver for the classical preconditioning, see [78].

A completely different idea is to use the complete Cholesky factorization as in
Algorithm 2, but in different precision, i.e., computing the preconditioner using
either single or even only half precision (eight and four valid digits respectively)
and then use the result as a preconditioner in double or quadruple precision CG,
see [15].

As one can see, the amount of new ideas is still increasing, although the idea
of preconditioning is quite old12. This work will hopefully add another drop into
the ocean by exploring a particular algebraic preconditioning technique, based on
data-sparsity and column-oriented Cholesky algorithm. However, it is important
to stress out that there is quite a lack of understanding of the effect of most of the
currently available preconditioners. Detailed analysis of the techniques in terms
of efficiency of the preconditioned CG is lacking or it is unsatisfactory in most
cases, posing new challenges and questions.

As mentioned above, it is common for the complete sparse Cholesky factoriza-
tion to symmetrically permute A prior to the incomplete factorizations in hope of
minimizing the fill-in or to achieve a particular structure of the factor. However,
the interaction of the reordering and the incomplete factorization is neither easy
nor a well-understood matter. In many cases the reordering has a devastating
effect on the performance of the resulting preconditioner in comparison to the
one without the prior reordering. This phenomenon is characteristic, for exam-
ple, for the fill-in minimizing reorderings coupled with zero-level fill-in incomplete
Cholesky, see, e.g., the paper of Duff and Meurant [24]. Indeed, minimizing the
amount of the fill-in intuitively means that each of the present fill-in entries car-
ries more information. Consequently, dropping those may be more harmful than
dropping more entries in the original ordering of the matrix. For more detailed
discussion see [9, Section 3.3].

12In [9], Benzi ties the origins of the concept of preconditioning to Jacobi and his paper from
1845. The term preconditioning in the contemporary sense was according to Benzi used first
Evans in 1968.

23

2. The need for approximation
The previous chapter recapitulated several well-known methods for tackling sys-
tems of linear algebraic equations, including the preconditioned CG method. As
we have already mentioned, the goal of this work is to combine the techniques
used in data-sparsity and structurally sparse preconditioning together, hopeful to
obtain a preconditioner that inherits the positive features of both. To do that, an
overview of techniques that are commonly used to handle the data-sparse matrices
is in order. Since the data-sparsity and the blockwise rank-deficiency theory are
not quite as well established as the classical structural sparsity theory, a separate
chapter will be devoted to that. This chapter will first comment on important
features of the area - the role of blocks and hierarchy in the methods - and then
particular methods and techniques of low-rank approximations and hierarchical
and non-hierarchical matrix formats will be described with more details.

2.1 The role of blocks
The idea of block formulation of the classical factorizations, i.e., idea of working
with submatrices instead of scalars, is much older than the data-sparsity area and
therefore the motivation was originally not the the low-rank approximation. For
the Cholesky, QR as well as LU factorizations have been proposed blocked ver-
sions, see [21]. There are several reasons why these versions have been becoming
increasingly more popular in practice.

It is key to realize that the numerical operations of a given implementation
are not the only time-consuming part of the computation. The data movement
and assignment during the actual computation also requires a certain amount of
time. As of now, the communication and data movement often pose a significant
bottleneck bottleneck of the computations of large scale problems (see, e.g., [14]).
At the present time, it is much more efficient to compute with matrices than with
scalars because of data movements and memory assignments. Arithmetic opera-
tions with matrix blocks instead of scalars require more computational time and
therefore the bottleneck of fetching and dispatching the data can be somewhat
relaxed. This comes hand in hand with parallelization of the computers and fore-
most the parallelization of the algorithms and the need for their reformulation. In
order to obtain efficiency, matrix blocks have to fit into the fast local memory of
the processors, i.e., the blocks have to be of moderately small size and structurally
dense. Without going into more details of (high-performance) computer archi-
tecture and parallelization, this has been an important argument for developing
block variants of the known algorithms. Another observed phenomenon that ad-
vocates the block algorithms is their numerical stability. The block versions of
basic factorizations as well as of other important procedures or algorithms have
experimentally proven to be often more stable, making them preferable also in
this direction.

This being said, one still needs to strive for efficient block algorithms. From
the point of view of techniques dealing with structurally sparse matrices, one
usually has to apply some (possibly symmetric) row and column reordering in
order to establish or enhance some block structure with dense blocks (in the

24

sense of only small number of zero elements) inside the matrix. A particularly
well-known and widely used example is the multifrontal method of Duff and Reid
(see [25]) for structurally sparse matrices and the theory and usage of supernodes
(not exclusively) in this method and other sparse decompositions (see [32, Section
6] and also [60] and the work cited there). However, it should be pointed out
that the multifrontal method is usually used as a direct method rather than a
preconditioning technique. Other blocking techniques have been proposed as
well, see, e.g., [69] and also [8, Section 3.4] and work cited there. Once the
matrix is permuted, the blocks often allow for close to peak level performances
and may make the process more robust as pointed out above.

The techniques working with blockwise rank deficient matrices (possibly struc-
turally dense) are centered around the blocks mainly because they approximate
the blocks by low-rank decompositions. This is usually captured by specific ma-
trix formats, where the format corresponds to a certain blocking of the matrix
such that ranks of the blocks are uniformly bounded by some small constant pmax.
This further enhances the advantages mentioned for the structurally sparse ma-
trices to a considerable degree, see, e.g. [46]. At the same time one automatically
introduces an approximation error (although possibly small), which makes the
solution of the new system always only an approximation to the original one.
Consequently, these techniques are often used only as preconditioners or possibly
direct methods in cases where the required accuracy is not too high. Also, the
blocking techniques are often more complex and case dependent as they have to
fetch not only dense but also rank deficient blocks.

2.2 The role of hierarchy
The data-sparse or blockwise low-rank class of matrices have attracted a lot
of attention also thanks to the concept of the hierarchical techniques, e.g., H-
matrix and H2-matrix formats1. However, the idea of incorporating hierarchy
and recursion into the model is again much older.

There are many examples of methods working with structurally sparse ma-
trices and using hierarchy or recursion. Some of them are not strongly related
to the preconditioning, e.g., multigrid methods [13], some other are often used
as preprocessing for either direct method or a preconditioner construction, e.g.,
nested dissection reordering [31] and some are designed to construct a precondi-
tioner, e.g., the multilevel ILU preconditioners, see, e.g., [72] for brief overview
and more elaborate references in Section 1.4. The overall goal is often to in-
troduce as much parallelism into the computation as possible and reduce the
communication necessary by making it hierarchical.

As was already pointed out, the data-sparse techniques are usually based on
(or at least very tightly tied to) the hierarchy and recursion, aiming for simi-
lar goals as above, i.e., parallelism and reduction in the communication. This
has been quite successful in many cases as the hierarchy and the blockwise rank
deficiency can together arrange for almost linear2 complexities for the basic op-
erations. Due to a rather specific structure of the used matrix formats, the

1The calligraphic H stands for hierarchical.
2Almost linear linear complexity refers to complexity of Opn logα

pnqq for some small α.

25

techniques to compute a preconditioner for a matrix in such a format are almost
all recurrent, utilizing, e.g., the Schur complement formulation of the Cholesky
factorization , see [83], or [56] and related works mentioned there, but other op-
tions are available as well, see [43] and [42] for recurrent schemes based on the
row-oriented Cholesky scheme. Simultaneously with the theory, the development
in the implementation and parallelization took place as well. That resulted in
number of libraries that focus on particular hierarchical structures in matrices,
e.g., STRUMPACK library by Chysels et al. (see [34] and also [35] and [68]) and
also H-Lib by Kriemann et al. (see [56]).

As one can see, hierarchical preconditioners (not necessarily the data-sparse
ones) often incorporate incompleteness by inexact or different arithmetic or by
applying the “classical incomplete techniques” (e.g. threshold dropping) at the
bottom level of the hierarchy. Analysis of the preconditioners has consequently
become quite challenging, even in exact arithmetic, as a result of the non-linearity
of the scheme. Let us also emphasize that the hierarchy and recursion make
the methods qualitatively different from the common preconditioning techniques
based on either column- or row-oriented Cholesky factorization.

In some cases, the hierarchy and recursion can be omitted, emphasizing the
blockwise low-rank setting. This is the approach we want to explore here. Some
work in this direction has been done already, e.g., low-rank updates in the mul-
tifrontal method, see [3], but overall this branch of methods offers still a lot of
challenges.

2.3 Algebraic low-rank decompositions and ap-
proximations

There are many obvious instances, where one can exploit algebraic low-rank ap-
proximations, e.g., numerical range approximation [47], approximation of dom-
inant eigenpairs or singular triplets [47], or, in general, time and memory costs
reduction [6]. The favourable interpretation of these methods can differ from one
application to another to some extent. On the other hand, the way the methods
achieve the goal can differ a lot from applying suitably changed versions of ba-
sic algorithms (truncated SVD, RRQR and RRLU) through applying heuristic
models (ACA, ACA+) to non-deterministic approaches that bring randomness
by employing results from the probability theory (randomized techniques). Nat-
urally, accuracy, robustness and time/memory costs vary from one approach to
another and they are the deciding factors when it comes to choosing a particular
method for a given setting.

Rank-revealing decompositions Methods in this group have been developed
from the previously mentioned (basic) decompositions (SVD, QR and LU) to
reveal the numerical rank of a given matrix. The simplest method to derive
(and the most expensive one in terms of computation costs) is the truncated
SVD. This method is a trivial consequence of the Young-Minsky Theorem (see
Theorem 1.1.1) about the best p-rank approximation of a given matrix. The
truncated SVD corresponds to approximating the matrix A “ UΣV T by UΣpV T

as in Theorem 1.1.1. The rank p of the approximation is set by some problem-

26

dependent accuracy threshold ε so that σp ąą σp`1 « ε or possibly σp`1{σ1 « ε.
The obvious disadvantage of this approach is the number of operations required,
which for general m-by-n matrix amounts to O pmn minpm, nqq. This might be
unimportant for small problems (e.g., coming out of discrete inverse problems,
see [48, Chapters 1-3]). But for many problems, this cost makes the truncated
SVD often not feasible. Nonetheless, it stays to be an essential tool for the error
analysis of other low-rank methods.

It has been mentioned that the two other decompositions can also reveal
the numerical rank. If the matrix is exactly rank-deficient, one could arrange
its columns (and rows) so that the bottom-right-most block of R (in the QR
factorization) or U (in the LU factorization) is zero. When it comes to only
numerically rank-deficient matrices, a natural idea is that the matrices R and U
should have the bottom-right-most block only nearly zero compared to its upper-
left-most square block. Algorithms to obtain such decompositions are called
rank-revealing, i.e., one gets rank-revealing QR (RRQR) and rank-revealing LU
(RRLU) factorizations. The above idea can be formulated precisely. For example,
RRQR corresponds to the following scheme.

Lemma 2.3.1 (RRQR, [52, Lemma 1.2]). Consider an m-by-n matrix A (m ě n)
and its QR-decomposition A “ QR with

R “

„

R11 R12
0 R22

ȷ

,

with R11 being square p-by-p matrix. If σminpR11q ąą }R22} « ε, then A has
numerical rank p.

The essence of the rank-revealing algorithms lies in finding a suitable permutation
matrix (or matrices) so that the classic algorithm (either QR or LU) applied to
the permuted matrix will end up with the bottom-right-most block having a small
norm in the sense above. Unfortunately, both RRQR and RRLU are computa-
tionally demanding, requiring asymptotically Opmn minpm, nqq operations. The
algorithms and their analysis were developed around 1990’s and for more details
see, e.g., [16], [52], [65], [45] but also [38] and the references cited there.

CUR or pseudo-skeletal decomposition The pseudo-skeletal decomposition
(also known as CUR decomposition) uses a different approach. Assume that an
m-by-n matrix A has rank p and that its first p columns and also its first p rows
are linearly independent. Let A be partitioned as

A “

„

U R
C M

ȷ

, (2.1)

with U being a regular p-by-p square matrix. Then it is easy to show that in
fact A “

„

U
C

ȷ

U´1 “U R
‰

(see, e.g., [2, p.8 (2.9-2.11)]). This group of methods is
based on the following extension of this result for the numerical rank by Goreinov,
Tyrtyshnikov and Zamarashkin. Its statement follows.

27

Lemma 2.3.2 (CUR, [41, Theorem 3.1 and Corollary 3.1]). Consider an m-by-n
matrix A and some ε ą 0. Assuming that the ε numerical rank of A is p, then
there exist p columns of A
forming an m-by-p matrix C, p rows of A forming an p-by-n matrix R
and a square p-by-p matrix G such that

}A ´ CGR} ď ε p1 `
?

pn `
?

pmq .

However, the theorem does not give a computational way how to find the matrices
C, R and G. Some results in this direction are known, aiming at choosing the
columns and rows so that U has as large absolute value of the determinant as
possible. The problem of choosing such rows and columns is an NP-hard problem
(see [18]). Consequently, some greedy approaches are following this direction
with mixed results, see, e.g., [7, Section 2, Lemma 2 - 5] or [80, Section 4]. In
the end, the most popular methods are based on heuristics derived from the
result A “ CU´1R (in case rankpAq “ p). The basic method is called cross
approximation (CA) and proceeds as follows.

Assuming we have already constructed the matrices C, U and R of dimensions
m-by-k, k-by-k and k-by-n respectively as in 2.1, the question is which row and
column to include into the current approximation next. The CA method first
finds the largest entry (in absolute value) in the remaining part of A (columns
and rows that have not been added yet) and then adds the column and row
determined by this entry to C and R and update the middle matrix G “ U´1,
where U is again formed by the mutual elements of the considered rows and
columns as in (2.1). As for the implementation, one does not assemble G, but
only updates the matrix U and then solves a linear systems instead of applying
G. The procedure is repeated until either the required accuracy is reached or
until the number of columns (rank of the approximation) has reached some fixed
a-priori given bound pmax. The CA method can be linked to the classical LU
factorization, see [6, Algorithm 1, p. 576].

The search for the largest entry is computationally demanding, which leads
to modifications that are cheaper, but with no performance gurantees. Among
the best-known variations are adaptive cross approximation (ACA) and improved
adaptive cross approximation (ACA+). The ACA method searches for the largest
entry only in a random subset of the columns and adaptively determines the rank
p based on some a-posteriori bounds on the approximation error. The ACA+
method uses a slightly more sophisticated way of determining the starting column
subset. Although no guarantee is here in general (regarding the approximation
quality), the counterweight is the low number of operations needed. For the above
mentioned methods, one can find simple examples that shows Opmnq operations
is necessary (see [12, Chapter 4]), but in many practical cases one can obtain
good results after Opp2pm ` nqq operations. For more detailed overview one can
see, e.g., [2, Section 2.1.1], [12, Chapter 4] and also the work of Bebendorf and
his colleagues [6] and [7].

Iterative approaches Not surprisingly, iterative methods have been consid-
ered to provide a low rank approximation as well, although they are not as popular
at the moment. The summary for this class of methods in the overview paper
of Kressner and Ballani [5, Section 2.3, p.9] is the following. Given an n-by-n

28

matrix A, one can apply the first k steps of Golub-Kahan-Lanczos iterative bidi-
agonalization process [40, Sect. 9.3.3, p.495] to obtain an k-by-k upper bidiagonal
matrix Bk and p-by-n matrices Uk, Vk with orthonormal columns such that

AVk “ UkBk.

Then one can compute the truncated singular value decomposition Bk « pU pΣp
pV T

and form the rank p approximation Ap of A as

Ap “ Uk
pU pΣp

pV T V T
k .

For further details, including error bounds and numerical examples, one can see
the above mentioned work of Ballani and Kressner. A similar approach can be
utilized also for other projection processes, e.g., Lanczos or Arnoldi (see [58,
Chapter 2]). Although the iterative approaches are not as widely used as some
other approaches, the idea of first projecting the matrix to reduce the dimension
first is a useful one.

Randomized techniques The use of randomness in linear algebra has become
increasingly popular, as it can significantly improve the numerical stability and
robustness in many cases. The progress in the field was nicely summarized by
Halko, Martinsson and Tropp [47] in 2011. Here one can find most of the im-
portant results in one place, supplemented by necessary theory and numerical
examples.

The basic idea is based on approximating the numerical range of a square
n-by-n matrix A and then projecting A onto this space, see [47, Proto-algorithm,
Section 1.3, p. 224]. First, one takes a random Gaussian matrix 3 Ω and computes
Y “ AΩ. This is followed by the QR factorization Y “ QR, i.e., extraction of the
orthonormal base of the range of Y , and finally one forms the approximation rA :“
QQT A, i.e., orthogonal projection of A onto the range of Y . Using the scheme of
Figure 1.1, rA is in a low-rank format with U “ Q and V T “ QT A. Consequently,
if one aims for p rank approximation, then it should hold rankpY q “ rankpΩq « p.
Randomized approximation of the SVD is also available by computing SVD of
QT A “ pU pΣpV T and setting rA « QpU pΣpV T , see [47, Section 1.5, p. 226].

In practice one almost always uses so-called oversampling (see, e.g., [47, The-
orem 1.1, p. 225]), i.e., aiming at rank p approximation, one takes Ω as an n-by-
pp ` kq gaussian matrix, where k is the oversampling factor (usually k “ 5 „ 10).
This oversampling can dramatically improve the performance, e.g, increase the
probability, with which the result is very close to the solution. The performance
can be further improved by applying A (or AT A for nonsymmetrical case) to Ω
multiple times, with possible reorthogonalization in between, building on results
of the power method and QR algorithm (see , see [47, Section 1.5, (1.8 - 1.9), p.
225]). In general, one could also use not only powers of those matrices but poly-
nomials in A or AT A. Overall, randomized techniques seem to be very robust
and also relatively modest in terms of time complexity, see [47, Section 1.4.1,
p. 224]. For more details, one can see not only the mentioned work of Halko,
Martinsson and Tropp, but also the references therein.

3Gaussian matrices are such that have all their entries identically independently distributed
corresponding to the Gaussian (normal) distribution

29

2.4 Data-sparse block matrix formats
The second group of methods - Techniques of effective discretization and data
storage - consists of matrix block-partitioning schemes that enable exploitation
of the blockwise low-rank nature of the matrix. The partitionings are either hier-
archical, meaning that the block-partitioning has a certain recursively repeating
structure (e.g., H, H2-matrix formats), or non-hierarchical or flat, meaning that
the blocks of the partitioning were not chosen in such a way (e.g., BLR format).
The goal of these methods is to partition the matrix into blocks (possibly after a
suitable permutation of the matrix in order to discover the block structure first)
so that all of them have rank at most pmax, where pmax is fixed in advance. This
significantly reduces the memory requirements. It can also introduce new ways
for parallelism and decrease time and memory costs even more.

Intuitively, in order to achieve efficiency, the original matrix has to be data-
sparse in the first place, so that the introduced error is modest. And indeed, these
techniques become very efficient, provided the structure they impose is already
present in the matrix (or possibly in its factors or inverse, depending on what
we will decide to approximate). To validate a particular blocking (in the sense
of presence of the low-rank blocks), one often needs to return to the real-world
problem, its infinite-dimensional model and the discretization scheme and analyse
all of these together. For example, by neglecting (some of) the weak or inferior
interactions inside the real-world model. A practical example is to neglect the
diffusion effect far from the source or to neglect coulombic interaction of two
charges far away from each other. Then one can obtain the rank-deficiency in
some blocks of the matrix. This can be made more specific considering particular
integral equations or PDE formulation of the problem and particular discretiza-
tion scheme, e.g., Lagrangian or Gaussian quadrature rule or finite elements or
finite differences scheme. Then one can prove useful statements for a certain
blocking scheme in certain applications, see [12] or the already mentioned paper
of Greengard and Rokhlin [44]. One can sometimes find the expression analyti-
cal low-rank methods depicting the particular discretization schemes that should
yield a data-sparse matrix for classes of problems, see, e.g., [2, Section 2.1.2] or
[12, Chapter 3 and 5]). Even though these techniques are often the key to effec-
tive usage of the formats and in many cases have been the motivation for their
development, they will not be discussed here and the interested reader may look
into the above mentioned works for references.

If there is no a-priori information about the matrix or the matrix come from
completely different area, the low-rank property can be on the matrix blocks im-
posed. The price to pay is a hardly predictable approximation error, which may
be quite large or at least definitely not negligible and can, and in many cases
does, destroy the efficiency. On the other hand, as mentioned above, our aim is
to use these techniques in the context of blockwise incomplete Cholesky precon-
ditioners. Therefore, the question of required accuracy is perfectly valid and is
yet to be fully explored. A different approach is to first compute the (blockwise)
low-rank approximations to some desired accuracy,. This in turn yields the rank
of the approximation pmax (not necessarily low), instead of imposing the rank
a-priori and uniformly.

30

2.4.1 Hierarchical matrix formats
As the above preview suggested, this paragraph focuses on the hierarchical matrix
block-partitionings. They can be introduced in many ways, but most of them can
be viewed in the framework of the cluster trees and block-cluster trees. We will
follow the exposition of the lecture notes of Börm, Grasedyck and Hackbusch,
see [12, Chapter 1 and 2]. The general idea is to introduce hierarchical partition-
ings of the column and row index sets, which in turn introduces block partitioning
of the matrix.

Starting with an n-by-n matrix A, one can define the rooted graph tree
with vertices corresponding to subintervals of t1, . . . , nu of natural numbers4 that
posses a hierarchical structure, i.e., such that it holds that

• the root corresponds to t1, . . . , nu;

• the union of the sons of a nonleaf vertex is equal to the vertex itself;

• the intersection of two vertices is empty if and only if one is not an ancestor
of the other.

Such trees are called labelled cluster trees and two particular examples for n “ 8
are given in Figures 2.1 and 2.2 below.

r1, 8s

r1, 4s r5, 8s

r1, 2s r3, 4s r5, 6s r7, 8s

t1u t2u t3u t4u t5u t6u t7u t8u

Figure 2.1: This figure shows the most natural label cluster tree T1 that cor-
responds to full binary tree for n “ 8. The intervals in the vertices are to be
understood in natural numbers, e.g., r1, 3s ” t1, 2, 3u, etc.

Given any labelled cluster tree T , one can construct a block-cluster tree, a tree
with vertices consisting of product of two index sets (note that product of two
index sets corresponds to some particular block in the original matrix). The idea
is to take the direct product tree T ˆ T , i.e., tree with root t1, . . . , nu2, in which
sons of each nonleaf vertex t ˆ s are given by product of sons of t and s in the
original cluster tree T . Having a block cluster tree, one can adopt the matrix
partitioning induced by the leaf vertices, i.e., partition the matrix to blocks given
by the leaves, see Figures 2.3-2.4 and Figures 2.5-2.6. Due to the hierarchical
demands above, such partitioning of t1, . . . , nu2 is always disjoint, i.e., the blocks
in the matrix partitioning do not overlap. However, this product might have large

4An interval of natural numbers is set of consecutive natural number, e.g., r1, 3s “ t1, 2, 3u.

31

r1, 8s

r1, 3s r4, 8s

r4, 6s r7, 8s

t1u t2u t3u

Figure 2.2: This figure gives an example of a less intuitive labelled cluster T2 tree
(yet perfectly valid with respect to the above conditions). The intervals in the
vertices are to be understood in natural numbers, e.g., r1, 3s ” t1, 2, 3u, etc.

number of leaves and the resulting matrix block-partitioning might be too fine in
the sense of yielding too small blocks. This could deny the rank deficiency if, e.g.,
most of the blocks ware 2-by-2 or 3-by-3. To address this issue, one can introduce
an admissibility condition and once a vertex t ˆ s P T ˆ T meets the condition,
its sons are discarded and the vertex is proclaimed a leaf (the vertex is then
said to be accepted or admissible). Such procedure creates the block-cluster tree
induced by T and the given admissibility condition. In this way one can further
coarsen (or refine) the matrix blocking, while keeping the same tree structure in
the background. A simple example of an admissibility condition is captured in
the mentioned figures as well. Here a vertex in T ˆ T is accepted if and only if
the index sets do not overlap.

Let us emphasize the difference between the blocks that do not overlap in the
matrix - general property due to the definition - and the two index sets forming
the vertex in block-cluster tree that do not overlap - this, in particular, means
that the accepted blocks will be either strictly below or strictly above the diagonal.
Note that without any condition, T ˆT would have in total 43 “ 64 leaf vertices,
whereas the examples below posses only 22 and 16 leaf vertices, respectively.

In practice, the admissibility condition usually compare the sizes of index sets
and their distance. Classical examples are

• strong admissibility condition - vertex
t

hkkkikkkj

ti, . . . , ju ˆ

s
hkkkkikkkkj

tk, . . . , lu ” t ˆ s
meets the strong admissibility condition, provided that

maxtdiamptq, diampsqu ď 2distpt, sq; (2.2)

• weak admissibility condition - vertex
t

hkkkikkkj

ti, . . . , ju ˆ

s
hkkkkikkkkj

tk, . . . , lu ” tˆs meets
the weak admissibility condition, provided that

mintdiamptq, diampsqu ď 2distpt, sq.

32

r1, 8s2

r1, 4s2
r1, 4s ˆ r5, 8s r5, 8s ˆ r1, 4s

r5, 8s2

r1, 2s2

r1, 2s ˆ r3, 4s r3, 4s ˆ r1, 2s

r3, 4s2 r5, 6s2

r5, 6s ˆ r7, 8s r7, 8s ˆ r5, 6s

r7, 8s2

t1u2

t1u ˆ t2u

t2u ˆ t1u

t2u2 t3u2

t3u ˆ t4u

t4u ˆ t3u

t4u2 t5u2

t5u ˆ t6u

t6u ˆ t5u

t6u2 t7u2

t7u ˆ t8u

t8u ˆ t7u

t8u2

Figure 2.3: The figure gives the block-cluster tree corresponding to the
product T1 ˆ T1 (T1 taken as in Figure 2.1) equipped with the “non-
overlapping” admissibility condition. The corresponding blocking of the matrix
is in Figure 2.4. The leaves are in different shades of green based on what tree
level they were accepted or they are red if they were not accepted (so called in-
admissible leaves) but couldn’t be partitioned any further. Non-leaf vertices are
blank. The coloring matches with the partitioning in Figure 2.4.

In other words, the blocks needs to be either far away from diagonal (i.e. t and s
are far from each other) or the blocks are small (i.e. t and s are small). Example
of block-cluster tree induced by the cluster tree T1 and the weak admissibility
condition is shown in Figure 2.7 and the corresponding matrix partitioning is
given in Figure 2.8.

33

Figure 2.4: The figure gives the matrix blocking according to the block-cluster
tree in Figure 2.3. The coloring corresponds to the one in Figure 2.3 as well.
To have H-matrix format, each of the blocks in the scheme has to have rank at
most p. The red ones are usually small enough so that their rank is automatically
smaller than p (in this case they are 1-by-1, i.e., scalars).

r1, 8s2

r1, 3s2
r1, 3s ˆ r4, 8s r4, 8s ˆ r1, 3s

r4, 8s2

t1u2 t1u ˆ t2u t1u ˆ t3u

t2u ˆ t1u t2u2 t2u ˆ t3u

t3u ˆ t1u t3u ˆ t2u t3u2

r4, 6s2

r4, 6s ˆ r7, 8s r7, 8s ˆ r4, 6s

r7, 8s2

Figure 2.5: The figure gives the block-cluster tree corresponding to the
product T2 ˆ T2 (T2 taken as in Figure 2.2) equipped with the “non-
overlapping” admissibility condition. The corresponding blocking of the matrix
is in Figure 2.6. The leaves are in different shades of green based on what tree
level they were accepted or they are red if they were not accepted (so called in-
admissible leaves) but couldn’t be partitioned any further. Non-leaf vertices are
blank. The coloring matches with the partitioning in Figure 2.6.

Note that for Figures 2.3-2.4 and 2.7-2.8 we have used the same cluster tree, but
the partitioning is different, because the admissibility condition was different.
Also, one does not need to use the same cluster tree for partitioning of the row
and column index sets. However, those have to be compatible with each other in
some sense. For more details see [12, Chapter 2]. Another possible generaliza-
tion is to consider also rectangular matrices, i.e., matrices with different column
and row index sets. Having a blocking based on some block-cluster tree and an
admissibility condition, one can add the condition that each of the matrix blocks
has rank at most pmax, one obtains the H-matrix format.

Having two H-matrices induced by the same block-cluster tree and with the
same bound pmax on the maximal rank of the induced matrix block, one can
consider also their sum, product, inverse and possibly also their basic decompo-
sitions. It is easy to see that these operations may and often will violate the

34

Figure 2.6: The figure gives the matrix blocking according to the block-cluster
tree in Figure 2.5. The coloring corresponds to the one in Figure 2.5 as well.
To have H-matrix format, each of the blocks in the scheme has to have rank at
most p. The red ones are usually small enough so that their rank is automatically
smaller than p (in this case they are 1-by-1, i.e., scalars).

r1, 8s2

r1, 4s2 r1, 4s ˆ r5, 8s r5, 8s ˆ r1, 4s r5, 8s2

Figure 2.7: The block-cluster tree induced by the product tree T1 ˆ T1 equipped
with the weak admissibility condition. Comparing with Figure 2.3, different ad-
missibility condition can alter the block-cluster tree and also the number of the
leaf vertices substantially. The coloring is analogous as above. The labelling of
the vertices of the tree from the second level on is omitted, but it is obvious based
on the block-cluster tree from Figure 2.3. The only difference here is that the ad-
missibility condition does not accept the same vertices. The vertices themselves
are identical.

blockwise rank bound pmax and thereby the result may no longer be in the same
H-matrix class. However, one can project the result back to the set of H-matrices
given by the considered block-cluster tree and original pmax. In this way one can
introduce entire H-arithmetic based on computing in the classical way and then
projecting the blocks back to the class of pmax-rank matrices. It is, in general, not
equivalent to the classical one, but it can be useful anyway. The main advantage
is the reduction of the time and memory costs that asymptotically amounts to
Opn logpnq2q. Results from such arithmetic can be consequently used as, e.g.,
cheaply available preconditioners as already we have already touched upon (see,
e.g., [43], [42] or [56]). The rest of the formats used in practice can be viewed as
a particular instance of H-matrices.

One of them has been already indirectly introduced - the hierarchical off-
diagonal low-rank (HODLR) format. It corresponds to Figure 2.4, i.e., the block-
cluster tree is product of a complete balanced binary cluster tree with itself when
all off-diagonal blocks are accepted (i.e., “non-overlapping” admissibility condi-

35

Figure 2.8: The figure shows the matrix partitioning given by the block-cluster
tree from Figure 2.7. The green blocks correspond to accepted leaf vertices of the
block-cluster tree (shade implies, on which level those vertices were accepted and
became leaves), whereas the red ones correspond to inadmissible leaf vertices of
the tree. To get the H-matrix format, each of the blocks in the scheme has to
have rank at most p. The red ones are usually small enough so that their rank is
automatically smaller than p.

tion is used).
The other commonly used block formats are H2-matrices and hierarchical

semi-separable format (HSS), both of which further strengthen the hierarchy.
Each vertex t ˆ s P T ˆ T can be associated with a block of the matrix - let
us denote that block by A|tˆs. Assume that t, s P T are a non-leaf vertices and
assume that they have sons t1, T2 and s1, s2 respectively (the generalization for
more sons will be straight forward) and moreover assume that in T ˆ T the ver-
tices t1 ˆ s1 and t2 ˆ s2 are non-leaf vertices and t1 ˆ s2 and t2 ˆ s1 are leaf
vertices (based on some particular admissibility condition). Therefore A|tˆs is
rank deficient and it admits the low-rank decomposition

A|tˆs “ Vt,sSt,sW
T
t,s. (2.3)

For simplicity, we do not specify dimensions of the matrices. One can view the
decomposition (2.3) as the truncated SVD. Consider the two additional condi-
tions.

• The basis matrices Vt,s and Wt,s can be written as Vt,s “ Vt and Wt,s “ Ws

and they have orthonormal columns;

• There exist basis transformation matrices Tt and Us such that

Tt ”

„

Tt1

Tt2

ȷ

such that Vt “

„

Vt1 0
0 Vt2

ȷ „

Tt1

Tt2

ȷ

,

Us ”

„

Us1

Us2

ȷ

such that Ws “

„

Ws1 0
0 Ws2

ȷ „

Us1

Us2

ȷ

.

If all of the above holds for each non-leaf vertex t ˆ s P T ˆ T we obtain the H2-
matrix format (in general) or the hierarchical semi-separable (HSS) format(for
particular choice of admissibility condition and block-cluster tree). The main

36

advantage is in an additional decrease in the memory costs, since to contain all of
the blocks, one only need to store the “middle matrices”(which should be small,
at most pmax-by-pmax) and the transformation matrices in contrast to the whole
low-rank decomposition in the case of H-matrix and HODLR formats. Because
the general definition requires considerably more effort we will not present it here
and the interested reader may consider, e.g., [12, Chapter 9].

It should be emphasized that it is not possible to reformulate the classical row-
or column-oriented Cholesky factorization for all of the above mentioned block
formats in the naive way to utilize the blocks (see Algorithm 2, 3) since the block
dimensions do not allow for it. This opens up a lot of space for new research.
Some of the currently used approaches to overcome this issue are summarized in
the next chapter (Section 3.1 in particular), devoted to the data-sparse incomplete
Cholesky factorization.

2.4.2 Non-hierarchical matrix formats
The general representative of these matrix formats is the block low-rank format
(BLR). To be more specific, one says that A is in the BLR format with block
partitioning

A “

»

—

–

A11 ¨ ¨ ¨ A1k
...

Ak1 ¨ ¨ ¨ Akk

fi

ffi

fl

,

provided that at least one of the blocks is a low-rank matrix5. Naturally, in
practice one desires that most of them, if not all, to be of rank at most pmax
for a suitably small pmax. However, letting some blocks to be of the full rank
allows considering also cases, which posses an almost nice structure. For example,
considering

A “

»

—

—

—

–

A11 XT
12Y12 ¨ ¨ ¨ XT

1kY1k

XT
21Y21 A22 ¨ ¨ ¨

...
...

XT
k1Yk1 ¨ ¨ ¨ ¨ ¨ ¨ Akk

fi

ffi

ffi

ffi

fl

,

A is in the BLR format, even though the diagonal blocks may be of considerable
size with respect to the rest of the matrix and may have full rank. According to
the definition there is generally no restriction on the blocks. However in order
to perform the classical Cholesky algorithm (assuming A is SPD), one needs to
assume the following.

B1 The blocking has compatible block-columns and block-rows, i.e., the number
of columns in the blocks A1j, A2j, . . . , Apj is constant and the same holds
for the block-rows.

B2 The diagonal blocks are square.

For dense matrices, one can often consider a uniform blocking. But for struc-
turally sparse matrices, this could be quite inefficient since one would have to
work with a large amount of zero elements. Therefore, blocking a (structurally)

5This definition is taken from the work of Amestoy et. al. [3]

37

sparse matrix requires the blocks to be either completely zero or relatively densely
populated, provided one would like to keep the benefits of structural sparsity also
for the blocked matrix. Consequently, one usually has to first construct a suit-
able permutation matrix P so that PAP T has only moderate number of relatively
small and dense blocks. One of the first algorithms focusing on finding such
reordering is the graph compression algorithm proposed by Ashcraft [4] for (at
least structurally) symmetric matrices. The idea is to use the graph model of
the symmetric matrix and characterize the vertices, for which the corresponding
rows (and due to symmetry also columns) have the same nonzero structure after
a convenient permutation. Permuting these symmetrically next to each other will
result into PAP T having only fully populated blocks and completely zero blocks.
On the other hand, there is no guarantee for the size of these blocks, i.e., in the
worst case scenario, those blocks could all be possibly 1-by-1, i.e., no blocking
could be achieved at all.

From theoretical point of view, it is easy to see that two vertices are in the
same class (i.e., the corresponding rows will have the identical structure) if and
only if the sets of directly connected vertices6 of these vertices are identical as well.
However, to check this in the naive way is computationally not feasible. Ashcraft
proposed a particular hashing function for the vertices, i.e., function that assigns a
value (label) to each vertex and it is guaranteed that if two vertices have different
labels, then also the corresponding rows has to have different structures. However,
the opposite usually doesn’t hold, i.e., it is not a bijection. The Ashcraft’s hashing
function sums the indices of the direct adjacent vertices (i.e., sums the column
indices of the nonzeros in the given row). Ashcraft observed that this function
can be evaluated quickly for all vertices, while at the same time, it is quite rare for
two vertices to have the identical hashing value and to not have the identical set of
the directly connected vertices. But it could happen, in general, and therefore all
vertices with identical hashing value are then checked for the exact structure. The
worst-case analysis shows that this might be quite demanding computationwise
provided a lot of vertices has the same hashing value but different structure.
But this is usually not the case in practice (see the numerical experiments in
the Ashcraft’s paper) and this algorithm has produced a blocking with quite low
costs in many cases. The process is sketched below in the Figure 2.9 and 2.10.

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

1

2

3

4

56

7

8

9

10

GpAq “

Figure 2.9: On the left is a given sparse matrix A that we would like to block.
For that purpose we have to consider its graph model GpAq (on the right).

6Two vertices are directly connected provided there is an edge connecting them.

38

1

2

3

4

56

7

8

9

10

GpAq “ PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 2.10: The graph compression algorithm of Ashcraft determines the group-
ing of the vertices of the graph GpAq (the groups are here illustrated by colours)
and then symmetrically permutes the rows corresponding to the vertices in one
group next to each other. This results in block structure of the original matrix
(on the right).

