Show simple item record

Non-standard analysis and its applications
dc.contributor.advisorPražák, Dalibor
dc.creatorHýlová, Lenka
dc.date.accessioned2018-09-25T08:28:45Z
dc.date.available2018-09-25T08:28:45Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/100918
dc.description.abstractThe aim of this thesis is to apply methods of nonstandard analysis on the topic of strong derivative. First of all, we sum up basic knowlegde of nonstan- dard analysis, we introduce some nonstandard definitons (such as continuity, derivative, . . . ) and we prove the equivalence of standard and nonstandard definitions. In the second chapter we introduce the notion of strong derivative (in both standard and nonstandard way) and we prove rules for its computing and some basic properties. For example, if a function has strong derivative at some point, then it satisfies a Lipschitz condition in a neighbourhood of this point. In the final part of the thesis we define strong partial differentiability and we prove the theorem which claims that the existence of partial derivatives of a function from R2 to R with respect to both factors, one of them strong, implies the existence of a total derivative. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectuniverseen_US
dc.subjecttransfer principleen_US
dc.subjectinternal and external setsen_US
dc.subjectuniverzumcs_CZ
dc.subjectprincip transferucs_CZ
dc.subjectinternální a externální množinycs_CZ
dc.titleNestandardní analýza a její aplikacecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-20
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId197333
dc.title.translatedNon-standard analysis and its applicationsen_US
dc.contributor.refereeSlavík, Jakub
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe aim of this thesis is to apply methods of nonstandard analysis on the topic of strong derivative. First of all, we sum up basic knowlegde of nonstan- dard analysis, we introduce some nonstandard definitons (such as continuity, derivative, . . . ) and we prove the equivalence of standard and nonstandard definitions. In the second chapter we introduce the notion of strong derivative (in both standard and nonstandard way) and we prove rules for its computing and some basic properties. For example, if a function has strong derivative at some point, then it satisfies a Lipschitz condition in a neighbourhood of this point. In the final part of the thesis we define strong partial differentiability and we prove the theorem which claims that the existence of partial derivatives of a function from R2 to R with respect to both factors, one of them strong, implies the existence of a total derivative. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV