dc.contributor.advisor | Pražák, Dalibor | |
dc.creator | Hýlová, Lenka | |
dc.date.accessioned | 2018-09-25T08:28:45Z | |
dc.date.available | 2018-09-25T08:28:45Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/100918 | |
dc.description.abstract | The aim of this thesis is to apply methods of nonstandard analysis on the topic of strong derivative. First of all, we sum up basic knowlegde of nonstan- dard analysis, we introduce some nonstandard definitons (such as continuity, derivative, . . . ) and we prove the equivalence of standard and nonstandard definitions. In the second chapter we introduce the notion of strong derivative (in both standard and nonstandard way) and we prove rules for its computing and some basic properties. For example, if a function has strong derivative at some point, then it satisfies a Lipschitz condition in a neighbourhood of this point. In the final part of the thesis we define strong partial differentiability and we prove the theorem which claims that the existence of partial derivatives of a function from R2 to R with respect to both factors, one of them strong, implies the existence of a total derivative. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | universe | en_US |
dc.subject | transfer principle | en_US |
dc.subject | internal and external sets | en_US |
dc.subject | univerzum | cs_CZ |
dc.subject | princip transferu | cs_CZ |
dc.subject | internální a externální množiny | cs_CZ |
dc.title | Nestandardní analýza a její aplikace | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2018 | |
dcterms.dateAccepted | 2018-06-20 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 197333 | |
dc.title.translated | Non-standard analysis and its applications | en_US |
dc.contributor.referee | Slavík, Jakub | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | The aim of this thesis is to apply methods of nonstandard analysis on the topic of strong derivative. First of all, we sum up basic knowlegde of nonstan- dard analysis, we introduce some nonstandard definitons (such as continuity, derivative, . . . ) and we prove the equivalence of standard and nonstandard definitions. In the second chapter we introduce the notion of strong derivative (in both standard and nonstandard way) and we prove rules for its computing and some basic properties. For example, if a function has strong derivative at some point, then it satisfies a Lipschitz condition in a neighbourhood of this point. In the final part of the thesis we define strong partial differentiability and we prove the theorem which claims that the existence of partial derivatives of a function from R2 to R with respect to both factors, one of them strong, implies the existence of a total derivative. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
thesis.grade.code | 1 | |