As pointed out at the beginning, the problem might arise when the approach
gives blocks of very small dimensions, i.e., in the case that the matrix itself does
not allow for exact blocking, i.e., no two rows have identical structure. The
problem can be solved by allowing some small amount of zeros inside the blocks
and hence allowing for more and possibly larger blocks. This has been proposed
within the field of iterative methods by by, e.g., Saad in [69]. The idea behind the
Saad’s approach is to first use the Ashcraft’s procedure to determine the dense
blocks and then use another procedure on the top of the Ashcraft’s to “block the
blocks”.

To describe this with more details, one can define equivalence relation in the
graph GpAq based on the Ashcraft’s approach, i.e., two vertices are equivalent
if and only if their sets of directly connected vertices coincide7. This relation
naturally induces the classes of equivalence in the graph (rows corresponding to
vertices in one class will be blocked together). If one factor the graph GpAq with
respect to this equivalence, then the result is the quotient graph, let us denote it
QpAq, see Figure 2.10 below.

c1

c2

c3c4

c5

c6

QpAq “ C “

»

—

—

—

—

—

—

–

˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 2.11: Considering the same setting as in Figure 2.10, the quotient graph
QpAq and its adjacency matrix are illustrated in this figure. The correspondence
between the classes of equivalence and the vertices is illustrated in colours.

7It is easy to see that this relation si indeed equivalence, i.e., it is reflexive, symmetric and
transitive.

39

The quotient graph represents the block structure, i.e., the block structure of
PAP T with the suitable permutation matrix P . To see this more clearly, one
can assemble the adjacency matrix C of the quotient graph QpAq, see Figure 2.12.
The key idea of Saad is to block the matrix C again, but this time not requiring
the nonzero blocks to be fully populated, i.e., allowing some small number of
zeros inside the “nonzero”blocks. The blocking of the matrix C is based on a
geometrical point of view. Row vectors ui, uj of C are grouped together, provided
that one has

xui, ujy2

}ui}
2}uj}2 “ cospanglepui, ujqq ď τ, (2.4)

where τ P r0, 1s is a user-defined quantity, which controls (indirectly) the amount
of the zeros in the nonzero blocks. Taking τ “ 1, one has the Ashcraft’s algorithm
only. Saad gave only a specific case analysis of the amount of the “zero fill-in”,
i.e., of the number of zero entries that will be treated as nonzeros, based on τ ,
but experimentally shown that this procedure can allow for much bigger blocks
and hence can make the computation much more efficient. The results of the
Saad’s blocking algorithm for the matrix A from Figure 2.11 are given below in
Figure 2.12.
One can see that finding a balance determined by τ might be a difficult task in
general - too large τ are likely to result in a large number of blocks of size one,
i.e., scalars on diagonal and vectors in the given block-row and block-column,
whereas too small values of τ are inefficient from the point of view of the structural
sparsity, i.e., forces one to compute with large amount of zero entries inside the
nonzero blocks. Based on the numerical experiments in [69], values τ P r0.5, 0.7s

are suggested8.

8In the paper the role of τ is slightly different - Saad compares in (2.4) with τ2, i.e., one can
write τ “ τ2

Saad.

40

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ 0 ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ 0 ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ 0 ˚ ˚ ˚ ˚ ˚

0 0 0 ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0

0 0 0 ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ 0 0 ˚ ˚

˚ ˚ ˚ 0 0 ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0
˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
0 0 0 0 ˚ ˚ ˚ ˚

0 ˚ ˚ ˚ ˚ ˚ ˚ ˚

0 ˚ ˚ ˚ 0 0 ˚ ˚

0 ˚ ˚ ˚ 0 0 ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
0 ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
0 0 0 0 ˚ ˚ ˚ ˚

0 ˚ ˚ ˚ 0 0 0 ˚ ˚

0 ˚ ˚ ˚ 0 0 0 ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PAP T
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
0 ˚ ˚ ˚ ˚ ˚ ˚ ˚ 0 0
0 0 0 0 ˚ ˚ ˚ ˚ 0 0
0 ˚ ˚ ˚ 0 0 0 0 ˚ ˚

0 ˚ ˚ ˚ 0 0 0 0 ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 2.12: Considering the same matrix as in Figure 2.10, the above six matrices
show blockings produced by the Saad’s procedure for decreasing values of τ . From
left to right and top to bottom the matrix blockings corresponds to τ values of
t1, 0.9, 0.8u, t0.7u, t0.6u, t0.5, 0.4u, t0.3, 0.2u, t0.1, 0u. The zero elements that
will be due to the blocking included into the nonzero blocks (and hence treated
as nonzeros) are highlighted in red.

41

3. Towards incomplete
data-sparse Cholesky
factorization
The previous chapter was devoted to an overview of the matrix blocking tech-
niques, the related matrix formats and also low-rank approximation techniques
that can be utilized. However, a little attention has been devoted to the use
of these techniques together in the context of the preconditioners. This chapter
will address this topic in detail, first summarizing some of the currently used
data-sparse preconditioning approaches in the Section 3.1 and then focus on the
development of a new preconditioning technique.

3.1 Incomplete recursion-based Cholesky fact-
orization

The data-sparse formats mentioned have been based on low-rank approximations
of matrix blocks, either hierarchical or not. They differ not only in the construc-
tion, but, more importantly, also in the compatibility with the classical formu-
lation of the basic methods, e.g., Cholesky factorization. The same applies also
to QR and SVD. While the non-hierarchical formats admit simple reformulation
of any of the basic algorithm formulations (column, row or submatrix oriented),
the hierarchical formats require particularly specialized approaches. This has
been already touched upon in the Section 2.2 and this results in nearly all cases
into employing some recursion into the formulation of the Cholesky factorization.
Consequently, this, in general, denies most of the classical ways to incorporate
incompleteness, although for some cases one can still find a suitable analogue of
the classical, sequential approach.

Given an n-by-n matrix, the recurrent reformulation first imposes an artificial
blocking - usually of the 2-by-2 form

A “

„

A11 A12
A21 A22

ȷ

and hence L “

„

L11
L21 L22

ȷ

(3.1)

or the 3-by-3 form, often coupled with nested dissection reordering, that results
in

A “

»

–

A11 A13
A22 A23

A31 A32 A33

fi

fl and hence L “

»

–

L11
L22

L31 L32 L33

fi

fl

see, e.g., [56], [42] or [83]. However, generalisations are possible as well, see,
e.g., [43] or [27]. The factorization (and not only the reordering) is then performed
recurrently. Therefore, in order to compute the Cholesky factorization of A, one
has to compute the Cholesky factorization of A11 first and the recursion continues
until the problem is so small that the complete Cholesky factorization can be
used. After that, the procedure needs to emerge from the recursion, i.e., the

42

way to compute other blocks of the L factor needs to be prescribed. There are
more options how to manage this and we will present here just the simplest one,
using the Schur complement formulation. Other possibilities can be found in the
previously mentioned work, [56] and [43] in particular.

Assuming the 2-by-2 blocking as in (3.1), then

Solve A11 “ L11L
T
11 for L11;

Solve A12 “ L11L
T
12 for L12;

Solve A22 ´ AT
12A

´1
11 A12 “ L22L

T
22 for L22.

(3.2)

Here the first and the last row in (3.2) represent similar problems of approxi-
mately half the dimension, depending on the particular 2-by-2 blocking. This
observation is the key to the recursion, which continues until problems of much
smaller dimensions that can be easily solved exactly, are reached. This, in theory,
leads to the exact factorization.

In order to incorporate incompleteness, one has to modify the approach
of (3.2). A common way to do so is to use the H-arithmetic instead of the classical
one. This corresponds to first evaluating the second line of (3.2) exactly and then
truncation of the result to have rank at most pmax. This setting is not well-suited
for classical incomplete factorizations, e.g., using threshold dropping or level-of-
fill-in. Here, the incompleteness is introduced mainly through the H-arithmetic.
This yields a data-sparse output (preconditioner), where not only the precondi-
tioner computation is cheap but its application, typically via a triangular solver,
is cheap as well. This is a “must have” feature for an efficient preconditioner in
general.

Another remark is that the “imposed blocking”is usually chosen so that it
couples well with the hierarchical matrix format, e.g., 2-by-2 blocking can work
well together with HODLR or HSS formats due to their nature. In some cases
one it may have an additional information about the problem, i.e., may be able to
predict a suitable matrix format for the factor (see, e.g., [12, Chapter 3] or [30])
or the matrix itself. In that case, the blocking for the procedure (3.2) has to be
compatible with the matrix format.

This brings into the play another feature that has been mentioned several
times already - reordering of the system. One of the most used is the nested
dissection reordering. The effect of the reordering in this case is, to the best
of our knowledge, yet to be fully explored. As pointed out in the Section 2.4,
the computational costs of this class of preconditioners are often much more
appealing in contrast to the classical ones, provided pmax is not too large. On
the other hand, analysis of efficiency of such preconditioners seems to be quite
a difficult task. Although there are some results in this direction, see, e.g., [83],
this field is not sufficiently explored yet and many of the proposed preconditioners
have been studied only experimentally.

Bearing in mind the above short summary, the goal of the rest of this chap-
ter is to propose an alternative approach to the recurrent one, i.e., propose a
preconditioning procedure that

• could be used for both hierarchical and non-hierarchical formats;

43

• could utilize the classical preconditioning tools as well (see Section 1.4.1);

• could exploit the possible rank deficiency of the blocks.

To do this, consider the structurally sparse incomplete Cholesky factorization as
the starting point in the next section.

3.2 Incomplete sequential column-oriented Cho-
lesky factorization

Recalling the complete structurally sparse Cholesky factorization as in Algo-
rithm 3, a classical way to introduce the incompleteness is by threshold dropping.
However, it is important when the dropping is carried out during the computa-
tion. To clarify this, let us sketch the incomplete version of Algorithm 3. For
simplicity we omit the preprocessing, i.e., we do not reorder the matrix prior to
the procedure.

Algorithm 5 Incomplete structurally sparse column-oriented Cholesky factor-
ization

Input: A square n-by-n SPD matrix A.
1: function proto ichol
2: for j “ 2, . . . , n do

3: Determine the row structure StructpL̄˚,jq;
4: Determine the column structure StructpL̄j,˚q;

5: l̄j´1,j´1 Ð
?

aj´1,j´1;
6: for s P StructpL̄j:n,jq do
7: l̄s,j´1 Ð

l̄s,j´1
l̄j´1,j´1

;
8: end for

9: for k P StructpL̄j,1:j´1q do
10: for i P StructpL̄j:n,kq do
11: aij Ð aij ´ l̄jk l̄ik;
12: end for
13: end for

14: Apply dropping to A˚,j;
15: Apply dropping to L̄j,˚;

16: end for
17: Return the incomplete factor L̄;
18: end function

factorize col(j ´ 1)

update col by col(j, k)

Regarding the dropping, there are two qualitatively different places in the algo-
rithm, where the dropping could be applied. First is in line 14 one can drop some

44

of the fill-in that occurs during the update by previous columns. This certainly af-
fects the following computation as well as the final factor since the updates by the
j-th column will not be complete. In the same sense one can alter the structures
on lines 3 - 4 to modify the future computation. On the other hand, dropping on
line 15 does not have any effect on the further computation whatsoever and mod-
ifies the resulting factor only directly by omitting certain entries. In this sense,
the line 15 represents a final polishing and can be focused purely on the direct
improvement of the final factor. The rest of the dropping has to account not only
for that but also for the fact that it shapes the structure of the updates as well.
Its poor choice might result in omitting important information in the updates
and ruining the whole factor.

Note that in comparison to Algorithm 3 the structural part of the computation
(lines 3 - 4) has to be done on the fly, since the algorithm has to account for the
droppings and the reduced fill-in. The question of how to approach this also
needs to be addressed.

The rest of the section will be devoted to the structural factorization performed
on the fly - Section 3.3 and 3.4, i.e., lines 3 - 4. The issue of classical dropping,
i.e., lines 14 - 15 will be considered in Section 3.5.

Notice that this can be easily reformulated also for blocks, as long as those
blocks form block-rows and block-columns with diagonal blocks being square, see
Section 2.4 and since the goal is to utilize the low-rank techniques, it would be
definitely natural to do so. However, the center of this section will be elsewhere,
i.e., in the structural part of the factorization. In order to make the exposition
easier to follow, we will not work with the blocks (at least not explicitly yet).
However, the reformulation for blocks can be done, assuming the blocking condi-
tions (B1) and (B2) from the beginning of Subsection 2.4.2 - one can simply work
with the factor matrix with respect to the particular blocking (see Figure 2.11)
on the structural level.

3.3 Explicit search for the srtucture
Let 1 ă j ă n and consider the j-th step of the structurally sparse sequential
column-oriented Cholesky factorization as in Algorithm 5. The key to an effi-
cient structural computation (lines 3 - 4) is to use known facts and relations of
the complete Cholesky factorization. A perfect example is the commonly used
formulation of lines 3 - 4 in practice, summarized below. Because we will show
multiple proposals of how to compute the structural patterns, we will number
them, starting with S1 below.

Algorithm 6 Structural factorization for Algorithm 5
Input: An n-by-n SPD matrix A and the first j ´1 columns of the incomplete
Choelsky factop L̄.
Output: Row and column structures pS1qj,˚ and pS1q˚,j.

1: Set pS1qj,˚ “ StructpL̄j,˚q ” tk | L̄k,j ‰ 0u;

2: Set pS1q˚,j “

”

StructpA˚,jq
Ť

´

Ť

iPpS1qj,˚,i‰jpS1q˚,i

¯ı

z t1, . . . , j ´ 1u;

45

Notice that the above procedure uses the observation about column structures
replication from the complete Cholesky factorization setting, see 1.4, to deter-
mine the column structures of the incomplete factor, i.e., it uses the relationship
adopted from the complete Cholesky factorization.

To simplify the notation, let us define the j-th active part of the (incomplete)
Cholesky factor as the submatrix L̄1:j´1,j:n. This is exactly the part of the factor
that can contribute to the update of the j-th column. Note that the part “above
it”, i.e., the submatrix L̄1:j´1,1:j´1 has been already finalized and it is part of the
final factor and the part “right to it”, i.e., the submatrix L̄j`1:n,j`1:n is yet to be
processed. The missing part, i.e., the j-th column, is being updated in the j-th
step and will be in the pj ` 1q-th active part of the factor. Also, let us stress out
that the structure S1 is not necessarily correlated with the final sparsity structure
of the factor since it is determined before the dropping is carried out.

Returning to Algorithm 7, note that it requires access the j-th active part
of the factor, i.e., one needs to store the active part of the factor explicitly. As-
suming the factor is sparse, it has to be saved in a compressed format either by
rows or columns (for more details on CSR and CSC formats see [33, Section 5.4]).
Without loss of generality we will consider the CSC scheme. The problems that
will be met would arise analogously for the CSR scheme. The column structures
are easy to obtain but the j-th row structure has to be computed, because the
factor is stored in CSC format. Naive approach, i.e., searching in the structure
of the already computed columns for row index j at each iteration, would be
inefficient and could noticeably increase the overall costs. Luckily, this can be
circumvented by keeping a track of the first nonzero entries of the columns in
the current active part of the factor. This requires one additional vector of in-
creasing size (the number of columns in the active part of the factor is equal to
j) for saving these and a search in the vector (and possible update, which is,
however, cheap thanks to the CSC format). Those costs (time and memory) are
usually considered modest as they are somewhat negligible and, consequently,
this approach has been commonly used, see [26].

However, the assumption of active part of the factor being explicitly available
is not feasible in our case. Dealing with blockwise low-rank matrices (or matrices
that have rank deficient Cholesky factor) one simply has to allow for the active
part of the factor to be stored implicitly, i.e., in low-rank form. Otherwise the
efficiency is lost. This is not necessarily related to the hierarchical matrix formats
only. Taking matrices, which have some blocks that correspond to function values
of a smooth function with small derivatives, the blocks are perfect for low-rank
approximation1 and this would be possibly best handled by some non-hierarchical
blocking with possibly only a portion of the blocks being rank deficient.

3.4 Implicit search for the structure
The problem we are facing now is that the classical approach for the incomplete
structurally sparse Chlesky factorization is not compatible with the blockwise low-
rank formats. Since the aim is to approximate the Cholesky factorization, we
will still use the original relations for determining the structures, i.e., lines 3 - 4

1This can be observed from the Taylor expansion, see [12, Chapter 1].

46

in Algorithm 5 will be still computed by Algorithm 6. However, the way the
structures inside are obtained has to be changed. This will be addressed in two
phases : first, the row structure needs to be found, i.e., the line 1 in Algorithm 6
has to be reformulated in case that the active part is not available explicitly.
Then the focus will be on obtaining the structures of the columns needed for the
update on line 2 of Algorithm 6.

3.4.1 Row structure
Trying to find the row structures, we will utilize the same approach as previously.
The key is to use relations for the desired quantities, row structure in this case,
that hold true in the (complete) Cholesky factorization and at the same time are
advantageous from the current point of view. The next lemma follows precisely
in this direction.

Lemma 3.4.1. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Assuming
j ´ 1 steps of the Cholesky factorization in Algorithm 3 has been carried out,
denote the (j ´ 1)-th principal leading submatrix of the final Cholesky factor L by
Lj´1. Then one has

StructpLj,˚q “ tju Y Struct
`

L´1
j´1A1:j´1,j

˘

.

Proof. After j ´ 1 steps of Algorithm 3 one can write the result in the matrix
form as

Lpj´1q . . . Lp1qA “ M pj´1q, (3.3)

as sketched in 1.1 in the first chapter. Note that any matrix Lpkq can possibly
have nonzeros only on diagonal and in the subdiagonal part of the k-th column.
The matrix M pj´1q is guaranteed to have zeros in the subdiagonal part of all the
first j ´ 1 columns. Hence it is easy to see that the (j ´ 1)-th active part of the
final factor L has been already assembled, i.e., one can write

M
pj´1q

1:j´1 “ LT
1:n,1:j´1.

However, one can also rewrite the left-hand side as follows

Lj´1 “
`

Lpj´1q . . . Lp1q
˘´1 and hence L´1

j´1 “ Lpj´1q . . . Lp1q.

Altogether, one has

LT
1:n,1:j´1 “

`

L´1
j´1A

˘

1:j´1,1:n .

Focusing only on the j-th column on the right-hand side gives the j-th row on
the left-hand side and the result follows.

