Číslo π a řetězové zlomky
The number π and continued fractions
bachelor thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/100945Identifiers
Study Information System: 192960
Collections
- Kvalifikační práce [11322]
Author
Advisor
Referee
Slavík, Antonín
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematics Oriented at Education - German Language and Literature
Department
Department of Mathematics Education
Date of defense
26. 6. 2018
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Very good
Keywords (Czech)
číslo π, řetězové zlomky, iracionalita, transcendence, ArchimédésKeywords (English)
the number π, continued fractions, iracionality, transcendence, ArchimedesTato bakalářská práce se zabývá jednou z nejznámějších matematických konstant, číslem π. Formou srozumitelnou žákům vyšších ročníků středních škol se zájmem o matematiku nejprve představuje nejznámější způsoby, kterými se v historii lidé snažili toto číslo aproximovat. Konkrétně se zabývá metodou Egypťanů, obyvatel starověké Mezopotámie a metodou Archimédovou. Dále představuje vyjádření π ve formě nekonečného součinu podle F. Vièta a J. Wallise. V druhé části se práce soustředí na vyjádření čísla π řetězovými zlomky, které nejprve obecně definuje a zavede základní vztahy, které se jich týkají. Poté představuje vyjádření π formou řetězového zlomku podle J. H. Lamberta, L. Eulera a W. Brounckera. Na závěr je uveden důkaz iracionality čísla π pomocí řetězových zlomků a jednoduchý důkaz jeho transcendence. Práce si klade za cíl rozšířit tvrzení uváděná v populárních knihách o π o jejich matematická zdůvodnění a uvést základní myšlenky, které k nim vedou.
This bachelor thesis deals with one of the well-known mathematical constants, the number π. The form is understandable to higher-year students of secondary schools interested in mathematics. At first, it presents the best known ways people in history tried to approximate the number π. It includes the methods of Egyptians, the people of ancient Mesopotamia and the method of Archimedes. It also presents expressing π in the form of infinite product according to F. Viète and J. Wallis. The second part of the thesis focuses on expressing the number π by continued fractions, which are at first generally defined. We introduce essential relations among them. Then the thesis presents expressing the number π in the form of continued fractions according to J. H. Lambert, L. Euler and W. Brouncker. Finally, proofs of the irrationality of π using continued fractions are presented together with a simple proof of its transcendence. The aim of the thesis is to extend information about π stated in popular books, to explain and clarify basic ideas leading to these claims.