Křivky s pythagorejským hodografem
Curves with pythagorean hodograph
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/86248Identifikátory
SIS: 184538
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Šmíd, Dalibor
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Matematický ústav UK
Datum obhajoby
21. 6. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
polynomiální křivka, polynomiální rychlost, Hermitovská interpolace, preimageKlíčová slova (anglicky)
polynomial curve, polynomial speed, Hermite interpolation, preimageV této práci budeme zkoumat křivky s pythagorejským hodografem (PH křivky), které jsou charakteristické polynomiální rychlostí. Výhradně se budeme věnovat rovinným PH křivkám 3. stupně, takzvaným PH kubikám. Seznámíme se s jejich reprezentací pomocí komplexních čísel a takzvaným preimage, jednodušší křivkou, ze které PH křivka vzniká a která určuje její vlastnosti. Nejprve budeme zkoumat základní vlastnosti PH křivek v závislosti na preimage. Hlavním před- mětem práce je zkoumání spojitosti navázání PH křivek, kterou jak ukážeme, je možné charakterizovat tvarem preimage a uvedeme konkrétní podmínky pro tvar preimage, abychom dosáhli určité spojitosti. Všechny dosažené výsledky budeme ilustrovat na názorných příkladech. 1
In the thesis we will look at curves with pythagorean hodograph (PH curves) whose speed is polynomial with respect to parameter. We will consider planar PH curves of degree 3 (PH cubics) exclusively. We will present their complex representation and preimage. Preimage is a simpler curve from which a PH curve is created and which determines its properties. First we will look at the basic properties of PH curves with respect to their preimage. The main aim of the thesis is determining continuousness of joints of PH curves on the basis of the shape of their preimage. We will give specific conditions on preimage for achieving certain types of continousness. Finally we will give some examples in order to illustrate the results. 1