Although the above lemma is straightforward, it can be very useful, since it deter-
mines the row structure without using the current active part of the (incomplete)
Cholesky factor. On the other hand, this formulation is still not efficient as it
requires a triangular solver run per iteration in order to determine the row struc-
ture. However, this can be circumvented by realizing that one needs only the
structure, i.e., a symbolic triangular solver is enough. In order to state the result,

47

it is useful to introduce a new notion - directed graph. It is a graph which is ori-
ented, i.e., each its edge has a starting node and ending one. The directed graphs
can be used to generalize the graph model of a matrix (see Subsection 1.2.1) also
for structurally unsymmetric cases. Having an n-by-n matrix A, one can define
the directed graph GpAq “ pV pAq, EpAqq on vertices V pAq “ t1, . . . , nu by

pj, iq P EpAq ðñ Ai,j ‰ 0.

This is indeed a generalization since for structurally symmetric matrices the graph
models intuitively coincide2. Also note that the direction in the definition could
be swapped, i.e., the edges could be starting at the row-index node and ending at
the column-index node of the graph, but this version will prove convenient later
on. Focusing on the results of Lemma 3.4.1, consider the graph model of a general
lower-triangular matrix. The direction of edges is always from a lower numbered
vertex to a higher one (due to the lower-triangular property) and therefore there
are no cycles, i.e., graph model of a lower triangular matrix is a directed acyclic
graph sometimes called dag. Let us now reformulate the results of Lemma 3.4.1
for sparsity structures only.

Theorem 3.4.1 ([36]). Let L̂ be an k-by-k non-singular, lower triangular matrix
and b a k-dimensional vector for some k natural. Let us state the non-cancellation
assumption, i.e., sum, difference and product of two numbers is nonzero if and
only if at least one of them is nonzero. Then the structure of the solution of the
linear problem L̂x “ b can be formulated as

Structpxq “ Struct
´

L̂´1b
¯

“ ReachGpL̂q
p Structpbq q,

Moreover, computation of the structure can be realized via the breadth-first search
in the graph GpL̂q resulting in costs bounded by O

´

nnzpbq ˚ pk ` nnzpL̂qq

¯

.

This theorem coupled with Lemma 3.4.1 encourages us to define the second spar-
sity structure S2 as follows.

Algorithm 7 Structural factorization for Algorithm 5
Input: An n-by-n SPD matrix A and the (j ´ 1)-th leading submatrix of the
incomplete factor L̄j´1.
Output: Row and column structures pS2qj,˚ and pS2q˚,j.

1: Set pS2qj,˚ “ ReachGpL̄j´1qp StructpA1:j´1,jq q;

2: Set pS2q˚,j “

”

StructpA˚,jq
Ť

´

Ť

iPpS2qj,˚,i‰jpS2q˚,i

¯ı

z t1, . . . , j ´ 1u;

Let us emphasize here that the sparsity structure S2 is not equivalent with the
final structure of the factor, because the dropping is performed later. The main
drawback of the introduced structure S2 is highlighted below.

2To precise this statement, it is necessary to introduce the notion of the graph isomorphism.
We will not do so here.

48

Observation 3.4.1. Although the row structure pS2qj,˚ is available based only
on the already fully processed part of the computed factor, the column structure
pS2q˚,j still requires explicit evaluation of the column structures of the columns
that form the current active part of the incomplete factor. In other words, fully
implicit storing of the current active part of the factor is not compatible with the
structures S2. Moreover, A has to be available as well, i.e., even A can not be
stored implicitly.

Although the above observation might make the structure S2 not viable in
some cases, it can be still used most of the time. In many instances, one only
wants factors to be data-sparse, while the matrix itself is stored explicitly in some
sparse format, as mentioned in Section 2.4. Or, possibly, one is able to obtain
the graph GpAq before getting A. Also, the columns in the current active part
can be stored implicitly, provided we have stored their structure separately. This
introduces some extra memory costs, but those are likely to be quite negligible,
especially in the case of working with blocks instead of entries.

The natural question is how do the structures S1 and S2 compare. Assuming
there is no row dropping in Algorithm 5, one can state the following.

Theorem 3.4.2. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider the
Algorithm 5 with an arbitrary fixed column dropping rule on line 14 and no row
dropping on line 15. Then, carrying out the computation with sparsity structures
S1 and S2 consecutively, one can write

pS1qj,˚ Ă pS2qj,˚ Ă StructpLj,˚q and pS1q˚,j Ă pS2q˚,j Ă StructpL˚,jq,

where L is the complete Cholesky factor of A.
Moreover, the equalities will take place under the following conditions.

• pS1qj,˚ “ pS2qj,˚ if and only if the fixed column dropping on line 14 did not
drop any entry with row index j so far.

• pS1q˚,j “ pS2q˚,j, provided pS1qj,˚ “ pS2qj,˚.

• pS2qj,˚ “ StructpLj,˚q if and only if

ReachGpL̄j´1qp StructpA1:j´1,jq q “ ReachGpLj´1qp StructpA1:j´1,jq q.

• pS2q˚,j “ StructpL˚,jq, provided

ReachGpL̄j´1qp StructpA1:j´1,jq q “ ReachGpLj´1qp StructpA1:j´1,jq q

and the fixed column dropping on line 14 did not drop any entry with row
index j so far.

Proof. Let us first focus on the relations for the row structures. To obtain the
first inclusion, it is enough to take into account that nonzeros in pS1q˚,j have been
created by the same way as in the complete Cholesky factorization. Hence the first
inclusion follows from Lemma 3.4.1 and Theorem 3.4.1. Also, it is clear that the
equality holds if and only if the column dropping have not discarded any entry of
the j-th row throughout the first j´1 steps of the algorithm. The second inclusion
follows immediately since no fill-in could have been (in comparison to the complete

49

Cholesky factorization) added by potential column dropping of the algorithm.
The condition for the equality is an immediate consequence of Lemma 3.4.1.

Regarding the column structures, the first inclusion follows immediately since
the column structure is derived from the row structures (and the original matrix
structures) only. Hence inclusion of row structures imply the inclusion of the
column structures and the same holds for the equality. The second inclusion
admits the same reasoning as for the case of row structures, i.e., no additional
fill-in (in comparison to the complete Cholesky) could have been added.

A natural question is, whether a richer structure is something desirable when it
comes to incomplete Cholesky factorization. We will see in the following section
that it may be beneficial in the data-sparse case. But first, let us focus on
incorporating the row dropping as well.

First observation is that if the row dropping on the line 15 is retrieved, the
structures S1 and S2 do not satisfy an inclusion either way in general. The above
theorem shows a particular case of S1 Ă S2, but if the most extreme row dropping
is employed, i.e., the resulting leading principal submatrix will be only diagonal,
then

pS2qj,˚ “ StructpA1:j´1,jq

and hence S1 Ę S2 in general, since the column dropping could have retained also
some fill-in in the j-th row. This counterexample seems to be rather specific as
complete row dropping is very rarely a useful approach. Nonetheless, even such
special case of row dropping results in a decently rich row structure pS2qj,˚ as
highlighted in the following lemma.

Lemma 3.4.2. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider
the Algorithm 5 with arbitrary fixed column dropping rule on line 14 and full row
dropping on line 15. Then, carrying out the computation with sparsity structures
S2 gives

pS2qj,˚ “ StructpA1:j´1,jq “ StructpAj,1:j´1q.

In other words, the column updates structure is identical to the one of the zero
fill-in Cholesky factorization ICp0q.

Lemma 3.4.2 implies that the structure S2 might be potentially quite rich even
if a drastic row dropping takes place. Also, let us once more emphasize that
this doesn’t necessarily imply that the factor L̄j´1 will be as well. In order to
elaborate further on the structure S2, it is necessary to introduce the notion of
transitive closure and transitive reduction of a given graph.

Consider a graph GpV, Eq, either directed or undirected. The transitive closure
of G, denoted by GpV, E˚q or simply G˚, is defined as a graph on the vertex set
V with edge connecting x to y (possibly directed) if and only if there exists a
path from x to y in GpV, Eq. The transitive reduction of G, denoted by GpV, Etq

or simply Gt, is defined as a graph on the vertex set V with the smallest possible
edge set Et Ă V ˆ V so that its transitive closure is equal to the one of G, i.e.,
so that

`

Gt
˘˚

“ G˚.

The following theorem summarizes some known results for the above defined
notions, following the work of Aho, Garey and Ullman.

50

Theorem 3.4.3 ([1]). Let GpV, Eq be a finite acyclic directed graph with |V | “ n.
Then its transitive reduction exists and is unique. Moreover, computation of the
transitive reduction and the transitive closure of G can be carried out with identical
time costs amounting to multiplication of two n-by-n boolean matrices.
Having this result, we can now state the main results for the sparsity structure
S2. But before doing so, let us emphasize that those results are intended to give a
better insight into the structure S2, i.e., there is, in general, no reason to modify
the column or row dropping patterns in order to attain one of the equalities in
Theorem 3.4.2.
Lemma 3.4.3. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider the
Algorithm 5 with an arbitrary fixed column dropping rule on line 14 and no row
dropping. Using the sparsity structure S2, denote the (j ´ 1)-th leading principal
submatrix of the incomplete factor by L̄j´1 and the j-th row structure by pS̄2qj,˚.
Let us consider the same column dropping and arbitrary row dropping in line 15
and carry out Algorithm 5 with sparsity structures S1 and S2 respectively. Re-
garding the sparsity structure S2, denote the (j ´1)-th leading principal submatrix
of the incomplete factor by L̂j´1 and the j-th row structure by pŜ2qj,˚.
Moreover, let us assume that the row dropping has been chosen so that the tran-
sitive closures of GpL̄j´1q and GpL̂j´1q are equal. Then, carrying out the compu-
tation with sparsity structures S1 and S2 consecutively, one can write

pS1qj,˚ Ă pS̄2qj,˚ “ pŜ2qj,˚ Ă StructpLj,˚q

and
pS1q˚,j Ă pS̄2q˚,j “ pŜ2q˚,j Ă StructpL˚,jq,

where L is the complete Cholesky factor of A.
Moreover, the sufficient conditions for the equalities from Theorem 3.4.2 are still
valid.
Proof. By definition of pS2qj,˚ on line 1 in Algorithm 7 one can see that k P pS2qj,˚

if and only if there is an edge k Ñ j in the transitive closure of the graph of the
principal leading submatrix. Hence, assuming that GpL̄j´1q˚ “ GpL̂j´1q˚ one
gets pS̄2qj,˚ “ pŜ2qj,˚. Then, using Theorem 3.4.2, the results follow.

Notice that the above lemma gives several options for further development. First,
in Lemma 3.4.3, the focus is on comparison of Ŝ2 and S̄2, i.e., of the sparsity
structures obtained by Algorithm 5 with and without row dropping and due to
Theorem 3.4.2 there is a relatively good understanding of when pŜ2qj,˚ “ pS1qj,˚.
But one can formulate an analogous statement comparing pŜ2qj,˚ and StructpLj,˚q

by employing the transitive closure of GpLj´1q. Second, one could also take into
account that even if the transitive closures of the two graphs are not equal, the
sparsity structures still can be equal, as, by the definition, the important thing is
reachability from a certain vertex set rather than reachability from each vertex.
Last but not least, one could try to evaluate, for which row dropping the key
property of GpL̄j´1q˚ “ GpL̂j´1q˚ holds true.

Since we have already stated that the sparsity structures inclusion are meant
to give a rough orientation rather than to propose a row dropping according
to them, we will not pursue the first two options. The last idea is refined in
Theorem 3.4.4 below.

51

Theorem 3.4.4. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider the
Algorithm 5 with an arbitrary fixed column dropping rule on line 14 and no row
dropping. Using the sparsity structure S2, denote the (j ´ 1)-th leading principal
submatrix of the incomplete factor by L̄j´1 and the j-th row structure by pS̄2qj,˚.
Let us now consider the same column dropping and arbitrary row dropping in
line 15 and carry out Algorithm 5 with sparsity structures S1 and S2 respectively.
Using the sparsity structure S2, denote the (j ´ 1)-th leading principal submatrix
of the incomplete factor by L̂j´1 and the j-th row structure by pŜ2qj,˚.
Moreover, let us assume that the row dropping was chosen so that the the first
nonzero of each column was retained, i.e., so that

T pL̄j´1q Ă GpL̂j´1q.

Here, T pL̄j´1q denotes the elimination tree of the factor L̂j´1 (see (1.3)). Then
one can write

pS1qj,˚ Ă pS̄2qj,˚ “ pŜ2qj,˚ Ă StructpLj,˚q

and
pS1q˚,j Ă pS̄2q˚,j “ pŜ2q˚,j Ă StructpL˚,jq,

where L is the complete Cholesky factor of A.
Moreover, the sufficient conditions for the equalities from Theorem 3.4.2 are still
valid.

Proof. Recalling the fact that in the Cholesky factorization the elimination tree
T pLq is in fact the transitive reduction of the fill-in graph GpLq (see [60]), the
result follows from Lemma 3.4.3 and the definition of the transitive closure and
the transitive reduction.

To conclude this subsection, we add one more reformulation for the row sparsity
structure, using the elimination tree of the principal leading submatrix.

Theorem 3.4.5. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider the
Algorithm 5 with arbitrary fixed column and row dropping rules on lines 14 - 15.
Using the sparsity structure S2, denote the (j ´ 1)-th leading principal submatrix
of the incomplete factor by L̂j´1 and the j-th row structure by pS2qj,˚.
Taking the j-th principal leading submatrix of the incomplete factor L̃j as

L̃j “

„

L̂j´1

L̂´1
j´1A1:j´1,j ajj

ȷ

,

the row sparsity structure pS2qj,˚ is equal to the structure of the j-th row subtree
of the elimination tree T pL̃jq.

Proof. The result follows by definition of the row subtree, see Chapter 1.

3.4.2 Column structure
As observed in the previous subsection, the so far proposed formulation of the
structural computation is not fully implicit, i.e., the column structure computa-
tion still requires the structures of the previous columns to be stored explicitly.

52

Therefore, the goal of this subsection is to replace the formula

pS2q˚,j “

»

–StructpA˚,jq
ď

¨

˝

ď

iPpS2qj,˚,i‰j

pS2q˚,i

˛

‚

fi

fl z t1, . . . , j ´ 1u

by a different one that would not require the active part of the computed incom-
plete factor. The strategy used so far has been to use the known relations of the
complete Cholesky factorization that are favourable for us in the above sense.
The following theorem continues in this direction.

Theorem 3.4.6 ([60, Theorem 3.7 and Corollary 3.9]). Let A be an n-by-n SPD
matrix and let 1 ă j ă n. Denoting L the Cholesky factor of A, one can write

StructpL˚,jq “ AdjGpAqT rjs z t1, . . . , j ´ 1u

“ AdjGpL`LT qT rjs z t1, . . . , j ´ 1u.

Proof. To check the first equality, consider i P StructpL˚,jq. Using Theorem 1.2.2
this is equivalent with the fact that there is a vertex k such that Ai,k ‰ 0 and j is
an ancestor of k in the elimination tree T pLq, which can be equivalently written
as i P AdjGpAqT rjs.

Regarding the second equality, the inclusion AdjGpAqT rjs Ă AdjGpL`LT qT rjs is
trivially met as GpAq Ă GpL ` LT q. To prove the other inclusion, consider some
k, i ă j so that k P T rjs and i P AdjGpL`LT qpkq. Consequently, either Li,k ‰ 0
or Lk,i ‰ 0, depending on whether k ă i or k ą i. Let us first consider the case
k ă i, i.e., Li,k ‰ 0. By Theorem 1.2.2 this implies that there exists a vertex l
such that l P T rks Ă T rjs such that Al,k ‰ 0, which give the result. Assuming
k ą i, i.e., Lk,i ‰ 0, one can use the reformulation of Theorem 1.2.3, see (1.4), to
deduce that either Ak,i ‰ 0 (this itself gives the result already) or there exists k1

such that Li,k1 (which case was already considered above). Either way the result
follows.

In the same fashion as in the previous subsection one can now define new sparsity
structure S3 based on the above result.

Algorithm 8 Structural factorization for Algorithm 5
Input: An n-by-n SPD matrix A and the (j ´ 1)-th leading submatrix of its
incomplete factor L̄j´1.
Output: Row and column structures pS3qj,˚ and pS3q˚,j.

1: Set pS3qj,˚ “ ReachGpL̄j´1qp StructpA1:j´1,jq q;

2: Set L̄j as L̃j “

„

L̂j´1

L̂´1
j´1A1:j´1,j ajj

ȷ

;

3: Get the j-th rooted subtree in T rjs of the elimination tree T pL̄jq;
4: Set pS3q˚,j “ AdjGpAqT pL̃jq , z t1, . . . , j ´ 1u;

On the first sight, this approach might look promising. The current active part
of the incomplete factor is not needed any more, as required. And although the
structure of the original matrix A is necessary, this is only a minor drawback,

53

considering the structure of A is vital for determination of the row structure
anyway. Also, considering the computation costs, the above algorithm should be
fairly cheap because only the adjacent sets need to be determined, i.e., no search
in the graph of GpAq is needed. However, as we will see, the situation is more
complicated. In order to see the issue consider the following lemma. The result
is analogous to the one of Theorem 3.4.2, i.e., comparison of the new sparsity
structure to the established ones.

Lemma 3.4.4. Let A be an n-by-n SPD matrix and let 1 ă j ă n. Consider
the Algorithm 5 with arbitrary fixed column dropping rule on line 14 and no row
dropping. Then, carrying out the computation with sparsity structures S2 and S3
consecutively, one can write.

pS2qj,˚ “ pS3qj,˚ and pS2q˚,j Ă pS3q˚,j.

Proof. The row structures are by definition identical. Regarding the column
structures, let us consider i P pS2q˚,j (hence i ą j). By definition the correspond-
ing nonzero in the j-th column of the factor is either a copy of a nonzero entry in
the original matrix, i.e., Aij ‰ 0, or it is a fill-in, i.e., one can take k ă j such that
L̄ik ‰ 0 and at the same time k P T rjs. If the first case takes place then clearly
i P pS3q˚,j, since j P T rjs. Considering the alternative holds, one can employ
Theorem 1.2.2 about the column structure replication and conclude that there
exists k1 ă k such that Aik1 ‰ 0 and k1 P T rjs as well. Note that Theorem 1.2.2
can be used since the column structure replication is still present in Algorithm 8.
Altogether i P pS3q˚,j and the proof is finished.

The conditions for equality are omitted but they can be easily deduced from the
proof. The above result leads to the following important observation.

Observation 3.4.2. Algorithm 8, i.e., the sparsity structure S3, does not take
into account previous column dropping when determining the structure of the j-th
column of the incomplete factor. Consequently

• Algorithm 5 with structures computed by Algorithm 8 may carry out a large
number of operations with zeros. The most extreme case would be the com-
plete column dropping below the j-th row. In this case, the j-th column is
numerically updated (possibly many times) by zeros that represent the fill-
in. Assuming the factorization has been done blockwise, which is our goal,
this is even more alarming. On the other hand, it is almost guaranteed that
any numerical-value-based column dropping would resolve this issue.

• The above mentioned point is not exclusive to the particular formulation of
Algorithm 8. On the contrary, this issue is inherent to any procedure that
does not take into account possible column dropping, i.e., any procedure
that does not use the current active part of the incomplete factor. The only
exception would be to consider only the structure of the j-th column of the
matrix A.

Although this observation is straightforward, it is fundamental for our attempts
to find a suitable way of determining the column structure. In other words, one
cannot obtain an efficient procedure for computation of the column structure fully

54

implicitly - the current active part of the factor has to contribute to the column
structure determination. It should be noted that Lemma 3.4.4 does not include
the row dropping, which, in theory, could play similar role. However, it is clear
that for a general row dropping Observation 3.4.2 holds true as well.

Summarizing the above development, possible enriching of the column struc-
ture in comparison to the natural one (used for both S1 and S2) might bring
additional difficulties. In particular, it may result in adding, subtracting and mul-
tiplying with zero blocks explicitly, which should be avoided. Considering only
a suitable approximation based on structural patterns could be fruitful. However,
this direction will not be further developed here, also because it partially overlaps
with the column dropping. In this sense, one may view it as an example of the
need for suitable dropping criterion. This topic will be considered in the next
section, but before that, let us update Algorithm 5.

Algorithm 9 Incomplete structurally sparse column-oriented Cholesky factor-
ization

Input: A square n-by-n SPD matrix A.
1: function proto ichol
2: for j “ 2, . . . , n do
3: l̄j´1,j´1 Ð

?
aj´1,j´1;

4: for s P StructpL̄j:n,jq do
5: l̄s,j´1 Ð

l̄s,j´1
l̄j´1,j´1

;
6: end for

7: lr approx col (j ´ 1);

8: Set pS2qj,˚ “ ReachGpL̄j´1qp StructpA1:j´1,jq q;
9: Set pS2q˚,j “

Ť

iPpS2qj,˚,i‰j pS2q˚,i;
10: Set pS2q˚,j “ pS2q˚,j

Ť

StructpA˚,jq;
11: Set pS2q˚,j “ pS2q˚,j z t1, . . . , j ´ 1u;

12: for k P pS2qj,˚ do
13: for i P pS2q˚,j do
14: aij Ð aij ´ l̄jk l̄ik;
15: end for
16: end for

17: Apply dropping to L̄j,˚ and update the finalized
part L̄j of the incomplete factor;

18: end for
19: Return the incomplete factor L̄;
20: end function

factorize col (j ´ 1)

update col by col (j, k)

symb struct (j)

The above updated version already has a fixed way to determine the column and
row structures, which enables to use the procedure

lr approx col (j ´ 1),

55

which approximates the j-th column (possibly a block-column) and stores the
approximation implicitly only. For block-columns this might mean a low-rank
approximation of the whole block-column as in Figure 1.1 or, in some cases, one
could approximate only some nonzero blocks of the block-column. A number of
different techniques for obtaining such low-rank approximation was considered in
Section 2.3. Although our focus is to work with blocks, the memory costs for
storing columns can be reduced even in the scalar case. Namely, if all of the
entries of a column of a matrix are small in magnitude, one could approximate
the values only by their average and then one needs to store only the indices of
the nonzero entries and the mean value. Although this is not strictly speaking a
low-rank approximation, it fits well into the context here.

Notice that the column dropping is no longer present in the above algorithm.
It is not necessary to use it here since, in principle, it is substituted by the low-
rank approximation routine. The main goal of the dropping is to significantly
reduce the memory costs, which is, in many cases, already achieved by the low-
rank approximation. This being said, there are cases where the blockwise fill-in
would be not manageable. In such cases the column dropping has to be applied
and the dropping can be retrieved immediately. A precise description of this
routine will come at the end of this chapter, but we wanted to highlight the fact
that the reformulation now allows for the implicit storage of the active part of
the factor. The price to pay is that the principal leading submatrix L̄j´1 has to
be stored explicitly - at least its structure.

3.5 Exploiting data-sparsity
Up to now, the focus has been on enabling the data-sparse approach, i.e., on
enabling an implicit storing of the current active part of the incomplete factor
during the incomplete Cholesky factorization. The objective has not been met
fully, but only to a larger extent. Thereby, the goal of this section is to comple-
ment this development and modify it so that the procedure is not only applicable
to blockwise rank-deficient problems but exploits this feature as much as possible.
Naturally, this is a difficult challenge and we do not claim to present the final
solution. Many other contributions have been published when it comes to this
topic, few of which we have already mentioned. One can view this whole chapter
rather as an addition to the work we have already referred to that might intro-
duce a different point of view of and a different approach to the field of blockwise
low-rank matrices and their utilization in the context of preconditioning.

3.5.1 Double sparsification
The idea of double sparsification is based on a simple observation (highlighted
below) that can be tracked back3 to Tismenetsky [77] and Kaporin [54].

Observation 3.5.1. Having a Cholesky-based preconditioning technique that is
based on dropping, either structural or based on numerical values, it is, in most
cases, beneficial to first carry out the update and perform dropping only after that
than the other way around.

3The explicit formulation is not there, but proposed techniques clearly point in this direction.

56

In other words, keeping more information inside the factorization, even if this
information is considered only for updating, is desirable. However simply this
observation may sound at first, note that the classical scheme of dropping (as
well as the one of Algorithm 5 and 9) does not align smoothly with it. Quite on
the contrary, the dropping in the j-th column takes place immediately after the
finalization, i.e., any update by the j-th column is carried out with the already
finalized, sparsified structure. In order to profit from Observation 3.5.1, one has
to introduce a second dropping, i.e., consider a double sparsification.

The general approach is to have two dropping criteria - presenting a “coarser
sieve and a finer one”for the dropping - entries (or blocks) that pass through both
are part of the final factor, whereas entries that pass only through the coarser one
are used only for the future updates but are not put into the final incomplete factor.
This can be written down in the matrix form as the following decomposition of
A.

A “ pL̄ ` RqpL̄ ` Rq
T

` E,

where L̄ « L is the incomplete Cholesky factor on the output, R is the matrix
which entries were from the final factor but were used for the updates and E is
the error matrix. The idea of double sprasification was indirectly used already
by Kaporin [54] as mentioned and other authors have adopted it as well, see,
e.g., [73], [55] and [74].

Notice that the additional row dropping in Algorithm 5 and 9 fulfils a similar
role with one crucial difference - the row dropping is postponed as far as possible,
i.e., the second dropping process has as much information as possible. That is
not the case if the decision is made immediately after the column finalization.

Naturally, the effectiveness strongly depends on the chosen dropping criteria,
which are the focus of the rest of this subsection. Let us stress out here that
in general there is no need for the two dropping criteria to be compatible in the
sense that any entry that is not dropped by the second “finer”dropping will not
be dropped by the “coarser”either. The terms finer and coarser are chosen rather
for illustration of the overall purpose of each of the dropping steps but are not
meant literally.

The coarser sieve

Considering the complete block Cholesky factorization (either structurally sparse
or dense), the computational bottleneck is the update col by col procedure,
i.e., the lines 12-16 in Algorithm 9 4. This procedure can be further dissected into
block-by-(column)-block multiplication and summation of two (column)-blocks,
where the first one demand wk-times more operations, where wk is the width of
the k-th block-column. However, assuming the current active part of the (incom-
plete) factor is stored implicitly, e.g., the block-column is stored as a low-rank
approximation - either only the nonzero blocks or the entire block-column - this
is not necessarily the case any more.

For illustration, consider the block-column treated as a unit, i.e., it is stored
implicitly by some pmax-rank approximation. The multiplication now requires
only p2wk ´1qpmaxwj `p2pmax ´1qwkhj in comparison to p2wk ´1qwjhj. Here and

4In sense of the actual computation costs, we do not consider the issue of data movement.

57

later on hj denotes the height of the j-th block-column, i.e., the number of matrix
rows. Asymptotically this difference scales as wk{pmax and the meaning of this
ration is how much faster - measured in number of operations - the whole update
procedure is carried out. Or, equivalently, one can interpret it as an indicator
of how many additional updates could be incorporated, provided both algorithms
spend equal amount of time by column updates. This formulation points out to
the fact that one can exploit the data-sparsity in two different directions that can
be summarized as follows. Either one keeps the number of updates and obtain
a speed-up in the computation or one can keep the time costs, perform more
updates and, hopefully, obtain a better performing preconditioner. Here we have
chosen the second option, i.e., aiming for more updates and hopefully getting a
better preconditioner, but that does not mean that the other option is not viable.

Another implication of the above observation is that if one needs a possibility
for an additional updates, i.e., possibly richer row structure it is, surprisingly,
not an issue. Also, this somewhat sets the tone for the dropping - more updates
corresponds to “utilization of the data-sparsity”.

The finer sieve

In comparison to the above dropping - the coarser sieve - the objective for this
second dropping is to finalize the incomplete factor. Let us to recall Section 1.3
and the last paragraph in particular - solving systems with the preconditioner
has to be as fast as possible. In our case, one can enhance the efficiency mainly
by sparsity of the final factor and thereby the second dropping - so called finer
sieve - has to account for that. Second objective - often competing with the one
just mentioned - is to retain as good approximation of the true Cholesky factor
as possible. This holds for both structural and numerical part as the finalized
factor will still be used for the structural computation. Unfortunately, this is
where one has to settle for heuristics only as a proper analysis for the general
case is not available even in the case of the classical incomplete Cholesky without
the modification we have introduced so far.

One commonly used technique is based on control of the growth of the condi-
tion number of the finalized principal leading submatrix of the incomplete factor.
Clearly

κpAq “ κpLLT
q , i.e., κpLq “

a

κpAq

and one can argue that any incomplete factor L̄ « L such that κpL̄q ąą
a

κpAq

is not a suitable approximation. However, the computation of κpAq is computa-
tionally out of question and one has to settle for an estimator or, alternatively,
focus on the growth of κpL̄q only, i.e., requiring only that the condition number
is not sky rocketing when the next row is added to the incomplete factor. This
idea can be found in many papers, e.g.,[62], [17], [10] and [11] to name just a
few5. The techniques for the estimation of a condition number of a matrix form
a deep and wide field itself and we will not discuss this problematic with more
details. Rather than that we refer the interested reader to the survey paper of
Higham [50] and the work cited there or, more recently, the mentioned work of
Bollhöfer [10].

5Note that this approach is not limited to the SPD case.

58

Our proposal follows the development in [74, Section 4] to some extent, al-
though the paper is focused on symmetric indefinite systems. There the au-
thors use an estimate on the quantity called condest, originally due to Chow and
Saad [17], defined as

condest ” condestpLq “ }p L̄L̄T
q

´1e}8

that measures the instability of the triangular solver with L̄. Scott and Tůma
estimates condest by instability factor gj at the j-th step of the factorization,
defined as the largest entry (in absolute value) in the vector L´1

j e6, where Lj is
the current finalized part of the factor (i.e., the leading principal submatrix) and
e “ p1, . . . , 1qT . Clearly, gj can be monitored at each step of the factorization
as illustrated in Algorithm 10. For simplicity, we present here the scalar version.
One can easily reformulate it for a general blocking. Also, the LDLT factorization
is assumed, i.e., the factor L is unscaled by the the square roots of the diagonal
elements. This corresponds to our implementation, but it is only a technical
difference and the procedure given below can be easily modified for the other
version.

Algorithm 10 Computation of the instability factor gj, see [74, p.8]
1: if j “ 1 then
2: v1 “ 1;
3: g1 “ 1;
4: else
5: Set e “ p1, . . . , 1qT P Rj;

6: vj “ L´1
j e “

„

Lj´1
lj 1

ȷ´1

e “

„

L´1
j´1

´ljL
´1
j´1 1

ȷ

e “

„

vj´1
´ljvj´1 ` 1

ȷ

;

7: gj “ maxpgj´1, |vjend |q;
8: end if

The dropping strategy utilizing the instability factor gj is based on a simple
greedy approach. A row entry (scalar in the above example or block in general)
is tried out in the j-th row, i.e., lj is enriched, and provided gj does not increase
(or does not increase too much) the entry is accepted into the final factor. The
algorithm stops once an entry is rejected, i.e., once a growth (or too large growth)
in the instability factor would occur by adding another entry. The entries are
fetched in reasonable order, i.e., one first tries to add the entries that increase
the estimate the least.

However, Scott and Tůma use the procedure only to enhance some precom-
puted factor, i.e., on input is also a set of entries of the j-th block-row that is
already incorporated in the final factor and their procedure attempts to improve
it by adding additional blocks. In our case, we do not have any a-priori given
structure of the final factor. This is resolved later in the following section. As-
suming the initialization fixed blocks with block-column indices k1, . . . kl, let us
denote them by λj, i.e., λj “ tk1, . . . klu and let us denote the rest of the block-
column indices of the nonzero blocks in the j-th row by γj (following the notation

6Originally, they propose to control the largest entry of the vector |L´1
j e|, but then they

argue for the vector L´1
j e being more suitable.

59

of Scott and Tůma). Then one can write

vj “ 1 `
ÿ

kPλj

pljqkpvj´1qk `
ÿ

kPγj

pljqkpvj´1qk. (3.4)

The greedy strategy will consecutively try to add indices from γj to λj, i.e.,
incorporate more blocks into the j-th block-row of the final factor. Note that
from (3.4) one can see that evaluation of gj after addition of a particular entry is
very cheap. The procedure is therefore computationally quite appealing, provided
that the number of accepted entries for each row is not too large.

Notice that the focus above has no apparent connection to control of the
growth of the condition number as suggested previously. However, using a simi-
lar greedy strategy, only coupled with a condition number estimator could lead
in that direction. However, the computational costs of the condition number esti-
mator could be unmanageable, making the routine infeasible for practical usage.

3.6 The proposed preconditioner
The previous section was devoted to the presentation of the core concepts and
building blocks of the preconditioning technique we are proposing. However, for
the sake of simplicity and in comprehensibility many of the technical details were
skipped. Here we will provide more details related to the implementation and
we will continue in the next chapters, where the focus will be on costs analysis
and presentation of the results. The implementation was done in MATLAB code
and it was not optimized towards either memory or computational costs. The
goal has been not to provide final stage code but rather to test viability of the
ideas and of the complementary approach to the usually used one. This required
the key features to be implemented reasonably efficiently, while some commonly
used subroutines were adopted from the MATLAB library. This approach is
coupled with a careful analysis to distinguish the conceptual bottleneck and the
particular implementation challenges that could be overcome. The first section of
the next chapter focuses on this. The rest of this section is split into paragraphs
that will discuss each of the procedures of the following schematic abbreviation
of Algorithm 9. To avoid confusion, let us denote by S̃2 the structure after
the first dropping is carried out, i.e., the structure accepted by the coarser sieve
dropping that determines the column update structure. The structure of the final
factor, i.e., after both of the droppings have been carried out will be denoted by
StructpL̄jq.

60

Algorithm 11 Incomplete structurally sparse column-oriented Cholesky factor-
ization

Input: A square n-by-n SPD matrix A.
1: function proto ichol
2: blocking (A);
3: for j “ 2, . . . , ν do
4: factorize col (j ´ 1);
5: lr approx col (j ´ 1);
6: finer sieve (j ´ 1);
7: symb struct (j);
8: coarser sieve (j);
9: for k P pS̃2qj,˚ do

10: update col by col (j, k);
11: end for
12: end for

13: Return the incomplete factor L̄;
14: end function

Notice that the main for-cycle runs only through 2, . . . , ν and no longer through
2, . . . , n. The ν is a parameter retrieved from the blocking(¨) routine as the
number of block-columns (and block-rows).

The code is meant for sparse or almost sparse matrices foremost and thereby
all matrices are stored in a format similar to CSR7. That is why the whole code
considers the upper triangular factor, i.e., with LT instead of L. The entire
exposition above and also below is done with the lower triangular case, although
it is not identical with the implemented format. However, the reformulation
does not change anything important and definitely does not affect the costs of the
algorithm, either computational- or memory-based.

blocking (A) For the case of structurally sparse or structurally block sparse
matrices, the blocking techniques were described in Subsection 2.4.2 - the basic
one adopted from the paper of Ashcraft ([4]) and then a more general one by
Saad ([69]). In the paper of Saad one can find the implementation for both
of the blocking procedures (Algorithm 2.1, 2.2 and 2.3). Since this is simply a
preprocessing for the preconditioning routine, we omit the algorithms here.

For the case of structurally non-sparse matrices, e.g., for matrices that are
somewhere on the edge of being dense, or for those which are dense, those block-
ing algorithms are likely to give very large blocks8. A scheme similar to the
hierarchical ones presented in Subsection 2.4.1, but the sequential Cholesky can-
not process these blocks (see Subsection 2.4.2, Asssumption B1). To overcome
this issue, we propose a hierarchical matrix splitting. Consider some hierarchi-
cal format induced by an admissibility condition, it is easy to see that adopting
the blocking based on the dimension of the diagonal blocks is acceptable for the
sequential Cholesky factorization. This means symmetrical blocking with the

7The abbreviation stands for compressed sparse rows, see [33].
8For dense matrices both Ashcraft’s and Saad’s algorithms return no blocking, i.e., the result

is a “1-by-1 blocking”with the matrix itself being the entire block.

61

i-th block-column (and block-row respectively) having the width (or the height
respectively) equal to the dimension of the i-th diagonal block. Naturally, this
requires the diagonal blocks to be square or, in terms of the hierarchical format,
it requires the block-cluster tree to be derived from one labelled cluster tree only,
i.e., one cannot use different row and column indices partitioning. This condition
is met for all of the commonly used formats. Notice that one does not need to
change the matrix data structure in any way - the algorithm works with subblocks
of the implicitly stored blocks and this corresponds to considering only part of the
column and row matrices as shown in Figure 3.1 below, which does not introduce
new costs.

“A|tˆs U V T “A|tˆs U V T

Figure 3.1: Having the low-rank block of A, taking a subblock can be easily
formulated in terms of taking only certain part of the row and column matrices
U and V T .

This blocking has been coded in MATLAB as well9, but assuming only the strong
admissibility condition, which consequently makes the diagonal blocks of identical
dimension MinDim. In other words, the strong admissibility condition is used
and the splitting is stopped if the resulting blocks have smaller dimension than
MinDim. However, once another admissibility condition is provided, the code
can be easily reformulated - in the sense of applicability, not necessarily the coding
itself.

In the rest of the thesis we will consider two different cases. First, the struc-
turally block-sparse case, where the block-columns are considered to be block-
sparse, i.e., considerable portion of the blocks in each of the block-columns are
zero blocks. The matrix is in this case treated as a block-sparse one, i.e., oper-
ations with those zero blocks are avoided and the matrix is stored in an block-
CSC-like format. Second, the block-column unit case, where the block-columns
are treated as a unit throughout the factorization and are not partitioned any fur-
ther. This means that the procedure lr approx col stores implicitly the entire
subdiagonal part of the block-column, including the possible zero blocks, which
might be a more suitable approach for structurally block-non-sparse matrices.

factorize col (j) In the scalar case this procedure carries out the square root
operation and division by a scalar - see Algorithm 5, lines 5 - 8. For the block
scheme, the division is replaced by the multiplication by an inverse - naturally
implemented through a dense Gaussian elimination process, i.e., no inverse is in
fact assembled during the procedure. Regarding square roots, one can encounter
two different versions - either square root free or the classical one. The first
one computes the so-called square-root-free version, i.e., A “ LDLT instead of
the A “ LLT . From the computational point of view, the second approach
substitutes routine cholp¨q for the scalar square root function and then solves the

9We would like to thank to Yingzhou Li from the Duke University, who provided us with a
basic code skeleton in MATLAB, which we modified to fit our requirements.

62

systems with the triangular matrix instead of the scalar division. In comparison
to that, the square-root-free approach avoids the operation cholp¨q completely
and simply keeps the diagonal block as it is and then solves the systems with
the diagonal block in place of the scalar division. In our implementation the
first approach is taken. The main advantage is that the code does not break
down when a diagonal block is not SPD but the price to pay is that the systems
are solved by general Gaussian elimination, i.e., LU factorization of the diagonal
block is computed and forward and backward substitution are carried out. In
the second case, one only needs to compute the Cholesky factorization (which
is already cheaper than the LU factorization - for both memory and flops costs)
and then apply only the backward substitution.

Algorithm 12 The factorize col procedure - structurally block-sparse
1: function factorize col(j)
2: D “ assemble diag blockpjq;
3: Set col nnzs “ |pS̃2q˚,j|;
4: for k “ 2, . . . , col nnzs do
5: M “ assemble blck ordrpkq;
6: prod “ MD´1;
7: Incorporate block prod into the CSR storage scheme output;
8: end for
9: Return output;

10: end function

Algorithm 13 The factorize col procedure - block-column unit
1: function factorize col(j)
2: D “ assemble diag blockpjq;
3: M “ assemble blck-colpjq;
4: prod “ MD´1;
5: Return prod;
6: end function

The output, i.e., the nonzero blocks of the column, is saved in the block-CSR
format and fetched to the routine lr approx col (j). On lines 6 and 4 in
Algorithm 6 and 13, respectively, the MATLAB routine mldivide is used. It
is, the inverse is not constructed and the result is obtained by reformulation to
linear systems.

lr approx col (j) The low-rank approximation is done either blockwise, pro-
vided the structurally block-sparse blocking was done, or for the entire block-
column in the case that the hierarchical blocking was applied. The method we
have chosen is the randomized SVD (see [47, Section 1.5, p. 226] and the Sec-
tion 2.3). The oversampling parameter was chosen ad hoc, based on the dimension
of the blocks one works with. However, providing any other favourite low-rank
method code, one can simply rewrite the name of the routine in the code and
everything runs the same.

63

finer sieve (j) This procedure performs the second row dropping that finalizes
the incomplete factor. There were mentioned several possibilities of this dropping,
but we will consider only three particular implementations.

• Based on threshold dropping as in (1.5), denoted by finer sieve norm;

• Based on control of the condition number, denoted by finer sieve cond;

• Based on the approach of Scott and Tůma, denoted by finer sieve ST.

We will consider each option separately below, but let us emphasize that the
output from this routine is simply a structure of the next row to be incorporated
into the final factor. The process of doing so will not be described here. The
same holds for the assembling of the input, i.e., we will not differentiate between
the structurally block-sparse case and the block-column unit case.

First, let us consider the most straightforward of the three methods - the
threshold-based dropping. All of the blocks in the block-row are consecutively
compared with the diagonal one in the sense of Frobenius norm as in (1.5). Pro-
vided the ratio is sufficiently large, the block is accepted. The implementation is
given below in Algorithm14. The threshold τ P r0, 1s has to be user-specified.

Algorithm 14 The finer sieve norm procedure
1: function finer sieve norm(j, τ)
2: D “ assemble diag blockpjq;
3: Set row nnzs “ |pS̃2qj,˚|;
4: for k “ 1, . . . , row nnzs ´ 1 do
5: M “ assemble blck ordrpkq;
6: if }M}F ě τ}D}F then
7: Accept the k-th block in the block-row j;
8: end if
9: end for

10: end function

The second approach attempts to control the growth of the condition number
of the already finalized factor. Since the actual computation of the condition
number is not feasible, one has to settle for estimators only. We utilized the
built-in MATLAB routine condest that is based on the work of Higham and
Tisseur [51]. The algorithm uses a simple greedy strategy, i.e., as long as we do
not increase the estimator too much, we keep adding the blocks to the final factor.
Once a block is not accepted, the algorithm ends. The blocks are considered in
order of descending magnitude, i.e., the first attempt is with the (off-diagonal)
block with the largest Frobenius norm and so on. The final sparsity is heavily
affected by the allowed increase of the condest estimate. We compare only their
decadic logarithms. It is, the decision is based on the growth of the order of
magnitude of the quantity rather than the value.

64

Algorithm 15 The finer sieve cond procedure
1: function finer sieve cond(j, τ)
2: D “ assemble diag blockpjq;

3: Assemble the factor L̄j defined as
„

L̄j´1
0 D

ȷ

;

4: Estimate its condition number C “ condestpL̃jq;
5: Find the block Mk from the j-th block-row that

has the largest Frobenius norm and that has not been added yet;
6: Set L̃j by adding the block Mk onto its position

in the j-th block-row of L̄j;
7: Compute C̃ “ condestpL̃jq;
8: if log10pC̃q ě τ log10pCq then
9: Accept the k-th block in the block-row j;

10: GOTO line 5;
11: end if
12: end function

The third approach is based on the quantity condest of the already finalized
factor, mentioned in Section 3.5. Scott and Tůma use a quantity named identi-
cally to the condition number estimator routine in MATLAB. We do not change
the notation but we will make as clear distinction as possible. The MATLAB
routine condest will be always emphasized in bold, while the quantity used by
Scott and Tůma condest will be highlighted in italics. The notation conflict is to
the best of our knowledge purely coincidental as both of these measure something
different. The routine condest is based on estimating the 1-norm of the inverse
of the given sparse square matrix, whereas the quantity condest measures the
instability of a triangular solver of the given block-lower-triangular matrix.

The approach based on the quantity condest has been already mentioned
above and the algorithm below follows the one presented in [74] as closely as
possible. But there are some important differences. We will not describe the
computation of the estimator gj in any more details and settle for only a pseudo-
code as the routine was already sketched in Algorithm 10 and then in (3.4). The
interested reader is welcomed to look either into [74, Section 4, p.9-10] or into
the submitted implementation.

65

Algorithm 16 The finer sieve ST procedure
1: function finer sieve ST(j, τ)
2: Initialize the structure of the j-th block-row of L̄j;
3: Assemble the factor L̄j;
4: Assemble the vector vj´1;
5: Find the block Mk from the j-th block-row, which increases gj the least;
6: Add the block Mk onto its position in the j-th block-row

of L̄j and compute the updated instability factor g̃j;
7: if g̃j ě τgj then
8: Accept the k-th block in the block-row j;
9: Update the estimate gj “ g̃j;

10: GOTO line 5;
11: end if
12: end function

symb struct (j) The row structure is obtained by working with the structure
of the quotient matrix of L̄j, i.e., the quotient matrix composed of zeros and ones,
instead of the matrix L̄j itself. The row structure is computed by the breadth-
first search in the quotient graph of the quotient matrix. Although the MATLAB
Graph toolbox contains a built-in routine for the search, we coded a simple search
ourselves. Once the search is finished, the structure of the column of the already
blocked matrix A is incorporated. Since this might be troublesome for dense or
almost dense cases (since the structure would get dense as well), an alternative
way to search for the row structure is proposed - only the leaves of the j-th row
subtree are taken as the structure of the j-th row. This is motivated by the
fact that from the structural point of view, the leaves are the vertices that fully
determine the structure of the updates carried out in the complete factorization.

The column structure is obtained by adding the structure of all of the updating
columns in one long vector (with possibly and probably repeating entries) and
running the built-in MATLAB routine unique(queue, ’sorted’), which returns a
vector of all the entries sorted from the lowest to the highest, without repetitions.

coarser sieve (j) This procedure performs the first row dropping that deter-
mines the structure of the upcoming column update. The purpose of this routine
is to allow a rich enough row structure through to exploit the fact that the cur-
rent active part of the factor is stored implicitly, which reduces the costs of the
update col by col routine later on. Notice that both variants of the proce-
dure (Algorithm 17, 18) scale the block column by the appropriate block from
the j-th block-row. If the block is very small in some sense (either elementwise or
normwise) relatively to the rest of the block-row, the update by the corresponding
block-column may be much smaller than the rest of the updates in the same sense.
In other words, heuristically that update is not as important and can be omitted,
i.e., the block can dropped. This corresponds to the intuitive reasoning behind
the threshold-based dropping in general. Here in order to obtain a really coarse
sieve, the threshold has to be set quite low. The implementation corresponds to
the one in Algorithm 14 (although the use is different).

66

update col by col (j, k) In the scalar case this procedure carries out mul-
tiplication of two scalars and one subtraction - see Algorithm 5, lines 10 - 12. For
the block scheme, this is formulated analogously, only the first block is transposed
and both of the blocks are either stored in low-rank decomposition themselves or
have to be retrieved from the low-rank approximation of the entire block-column,
as in Figure 3.1 above. The output, i.e., the nonzero blocks of the column, is saved
into CSR format and fetched to the routine factorize col (j). The procedures
are summarized in Algorithms 17 and 18 below.

Algorithm 17 The update col by col procedure - structurally block-sparse
1: function update col by col(j, k)
2: X “ assemble subdiag blckcol Apjq;
3: Set col nnzs “ |pS̃2q˚,k|;
4: for ii “ 2, . . . , col nnzs do
5: i “ determine rowindexpiiq;
6: Li “ assemble factorized blck pospi, kq;
7: Aij “ assemble unfactorized blck pospj, kq;
8: X “ X ´ Lik ˚ AjkT ;
9: end for

10: Compress the block-vector X to CSR format and return it as output;
11: end function

Algorithm 18 The update col by col procedure - block-column unit
1: function update col by col(j, k)
2: X “ assemble subdiag blckcol Apjq;
3: Lk “ assemble factorized blckcolpkq;
4: Ajk “ assemble unfactorized blck pospj, kq;
5: X “ X ´ Lk ˚ AjkT ;
6: Return X on the output;
7: end function

It is important to notice that the above implementation requires storing of two
block-triangular matrices - the factorized one and the unfactorized one. This
may result, in many instances, into large memory costs. There are two simple
possibilities how to resolve this problem.

• One can go back to the procedure factorize col in Algorithm 11 and
force the computation of the Cholesky factorization of the diagonal block
and scale the block-column by the inverse of this factor, i.e., replace MD´1

by M ˚ cholpDq´1 on lines 6, 4 in Algorithm 12 and 13 respectively. Con-
sequently, the memory costs are halved. On the other hand, the procedure
factorize col can have a breakdown due to D not being SPD.

• One can save only the factorized block-triangular matrix and modify the
update formula in the procedure update col by col in Algorithm 17
and 18 respectively by

X “ X ´ Lik ˚ D ˚ LjkT ,

X “ X ´ Lk ˚ D ˚ LjkT ,

67

where one has Ljk “ AjkD´1. This can bring further instabilities into the
algorithm as the diagonal blocks might be ill-conditioned.

Since our implementation is intended mainly for small, test problems, we simply
use an additional memory.

We have summarized the main challenges we have met during the implementa-
tion as well as the building blocks. The analysis of the proposed preconditioning
technique is in the following chapter.

68

4. Analysis of the proposed
preconditioner

4.1 Costs analysis
As already mentioned, reasonable computational and memory costs are a must
for a preconditioner. This section is devoted to this issue - we will discuss analysis
of computational costs. But, it is important to distinguish between the possible
final implementation and the current version of the code. The analysis here is
done in regard to the code that computed the numerical examples (which will
be presented in the next chapter), i.e., Algorithm 11. Let us emphasize the fact
that this code can be further improved or modified and that these modifications
can bring considerable speed-up in the sense of Section 3.6 (such instances will
be highlighted).

The analysis will be done for two separate cases - first, focusing on each
nonzero block separately (structurally block-sparse) and second, treating the block
columns as a unit (block-column unit). First, each of the procedures in Algo-
rithm 11 is analysed separately (for both of the instances) and in the end the
final computational costs will be estimated. The cost of the k-th procedure will
be denoted by ηk for the structurally block-sparse case and by ϑk for the struc-
turally non-sparse case, e.g., costs of factorize col(j) will be denoted η1pjq and
ϑ1pjq, respectively, costs of lr approx col(j) will be denoted by η2pjq and ϑ2pjq,
respectively and so forth. The notation is adopted from above, i.e., wj and hj

stand for the width and height of the subdiagonal part of the block-column, i.e.,
the number of scalar columns and rows the subdiagonal part of the block-column
contains.

factorize col (j) This procedure has to multiply the block-column by the in-
verse of the diagonal block. Naturally, the inverse is not assembled and the code
solves a sequence of linear systems with the diagonal block. This corresponds to
the Gaussian elimination, i.e., LU factorization of the diagonal block followed by
the forward and backward run instead. These costs are as follows.

η1pjq “

GE of the diag block
hkkkkkkkkikkkkkkkkj

2{3w3
j ` Opw2

j q `

forward and backward run
hkkkkkkkkikkkkkkkkj

ÿ

iPpS̃2q˚,j

2w2
j ¨ wi

ϑ1pjq “ 2{3w3
j ` Opw2

j q
loooooooomoooooooon

GE of the diag block

` 2w2
j ¨ phj ´ wjq

loooooooomoooooooon

forward and backward run

lr approx col (j) This procedure uses the randomized SVD algorithm at this
moment, but, in general, one can plug in any desired low-rank procedure. Notice
that for the structurally block-sparse case the costs are quite acceptable, even
if some of the more costly procedures are employed, since neither j nor hj are
present. However, treating the block-column as a unit, the procedure has to be
chosen more carefully. Here we also use the assumption of the uniformly bounded
numerical rank of the blocks, i.e., we assume that the numerical rank of the block

69

that is being approximated is, at most, pmax. For the computational costs, we
refer to the work of Halko, Martinsson and Tropp [47, Section 1.4.1] obtaining
the following.

η2pjq “
ÿ

iPpS̃2q˚,j

Opwiwj logppmaxq ` pwj ` wiqp
2
max

ϑ2pjq “ O
`

phj ´ wjqwj logppmaxq ` hjp
2
max

˘

finer sieve (j) This procedure performs the second row dropping that finalizes
the incomplete factor. We have mentioned three different approaches. First, if
finer sieve norm is used, the computational costs amount to computing the
Frobenius norm of each of the nonzero blocks in the j-th row, i.e.,

ηnorm
3 pjq “ ϑnorm

3 pjq “
ÿ

kPpS̃2qj,˚

2wkwj ´ 1

Since these blocks are kept in the low-rank format, it is possible here to relax the
complexity by bounding }UV T }F ď }U}}V }F .

Second, if finer sieve cond is used, the computational costs amount to
computing the Frobenius norm of each of the nonzero blocks, finding the largest
of those and then evaluating condest(¨), the latter two possibly several times.
The bottleneck in this case is the condest routine. This routine complexity is,
however, quite difficult to estimate and in many cases it is not even Opjq. Hence,
this could possibly be a significant bottleneck of the overall costs of the algorithm.
Therefore, we consider it here rather as an illustration of a similar approach as
the one of Scott and Tůma, which is, unfortunately, probably not applicable in
practice for large problems.

At last, if finer sieve ST is used, the one has to carry out initialization,
computing matrix-vector products with the blocks in the j-th block-row in order
to evaluate the block version of (3.4), computing 1-norm of a vector of length wj

and search for the largest entry in a scalar vector of length at most j. Assum-
ing either no initialization or initialization by norm, these costs amount to the
following.

ηST
3 pjq “ ϑST

3 pjq “
ÿ

kPpS̃2qj,˚

p2wk ´ 1qpmax ` p2pmax ´ 1qwj ´ 1 ` Op1q

symb struct (j) This procedure first performs a breadth-first search in the
graph of the currently completed part of the incomplete factor. For a breadth-
first search in a general graph GpV, Eq one has the generally known worst case
bound of Op|V | ` |E|q. Notice that the column structure computation does not
need to be considered here as its cost is certainly inferior with respect to the costs
of the actual update, since the pattern is the same. Also, note that there is no
difference between the two considered cases as the quotient graph of the finalized
factor is the same in both of them.

We will impose the structural sparsity condition at this point, fixing the num-
ber of blocks per block-row (and block-column) to be constant in the final incom-
plete factor. This can restriction is based on the paper of Lin and Moré [59] and

70

is a common one when a structurally (block) sparse incomplete Cholesky factor
is desired.

Denoting GpL̄j´1q “ pVL̄j´1 , EL̄j´1q the graph of interest, one can write
|VL̄j´1 | “ j and |EL̄j´1 | ď const ¨ j and the estimate follows.

η4pjq “ ϑ4pjq “ Opjq

coarser sieve (j) This procedure performs the first row dropping that deter-
mines the structure of the upcoming column update by threshold-based dropping
based on comparison with the Frobenius norm of the diagonal block. To perform
this dropping, one only needs to compute the Frobenius norm of all of the nonzero
blocks in the j-th block-row, which (in both cases) amounts to the same costs.

η5pjq “
ÿ

kPpS2qj,˚

2wkwj ´ 1

ϑ5pjq “
ÿ

kPpS2qj,˚

2wkwj ´ 1

update col by col (j, k) The process of the update consists of multiplica-
tion of the correct part of the k-th block-column (from block-index j below) by
a single block, i.e., multiplication of matrices of dimensions wk ˆ hj and wk ˆ wj,
and consequent summation of two matrices of dimension wj ˆ hj. However, all
of the matrices are stored in low-rank format, with the rank bounded by pmax
from above. In the case of the structurally block-sparse format, naturally only
the nonzero multiplications are performed. Consequently, number of flops per
each run of this procedure can be estimated as follows.

η6pjq “

multiplication
hkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

ÿ

iPpS̃2q˚,k

p2wi ´ 1qwkpmax ` p2pmax ´ 1qwiwj `

summation
hkkkkkkikkkkkkj

ÿ

iPpS̃2q˚,k

wkwi

ϑ6pjq “ p2wk ´ 1qpmaxwjp2pmax ´ 1qhjwj`
looooooooooooooooooooomooooooooooooooooooooon

multiplication

` hjwj
loomoon

summation

Overall computational costs Here, we will sum up the computational costs
for each of the cases. But prior to that let us consider two additional assumptions.

(A1) The sizes of the block-columns (and block-rows) are uniformly bounded,
i.e., there is a natural number W such that for all 1 ď j ď ν one has
wj ď W ;

(A2s) The number of the nonzero blocks for each column after it has been up-
dated is uniformly bounded as well, i.e., after any block-column update,
the block-colum has at most Knonzero blocks (only for the structurally
block-sparse case).

In order to evaluate the overall computational costs let us first evaluate only
lines 9-11, i.e., the entire updating process, denoted by η̄6 and ϑ̄6 for structurally

71

block-sparse and block-column unit respectively. Starting with η̄6, one can use
(A1) to obtain

η̄6pjq “
ÿ

kPpS̃2qj,˚

pmaxwj

ÿ

iPpS̃2q˚,k

2pwk ` wiq ´ 1 ď
ÿ

kPpS̃2qj,˚

4W 3pmax|pS̃2q˚,k|.

Employing the second assumption (A2s) one can bound the number of nonzero
blocks in the j-th column by jK, obtaining

η̄6pjq ď 4W 3pmaxjK.

However, note that this bound is rather pessimistic as it assumes no overlap in
the column structure replication. If (A2s) is strengthened, e.g., assuming that af-
ter the updates each of the column contains at most K nonzero blocks, the above
bound becomes independent on j and therefore further asymptotically decrease
the computational costs.

Considering the block-column unit alternative, one obtains the following
bound on η̄6pjq.

ϑ̄6pjq “
ÿ

kPpS̃2qj,˚

p2wk ´ 1qpmaxwj ` p2pmax ´ 1qhjwj ` hjwj

ď W ¨
ÿ

kPpS̃2qj,˚

2Wpmax ` 2pmaxhjW ` hj.

In order to proceed any further, one needs to bound hj. i.e., the number of the
scalar rows in the j-th block-column (subdiagonal part). Since hj “

ř

lăj wl, the
worst case scenario gives hj “ n ´ j ` 1. However, in the mentioned case when
all of the blocks have identical dimension, the quantity hj scales linearly with
j. This is more or less unavoidable if one wants to treat the columns as units.
Analogously to the bound on η̄6, one can write the following.

ϑ̄6pjq ď W
ÿ

kPpS̃2qj,˚

2Wpmax ` 2pmaxhjW ` hj ď 2W 3pmaxpn ´ j ` 2q|pS̃2qj,˚|.

Therefore, in order to avoid the Opn3q complexity of the complete factorization,
one has to bound |pS2qj,˚| independently of j, i.e., assume that already the coarser
sieve will considerably sparsify the row structure.

Having all of the subroutines analysed, the overall computational costs are
summarized in the following theorem.
Theorem 4.1.1. Let A be an n-by-n SPD matrix and assume that the blocking
procedure in Algorothm 11 resulted in a block structure with each of the diagonal
blocks having dimension bounded by W . Then the following holds true.

(i) Let the number of nonzero blocks in each of the block-column of blocked A is
bounded by a constant K independently of the block-column index. Assume
that the structurally block-sparse version of Algorithm 11 has been carried
out without a breakdown and that the final factor is block sparse, i.e., number
of nonzero blocks per block-row is constant and independent on the block-row
index. Then the computational costs asymptotically amounts to Opn2q.

72

(ii) Consider the block-column unit version of Algorithm 11 and assume it has
been carried out without a breakdown. Assume that |pS2qj,˚| can be bounded
by some constant independent on j for all block-column indices j “ 2, . . . , ν,
the computational costs asymptotically amounts to Opn2q.

Proof. The costs of each of the subroutines of Algorithm 11 have been bounded
linearly in j for both of the considered cases. Therefore, the overall costs amount
to

ν
ÿ

j“1
Opjq “ Opν2

q “ Opn2
q,

where the last equality follows from the definition of ν.

4.2 Accuracy, stability and convergence
The importance of analysis have been already highlighted throughout this thesis.
There are several options how to approach this task. Having the incomplete
Cholesky factor L̄ of A, one might consider its accuracy, i.e., the quantity }L̄L̄T ´

A}, or its stability, i.e., the quantity }L̄´1AL̄´T ´ I}. However, it is a well-known
fact that reasonable bounds on these quantities do not necessarily imply good
convergence of CG and vice versa. In most of our experiments, the inaccuracy was
quite large even though the results were sometimes positive. The correct way to
approach the analysis of the efficiency of a given preconditioner has to involve the
iterative method, i.e., it has to take into account the number of iterations needed
for the convergence as well as costs per iteration. Analysis of those quantities
even for the unpreconditioned CG in finite precision is very challenging and a
great deal of work have gone into it. Nice overview of the literature covering this
topic is in the PhD thesis of Carson [14, Section 2.5]. Naturally, incorporating
the preconditioning adds other challenges. The preconditioned CG algorithm in
finite precision was discussed by, e.g., Strakoš and Tichý in [75], [76].

The main challenge we face during the analysis that needs to be highlighted
here is that both the droppings in our preconditioner affect each other. The
second one is even very hard to analyse, because of the unpredictability of the
estimators. Although the analysis is much needed, the task remains as a challenge
for future work.

4.3 IFCM vs. CFIM
The purpose of this section is to point out to an interesting concept proposed by
Gilbert et al. [37]. In this project, the authors suggest a conceptually new frame-
work for structurally sparse preconditioners, which they abbreviate by complete
factorization of incomplete matrices (CFIM) and put it into the contrast with
the classical way of preconditioning, which they summarize by incomplete fac-
torization of complete matrix (IFCM). The difference is obvious from the title
- while the usual preconditioning techniques tend to preserve the given matrix
and modify the factorization in order to build an efficient preconditioner, Gilbert
et al. proposed to keep the factorization intact and to perform it on a modified
matrix.

73

The main advantages they highlighted were the possibility to change and pre-
scribe the matrix structure so that the complete factorization can run in parallel
and avoid massive fill-in. One can immediately see that in this way the memory
allocation can be done prior to the factorization itself and the matrix structure
can be determined so that the memory costs will perfectly fit the given condi-
tions. Moreover, one could use the effective libraries for parallel direct methods
and hence the work on implementation could be drastically simplified. The effi-
ciency should be kept by suitable interplay between the structural and algebraic
properties of the modified matrix. Although this idea sounds very promising, we
have not found any further information related to this project, nor any published
results in this direction.

We mention it here because the core idea is connected to our approach, despite
the reasoning being different. In our case, the preconditioning technique uses the
classical tools of the incomplete factorization, e.g., threshold-based dropping, but
the structural part of the factorization can be viewed as a complete factorization
of an incomplete matrix, since the governing mechanisms correspond to the com-
plete Cholesky factorization, only used on an incomplete factor. The motivation
is, however, completely different. Rather than focusing on parallelism and pre-
scription of the sparsity pattern in advance, we employ these techniques to enable
implicit storing of the current active part of the factor.

74

5. Numerical experiments
The goal of the last chapter is to present several examples, showing that the ideas
and approaches given above are applicable and may result in decent precondition-
ers. This is, in our opinion, even more important due to the lack of analysis. In
order to validate further research, the numerical examples should be promising,
at least to some extent.

All of the experiments were performed on the MATLAB R2015a software.
To give a comparison, the built-in routine ichol was used to produce modified
Cholesky factorization with zero fill-in and incomplete Cholesky factorization with
threshold dropping - setting “ichol(sparse(A), struct(’michol’,’on’,’type’,’nofill’))”
and “ichol(sparse(A), struct(’type’,’ict’,’droptol’,1e-3))” , respectively. The right-
hand side in all of the examples is set so that the exact solution is the vector of
ones. Initial guess is fixed to be the zero vector and the stopping criterion is set
to

}rk}

}r0}
ď 10´10. (5.1)

The maximal number of CG iterations is set to maxit “ 300.
In total, five different preconditioning techniques have been proposed here,

all of them following the Algorithm 11, but employing different strategy for the
routine finer sieve. The options for setting the finer sieve procedure are

• the threshold row dropping, i.e., Algorithm 14;

• the condition number estimate, i.e., Algorithm 15;

• the instability factor-based, i.e., Algorithm 16.

Moreover, the last one, following the proposal of Scott and Tůma, has three differ-
ent possible initializations - by threshold dropping, condition number estimate,
or without any initialization. Fixing the finer sieve procedure to one of the
listed options, the resulting preconditioners will be denoted by “norm” “cond”
“STn” “STc” “STp” 1. In general, we refer to the group of preconditioners as
data-sparse incomplete Cholesky preconditioners (DSIC).

Overall, our experience is that if no breakdown occurs in the built-in routines,
then they tend to outperform our preconditioner in terms of number of iterations
of preconditioned CG, in some cases significantly. On the other hand, in most
of the cases the number of iterations of preconditioned CG is comparable. The
used test matrices are freely available at the SuiteSparse Matrix Collection [20].

The rest of this chapter is divided into two sections, one for each of the
considered blocking variants, and in each is presented the performance of the
preconditioned CG method as well as the structural properties of the precondi-
tioner for several matrices. Naturally, the additional user-defined parameters will
be specified as well.

1The abbreviation ST stands for Scott and Tůma, “p” stands for pure, i.e., without initial-
ization.

75

5.1 Structurally block-sparse matrices
We will consider one problem in full detail and summarize the rest in a table
below. The parameters in our preconditioner were set as follows.

• blocking - the parameter τblock for the blocking algorithm of Saad (see (2.4))
was taken as τblock “ 0.752 « 0.56;

• coarser dropping - the parameter τcoarse for the coarser sieve based on
threshold dropping has been taken as τcoarse “ 10´4;

• finer dropping - the parameter τfine norm for the finer sieve based on thresh-
old dropping has been taken as τfine norm “ 10´3;

• finer dropping - the parameter τfine cond for the finer sieve based on the
MATLAB routine condest has been taken as τfine cond “ 1.1;

• finer dropping - the parameter τfine ST for the finer sieve based on insta-
bility factor gj has been taken as τfine ST “ 1;

• initialization of ST - the parameter τinit ST for initialization of the finer
sieve based on instability factor gj has been taken as τinit ST “ 1 for both
threshold dropping and condest-based initialization;

The results for the matrix Trefethen 150 are illustrated in three separate figures.
First, Figure 5.1 shows the nonzero structure of the matrix A, its Cholesky factor
and then the incomplete Cholesky factor with threshold dropping. In the modi-
fied incomplete Cholesky factor with zero fill-in occurred a breakdown. Second,
Figure 5.2 shows the nonzero structures of the computed preconditioners by our
code and the structure used for updates, i.e., the structure after the coarser sieve
dropping. Let us emphasize that the update structure should be understood
row-wise, i.e., the nonzero pattern of the j-th row here shows, which columns
were used to update the j-th column. However, the structure of the updating
columns is not presented! Finally, Figure 5.3 shows the number of iterations of
the preconditioners.

nnz = 2040

0 50 100 150

0

50

100

150

nnz pattern A

nnz = 8427

0 50 100 150

0

50

100

150

nnz pattern chol(A)

nnz = 0

0 50 100 150

0

50

100

150

mic(0) encountered error

nnz = 1352

0 50 100 150

0

50

100

150

nnz pattern ict(A)

Figure 5.1: The nonzero structure of the original matrix A as well as its complete
Cholesky factor and its incomplete counterparts - modified with no fill-in and
with threshold dropping.

76

nz = 2964

0 100

0

50

100

150

update pattern norm

nz = 2815

0 100

0

50

100

150

nnz pattern norm

nz = 2922

0 100

0

50

100

150

update pattern cond

nz = 2769

0 100

0

50

100

150

nnz pattern cond

nz = 2964

0 100

0

50

100

150

update pattern STp

nz = 1462

0 100

0

50

100

150

nnz pattern STp

nz = 2866

0 100

0

50

100

150

update pattern STn

nz = 1504

0 100

0

50

100

150

nnz pattern STn

nz = 2964

0 100

0

50

100

150

update pattern STc

nz = 1598

0 100

0

50

100

150

nnz pattern STc

Figure 5.2: The nonzero structure of the coarser (on the left) and finer (on the
right) sieve dropping result. In comparison to the complete Cholesky factor,
there is a substantial dropping in all of these and even among them, there is a
substantial difference between the one with least nonzero entries and its opposite.

nmb. it.

0 20 40 60 80 100 120

re
la

ti
v
e
 n

o
rm

 o
f
re

s
id

u
a
l

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Preconditioner

ICT_1e-3

DSIC

nmb. it.

1 2 3 4 5 6 7 8 9 10 11

re
la

ti
v
e
 n

o
rm

 o
f
re

s
id

u
a
l

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

Norm

Cond

STpure

STnorm

STcond

Figure 5.3: The convergence behaviour of the preconditioned CG method with
the five options described above is on the left. On the right are convergence
curves of unpreconditioned CG and preconditioned CG using the best performing
preconditioner from the left (in terms of number of iterations) and the incomplete
Cholesky with threshold dropping preconditioner.

The results can be summarized as follows. The purpose of the double sparsifi-
cation was fulfilled as the update pattern contains almost twice the number of
nonzero entries in comparison to the final incomplete factor. Also, the conver-
gence was obtained in reasonable number of iterations that is both comparable
to the number of iterations needed with the incomplete Cholesky factorization
with threshold dropping and is significantly lower than the number of iterations
the unpreconditioned CG method needed to satisfy the stopping criterion (5.1).

It is important to emphasize that no blocking occurred in this particular case,
i.e., all of the blocks are of size 1-by-1. From one point of view, this does not
represent the full picture, as only a part of the above proposed approach have

77

been exploited. On the other hand, it shows that the structural computation
proposal is not limited to the block variant. Although we see the final aim in
block variant, this suggests that the structural proposal could be useful on its
own.

We run the code also for other matrices from classes “Trefethen” and “mesh”
with identical setting as above. Since there is several versions and in most of the
cases their performance among themselves was comparable, we restrict ourselves
to present the results in Table 5.1 below. Each of the matrices is referred to by
name from the SuiteSparse Matrix collection and the number of nonzero entries of
the complete Cholesky factor is given as well. The column “DSIC type” clarifies,
which of the preconditioners resulted in the fastest convergence and is followed
by the number of nonzeros contained the incomplete factor and by the number
of iterations of preconditioned CG needed. Last column gives the number of
iterations needed for the incomplete Cholesky factorization with threshold drop-
ping MATLAB routine with threshold dropping 10´3. The modified incomplete
Cholesky factorization had a breakdown in most cases and therefore we do not
include it into the comparison.

Let us stress out that the purpose of the following table is to show the promises
of the proposed preconditioners. In other words, the focus is on showing that the
approaches are viable, even though they may not be best suited for the particular
problems. Therefore, the table does not give a full comparison and number of
important metrics is omitted.

Name Dimension nnzs chol(A) DSIC type nnzs DSIC(A) nmb. it. DSIC pCG nmb. it. ICT pCG
Trefethen 20 20 169 STp 76 11 5
Trefethen 150 150 8427 cond 1598 10 6
Trefethen 200 200 14877 STc 2217 10 5
Trefethen 300 300 33 409 STp 3266 10 4
Trefethen 500 500 84809 STn 5180 10 5
Trefethen 700 700 184 337 norm 14564 9 6

mesh1e1 48 541 STn 163 15 5
mesh2e1 306 12 464 norm 1998 25 10
mesh2em5 306 12 464 norm 1604 19 6
mesh3e1 289 11 049 STp 545 21 6
mesh3em5 289 11 049 cond type 290 20 5

Table 5.1: A summary of performance of the DISC-type of preconditioners on
some test matrices form the SuiteSparse Matrix collection.

5.2 Block-column unit matrices
As we have already mentioned, for this case we have implemented the H-matrix
format with the strong admissibility condition (see (2.2)), i.e., the HODLR for-
mat, and adopted the uniform blocking2 given by the block of the smallest di-
mension, i.e., the diagonal blocks of the format, see Figure 5.4 below.

2The matrix is blocked into square blocks of equal dimension.

78

Figure 5.4: The figure shows the uniform matrix partitioning corresponding to
the HODLR format from Figure 2.8.

Notice that in this form, one has to assume that the dimension n of the original
matrix is written as a power of the dimension of the diagonal block, i.e., it should
be n “ MinDimk for some k. This could be relaxed, see [12], to allow for
any dimension n in general. However, we have not managed to implement that
relaxation in our code. Therefore, we will consider only the leading principal
submatrix of size ñ of the original matrix, where ñ ď n is chosen as large as
possible, i.e., so that

ñ “ MinDimk for as large k as possible.

Considering the reduced matrix Ap1 : ñ, 1 : ñq and the uniform blocking, we
will now treat the block-columns as individual items3. One can see that for
structurally sparse matrices with limited fill-in this will result in very inefficient
approach, because the block-column unit approach stores the whole blocks in
a low-rank format, i.e., it does not distinguish zero and nonzero blocks during
the computation. Therefore we decided to test on modified matrices with added
nonzeros of small magnitudes in comparison to the rest of the matrix row. To be
more specific, a modification matrix M is defined row by row as

Mpi, :q “ 0.5 ˚ p1e ´ 3q ˚ }Api, :q}1 ˚ randnp1, nq

and then we have considered the matrix Ã “ A ` M ` MT , provided it was SPD.
Also, in order to simulate the blockwise rank-deficiency, we first projected

the given matrix to the set of H-matrices, i.e., each block with respect to the
original HODLR format was truncated. Those two modifications should, in our
opinion, create a well-suited problem for the proposed block-column unit routines,
although in many cases almost unrelated to the original one. However, let us
emphasize that the modifications are not part of our proposal, i.e., we do not
suggest to always modify the problem as we did prior to the computation. The
goal was simply to create a problem for which our approach would be well-suited.
In reality, the small-magnitude error is often already present in the matrix as well
as the rank-deficiency.

The parameters in our preconditioner were set as follows.
3Naturally, one can easily modify this scheme in many ways, e.g., consider the uniform

blocking with respect to a coarser blocking, i.e., defining the size of the block columns to be
twice the size of the diagonal block from the HODLR format. We referred to this block-column
unit approach as H-matrix slicing.

79

• blocking - the dimension of the diagonal blocks MinDim for the blocking
algorithm was taken as MinDim “ 4. The pmax bound is set to pmax “

MinDim ´ 1;

• coarser dropping - the parameter τcoarse for the coarser sieve based on
threshold dropping has been taken as τcoarse “ 10´4;

• finer dropping - the parameter τfine norm for the finer sieve based on thresh-
old dropping has been taken as τfine norm “ 10´3;

• finer dropping - the parameter τfine cond for the finer sieve based on the
MATLAB routine condest has been taken as τfine cond “ 1.1;

• finer dropping - the parameter τfine ST for the finer sieve based on insta-
bility factor gj has been taken as τfine ST “ 1;

• initialization of ST - the parameter τinit ST for initialization of the finer
sieve based on instability factor gj has been taken as τinit ST “ 1 for both
threshold dropping and condest-based initialization;

The results for the matrix Trefethen 150 are illustrated in three separate figures,
analogously to the previous section. First, Figure 5.5 shows the nonzero structure
of the matrix A, its Cholesky factor and then of the modified incomplete Cholesky
factor with zero fill-in and incomplete Cholesky factor with threshold dropping.
Second, Figure 5.6 shows the nonzero structures of the computed preconditioners
by our code and the structure used for updates. Let us again stress out that this
is to be understood row-wise. It is, the nonzero update pattern of the j-th row
shows, which of the columns were used to update the j-th one. However, the
structure of the updating columns is not presented! At last, Figure 5.7 shows the
number of iterations of the preconditioners.

nz = 4096

0 20 40 60

0

20

40

60

nnz pattern A

nz = 2080

0 20 40 60

0

20

40

60

nnz pattern chol(A)

nz = 2080

0 20 40 60

0

20

40

60

nnz pattern michol(0)

nz = 1242

0 20 40 60

0

20

40

60

nnz pattern ict(A)

Figure 5.5: The nonzero structure of the original matrix A as well as its complete
Cholesky factor and its incomplete counterparts - modified with no fill-in and
with threshold dropping.

80

nz = 2080

0 20 40 60

0

20

40

60

update pattern norm

nz = 976

0 20 40 60

0

20

40

60

nnz pattern norm

nz = 2080

0 20 40 60

0

20

40

60

update pattern cond

nz = 160

0 20 40 60

0

20

40

60

nnz pattern cond

nz = 2080

0 20 40 60

0

20

40

60

update pattern STp

nz = 1312

0 20 40 60

0

20

40

60

nnz pattern STp

nz = 2080

0 20 40 60

0

20

40

60

update pattern STn

nz = 2080

0 20 40 60

0

20

40

60

nnz pattern STn

nz = 2080

0 20 40 60

0

20

40

60

update pattern STc

nz = 1312

0 20 40 60

0

20

40

60

nnz pattern STc

Figure 5.6: The nonzero structure of the coarser (on the left) and finer (on the
right) sieve dropping result. Recall that the update pattern matrices have to
be understood row-wise. That is, the j-th block-row shows which of the block-
columns updated the j-th block column. This does not imply that those updates
are dense.

nmb. it.

0 10 20 30 40 50 60 70

re
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

No Preconditioner

ICT_1e-3

Hblck_chol

MICT(0)

nmb. it.

0 2 4 6 8 10 12 14

re
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

Norm

Cond

STpure

STnorm

STcond

Figure 5.7: The convergence behaviour of the preconditioned CG method with
the five options described above is on the left. On the right are convergence
curves of unpreconditioned CG and precondtioned CG using the best performing
preconditioner from the left (in terms of number of iterations) and the incomplete
Cholesky with threshold dropping preconditioner.

The convergence was obtained in reasonable number of iterations that is both
comparable to the number of iterations needed with the incomplete Cholesky
factorization with threshold dropping and is significantly lower than the number
of iterations the unpreconditioned CG method needed to reach the stopping cri-
terion (5.1). Moreover, as one can see in Table 5.2 below, the performance of
the incomplete Cholesky factor with threshold dropping as a preconditioner is in
some cases considerably worse than the one of our preconditioners.

81

Notice that the update pattern is dense, since the structure of the matrix has
been made dense by the preprocessing. Due to Lemma 3.4.2 the structure of
the update always contains the structure of the original matrix. This might be,
in practice, rather inconvenient for matrices that are not structurally sparse. In
order to further sparsify, one needs only to approximate the row structures. This
will not be pursued any further here, but it is an interesting direction for future
work. From our point of view, this only supports Observation 3.5.1 and shows
how powerful the additional updates are, even if they are eventually discarded
from the final factor.

We run the code out also for other matrices from classes Trefethen and mesh
with identical setting as above. Because for the matrices Trefethen the principal
matrices are identical, e.g., Trefethen 150 “ Trefethen 200(1 : 150, 1 : 150),
we considered additional test matrices in Table 5.2.

Since there is several versions and in most of the cases their performance
among themselves was comparable, we present the result in Table 5.2 below. Each
of the matrices is referred to by name from the SuiteSparse Matrix collection and
the number of nonzero entries of the complete Cholesky factor is given as well.
The column “DSIC type” clarifies, which of the preconditioners resulted in the
fastest convergence and it is followed by the column with nonzero counts of the
incomplete factor and by the number of iterations of preconditioned CG needed.
Last column gives the number of iterations needed for the incomplete Cholesky
factorization with threshold dropping MATLAB routine with threshold dropping
10´3. The modified incomplete Cholesky factorization had a breakdown in most
cases and therefore we do not include it into the comparison.

Name trunc dim nnzs chol(A) DSIC type nnzs DSIC(A) nmb. it. DSIC pCG nmb. it. ICT pCG
Trefethen 150 64 2080 norm 976 10 14
Trefethen 300 256 32 896 norm 4320 11 31

mesh2e1 256 32 896 norm 20 048 26 48
mesh2em5 256 32 896 STp 17 920 14 16
mesh3e1 256 32 896 STp 18 144 18 16
mesh3em5 256 32 896 STc 17 776 14 12
bcsstk04 64 2080 STp 1168 28 no convergence
Journals 64 2080 STp 1600 22 18

Table 5.2: A summary of performance of the DISC-type of preconditioners on
some test matrices form the SuiteSparse Matrix collection. The test matrix has
been taken as the principal leading submatrix of order trunc dim.

82

Conclusion
The data-sparsity of matrices has started to attract a significantly more attention
in the last decade. This notion is recalled in the first chapter, together with the
notion of the classical structural sparsity and brief summary of the structurally
sparse complete Cholesky factorization. The Krylov subspace methods and the
method of conjugate gradients in particular, are introduced and the incomplete
Cholesky factorization is recalled as a particularly important representative of
preconditioning techniques for the CG method.

Focusing on the term of data-sparsity, we have given a compressed overview of
methods (and literature) currently connected to the data-sparse matrices. Chap-
ter 2 summarizes the commonly used low-rank techniques and their possible al-
ternatives and also the commonly used matrix blocking techniques and derived
matrix formats. This is complemented by the beginning of chapter 3, where the
classical scheme of the incomplete Cholesky factorization methods for data-sparse
matrices is pointed out.

Based on those, a new and complementary way of data-sparsity utilization in
the context of preconditioning has been proposed, focusing on the CG method.
Unlike the commonly used, recurrently-based methods, we retrieve the classical
Cholesky factorization scheme and modify the symbolic part of the factorization.
This is done in such a way that the implicit storing of the current active part
of the factor is possible. This approach also allows to be combined with the
classical incomplete Cholesky factorization, e.g., structural dropping to reduce
the memory and computational costs of the entire process. This requires the facts
from both the graph theory of the structurally sparse Cholesky factorization and
the data-sparsity techniques.

Together with theoretical results, a preconditioning technique has been pro-
posed and implemented in MATLAB R2015a. It has been tested on several test
matrices from the SuiteSparse Matrix collection. The results are, in our opinion,
promising enough to validate a further interest in this direction, especially in the
theoretical analysis of the proposed preconditioner coupled with the CG method.
Such analysis together with further development of the code remains a challenge
for future work.

83

Bibliography
[1] A. V. Aho, M. R. Garey, and Ullman J. D. The transitive reduction of a

directed graph. SIAM Journal on Computing, 1:131–137, 1972.

[2] S. Ambikasaran. Fast Algorithms for Dense Numerical Linear Algebra and
Applications. phdthesis, Stanford University, August 2013.

[3] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker. Improving multifrontal methods by means of block low-rank
representations. Technical Report RR-8199, Inria, January 2013.

[4] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM
Journal on Scientific Computing, 16:1404–1411, 1995.

[5] J. Ballani and D. Kressner. Matrices with hierarchical low-rank structures.
In Exploiting Hidden Structure in Matrix Computations: Algorithms and
Applications, pages 161–209. Springer, 2016.

[6] M. Bebendorf. Approximation of boundary element matrices. Numerische
Mathematik, 86:565–589, 2000.

[7] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collo-
cation matrices. Computing, 70:1–24, 2003.

[8] M. Benzi. Preconditioning techniques for large linear systems: A Survey.
Journal of Computational Physics, 182:418–477, 2002.

[9] M. Benzi. Preconditioning techniques for large linear systems: Survey. Jour-
nal of Computational Physics, 182:418–477, 2002.

[10] M. Bollhöfer. A robust and efficient ILU that incorporates the growth of
the inverse triangular factors. SIAM Journal on Scientific Computing, 25:86–
103, 2001.

[11] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from
inverse-based ILUs. SIAM Journal on Scientific Computing, 27:1627–1650,
2006.

[12] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Max-
Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Lecture
notes 21, June, 2006.

[13] W. L. Briggs, S. F. McCormick, and V. E. Henson. A Multigrid Tutorial.
SIAM, second edition edition, 2000.

[14] E. C. Carson. Communication-Avoiding Krylov Subspace Methods in Theory
and Practice. phdthesis, University of California at Berkeley, August 2015.

[15] E. C. Carson and N. J. Higham. Accelerating the solution of linear sys-
tems by iterative refinement in three precisions. SIAM Journal on Scientific
Computing, 40(2):A817–A847, 2018.

84

[16] T. F. Chan. Rank-revealing QR-factorizations. Linear Algebra and Its Ap-
plication, 88-89:67–82, 1987.

[17] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scientific Computing, 19:995–1023, 1998.

[18] A. Civril and M. Magdon-Ismail. Exponential inapproximability of selecting
a maximum volume sub-matrix. Algorithmica, 65:159–176, 2013.

[19] T. A. Davis et al. SuiteSparse: A suite of sparse matrix software.
http://www. suitesparse. com, 2015.

[20] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software, 38:1, 2011.

[21] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct
methods for sparse linear systems. Acta Numerica, 25:383–566, 2016.

[22] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
First edition, 1997.

[23] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matri-
ces. Numerical Mathematics and Scientific Computation. Oxford University
Press, New York, third edition, 2017.

[24] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned
conjugate gradients. BIT Numerical Mathematics, 29:635–657, 1989.

[25] I. S. Duff and J. K Reid. The multifrontal solution of indefinite sparse
symmetric linear. ACM Transactions on Mathematical Software, 9:302–325,
1983.

[26] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale
Sparse Matrix Package I: The Symmetric Codes. International Journal for
Numerical Methods in Engineering, 18:1145–1151, 1982.

[27] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equa-
tion: Hierarchical matrix representation. Communications on Pure and Ap-
plied Mathematics, 64:697–735, 2011.

[28] L. C. Evans. Partial Differential Equations. American Mathematical Society,
Second edition, 2010.

[29] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Chich-
ester, Second edition, 1999.

[30] M. J. Gander and F. Nataf. AILU: A preconditioner based on the analytic
factorization of the elliptic operator. Numerical linear algebra with applica-
tions, 7:543–567, 2000.

[31] A. George. Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis, 10:345–363, 1973.

85

[32] A. George. On finding and analyzing the structure of the Cholesky factor.
Algorithms for Large Scale Linear Algebraic Systems, pages 73–106, 1998.

[33] A. George and W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice Hall, Inc., New Jersey, 1981.

[34] P. Ghysels, X. S. Li, and G. Chávez. STRUMPACK library.
http://portal.nersc.gov/project/sparse/strumpack/.

[35] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov. An efficient
multicore implementation of a novel HSS-structured multifrontal solver using
randomized sampling. SIAM Journal on Scientific Computing, 38:S358–
S384, 2016.

[36] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM
Journal on Matrix Analysis and Applications, 15:62–79, 1994.

[37] J. R. Gilbert, E. Ng, B. W. Peyton, and P. Raghavan. Portable Parallel
Preconditioning: Project Proposal.

http://www2.mta.ac.il/˜hillel/sites+papers/iterative_solvers.htm

.

[38] G. Golub. Numerical methods for solving linear least squares problems.
Numerische Mathematik, 7:206–216, 1965.

[39] G. H. Golub and C. Reinsch. Singular value decomposition and least squares
solutions. Numerische Mathematik, 14:403–420, 1970.

[40] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, Third edition, 1996.

[41] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra and Its Applications, 261:1–
21, 1997.

[42] L. Grasedyck, R. Kriemann, and S. Le Borne. Parallel black box H-LU
preconditioning for elliptic boundary value problems. Computing and Visu-
alization in Science, 11:273–291, 2008.

[43] L. Grasedyck, R. Kriemann, and S. Le Borne. Domain decomposition based
H-LU preconditioning. Numerische Mathematik, 112:565–600, 2009.

[44] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
Journal of Computational Physics, 73:325–348, 1987.

[45] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-
revealing qr factorization. SIAM Journal on Scientific Computing, 17:848–
869, 1996.

[46] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I:
Introduction to H-matrices. Computing, 62:89–108, 1999.

86

[47] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix de-
compositions. SIAM review, 53:217–288, 2011.

[48] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. Funda-
mentals of Algorithms. SIAM, 2010.

[49] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49:409–436, 1952.

[50] N. J. Higham. A survey of condition number estimation for triangular ma-
trices. SIAM Review, 29:575–596, 1987.

[51] N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estima-
tion, with an application to 1-norm pseudospectra. SIAM Journal on Matrix
Analysis and Applications, 21:1185–1201, 2000.

[52] Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the singular
value decomposition. Mathematics of Computations, 58:213–232, 1992.

[53] R. A. Horn and Ch. R. Johnson. Matrix Analysis. Second Edition. Cambridge
University Press, Cambridge, 2012.

[54] I. E. Kaporin. High quality preconditioning of a general symmetric positive
definite matrix based on its UT U ` UT R ` RT U -decomposition. Numerical
Linear Algebra with Applications, 5:483–509, 1998.

[55] I. Konshin, M. Olshanskii, and Y. Vassilevski. LU factorizations and ILU
preconditioning for stabilized discretizations of incompressible Navier-Stokes
equations. Numerical Linear Algebra with Applications, 24:e2085, 15, 2017.

[56] R. Kriemann and S. Le Borne. H-FAINV: Hierarchically factored approx-
imate inverse preconditioners. Computing and Visualization in Science,
17:135–150, 2015.

[57] C. Lanczos. Solution of systems of linear equations by minimized iterations.
Journal of Research of the National Bureau of Standards, 49:33–53, 1952.

[58] J. Liesen and Z. Strakoš. Krylov Subspace Methods: Principles and Analysis.
Oxford University Press, Oxford, first edition edition, 2013.

[59] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited
memory. SIAM Journal on Scientific Computing, 21:24–45, 1999.

[60] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Aanalysis and Applications, 11:134–172, 1990.

[61] J. Málek and Z. Strakoš. Preconditioning and the Conjugate Gradient Method
in the Context of Solving PDEs. SIAM Spotlight series. SIAM, first edition
edition, 2014.

[62] T. A. Manteuffel. An incomplete factorization technique for positive definite
linear systems. Mathematics of Computation, 34:473–497, 1980.

87

[63] J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems.
Frontiers of Computer Science. Springer Science & Business Media, 2013.

[64] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of
linear equations. SIAM Journal on Numerical Analysis, 12:617–629, 1975.

[65] C.-T. Pan. On the existence and computation of rank-revealing LU factor-
izations. Linear Algebra and Its Application, 316:199–222, 2000.

[66] S. Pissanetzky. Sparse Matrix Technology. Academic Press, 1984.

[67] J. K. Reid. On the method of conjugate gradients for the solution of large
sparse systems of linear equations. In J. K. Reid, editor, Large Sparse Sets
of Linear Equations, pages 231–254. Academic Press, 1971.

[68] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory
package for dense hierarchically semi-separable matrix computations using
randomization. ACM Transactions on Mathematical Software, 42:27, 2016.

[69] Y. Saad. Finding exact and approximate block structures for ILU precondi-
tioning. SIAM Journal on Scientific Computing, 24:1107–1123, 2003.

[70] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in
Applied Mathematics. SIAM, second Edition edition, 2003.

[71] Y. Saad and Schultz M. H. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7:856–869, 1986.

[72] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for
general sparse linear systems. Numerical Linear Algebra with Applications,
9:359–378, 2002.

[73] J. Scott and M. Tůma. On positive semidefinite modification schemes for
incomplete Cholesky factorization. SIAM Journal on Scientific Computing,
36:A609–A633, 2014.

[74] J. Scott and M. Tůma. Improving the stability and robustness of incomplete
symmetric indefinite factorization preconditioners. Numerical Linear Algebra
with Applications, 24(5), 2017.

[75] Z. Strakoš and P. Tichý. On error estimation in the conjugate gradient
method and why it works in finite precision computations. Electronic Trans-
actions on Numerical Analysis, 13(56-80):8, 2002.

[76] Z. Strakoš and P. Tichỳ. Error estimation in preconditioned conjugate gra-
dients. BIT Numerical Mathematics, 45:789–817, 2005.

[77] M. Tismenetsky. A new preconditioning technique for solving large sparse
linear systems. Linear Algebra and Its Application, 154-156:331–353, 1991.

[78] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic
Press, first edition edition, 2001.

88

[79] A. D. Tuff and A. Jennings. An iterative method for large systems of lin-
ear structural equations. International Journal for Numerical Methods in
Engineering, 7:175–183, 1973.

[80] E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton
method. Computing, 64:367–380, 2000.

[81] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 12:631–644, 1992.

[82] J. H. Wilkinson. A priori error analysis of algebraic processes. In Proceedings
of International Congress of Mathematics, pages 629–639, Moscow, 1968.

[83] J. Xia and Z. Xin. Effective and robust preconditioning of general SPD
matrices via structured incomplete factorization. Journal on Matrix Analysis
and Applications, 38(4):1298–1322, 2017.

89

	Introduction
	Basic notation and preliminaries
	Matrix sparsity
	The Singular Value Decomposition (SVD)
	The QR factorization
	The LU factorization
	The Cholesky factorization

	Structurally sparse Cholesky factorization
	Graph theory point of view
	Fill-in and reorderings

	Iterative methods and preconditioning
	Preconditioners
	Cholesky-based preconditioners
	Alternative approaches

	The need for approximation
	The role of blocks
	The role of hierarchy
	Algebraic low-rank decompositions and approximations
	Data-sparse block matrix formats
	Hierarchical matrix formats
	Non-hierarchical matrix formats

	Towards incomplete data-sparse Cholesky factorization
	Incomplete recursion-based Cholesky factorization
	Incomplete sequential column-oriented Cholesky factorization
	Explicit search for the srtucture
	Implicit search for the structure
	Row structure
	Column structure

	Exploiting data-sparsity
	Double sparsification

	The proposed preconditioner

	Analysis of the proposed preconditioner
	Costs analysis
	Accuracy, stability and convergence
	IFCM vs. CFIM

	Numerical experiments
	Structurally block-sparse matrices
	Block-column unit matrices

	Conclusion
	Bibliography

