dc.contributor.advisor | Holub, Martin | |
dc.creator | Krupka, Tomáš | |
dc.date.accessioned | 2017-06-02T12:58:58Z | |
dc.date.available | 2017-06-02T12:58:58Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/84562 | |
dc.description.abstract | V aplikacích strojového učení s velkým množstvím počítačem vytvářených příznaků je často zapotřebí užít pouze jejich malou podmnožinu. Algoritmus "Recursive Feature Elimination" (SVM-RFE) publikovaný v práci Guyon et al. (2002), který vybírá příznaky na základě jejich váhy v SVM modelu, prokázal na úloze výběru genů pro klasifikaci leukemie do té doby nepřekonanou výkonnost (Tan et al. (2010)). Tato práce rozvíjí tuto metodu a předkládá novou modifikaci algoritmu SVM-RFE nazvanou Evaluation-Based RFE (EB-RFE). Ve srovnání s původním algoritmem SVM-RFE tato heuristika významně zvedá výkonnost výsledného SVM klasifikátoru na studované úloze strojového učení. Experimenty navíc ukazují, že tato nová heuristika má další dvě žádoucí vlastnosti. Za prvé, EB-RFE generuje výrazně menší podmnožíny příznaků, čímž umožňuje trénovat kompaktnější modely. Za druhé, heuristika EB-RFE je narozdíl od originálního algoritmu SVM-RFE jednoduše škálovatelná v závislosti na výpočetním čase, a to výrazně nad možnosti současných nejvýkonnějších běžných počítačů. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
dc.description.abstract | In machine learning applications with a large number of computer-generated features, a selection of just a subset of features is often desirable. The Recursive Feature Elimination (SVM-RFE) algorithm proposed by Guyon et al. (2002) employs the mechanism of selecting the features based on their contribution to an SVM model decision rule, and has proven a state-of-the-art performance on the Gene Selection for Cancer Classification task (Tan et al. (2010)). This thesis expands on that work, and proposes a novel modification of the SVM-RFE feature selection method called Evaluation-Based RFE (EB-RFE). This heuristic significantly improves the performance of the SVM classifier in comparison to the original SVM-RFE on the studied machine learning task. In addition to the performance gain, the proposed algorithm has also, in experimental use, proven to have two other desirable properties. Firstly, EB-RFE produces much smaller feature subsets than SVM-RFE, which leads to more compact models. Secondly, unlike SVM-RFE, the EB-RFE heuristic is easily scalable with the computational time well beyond the possibilities of current high-end consumer CPUs. Powered by TCPDF (www.tcpdf.org) | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Strojové Učení | cs_CZ |
dc.subject | Výběr Příznaků | cs_CZ |
dc.subject | SVM | cs_CZ |
dc.subject | Recursive Feature Elimination | cs_CZ |
dc.subject | Machine Learning | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | SVM | en_US |
dc.subject | Recursive Feature Elimination | en_US |
dc.title | SVM classifiers and heuristics for feature selection | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2016 | |
dcterms.dateAccepted | 2016-09-02 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 160369 | |
dc.title.translated | SVM klasifikátory a heuristiky pro selekci příznaků | cs_CZ |
dc.contributor.referee | Kopa, Miloš | |
dc.identifier.aleph | 002101610 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V aplikacích strojového učení s velkým množstvím počítačem vytvářených příznaků je často zapotřebí užít pouze jejich malou podmnožinu. Algoritmus "Recursive Feature Elimination" (SVM-RFE) publikovaný v práci Guyon et al. (2002), který vybírá příznaky na základě jejich váhy v SVM modelu, prokázal na úloze výběru genů pro klasifikaci leukemie do té doby nepřekonanou výkonnost (Tan et al. (2010)). Tato práce rozvíjí tuto metodu a předkládá novou modifikaci algoritmu SVM-RFE nazvanou Evaluation-Based RFE (EB-RFE). Ve srovnání s původním algoritmem SVM-RFE tato heuristika významně zvedá výkonnost výsledného SVM klasifikátoru na studované úloze strojového učení. Experimenty navíc ukazují, že tato nová heuristika má další dvě žádoucí vlastnosti. Za prvé, EB-RFE generuje výrazně menší podmnožíny příznaků, čímž umožňuje trénovat kompaktnější modely. Za druhé, heuristika EB-RFE je narozdíl od originálního algoritmu SVM-RFE jednoduše škálovatelná v závislosti na výpočetním čase, a to výrazně nad možnosti současných nejvýkonnějších běžných počítačů. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
uk.abstract.en | In machine learning applications with a large number of computer-generated features, a selection of just a subset of features is often desirable. The Recursive Feature Elimination (SVM-RFE) algorithm proposed by Guyon et al. (2002) employs the mechanism of selecting the features based on their contribution to an SVM model decision rule, and has proven a state-of-the-art performance on the Gene Selection for Cancer Classification task (Tan et al. (2010)). This thesis expands on that work, and proposes a novel modification of the SVM-RFE feature selection method called Evaluation-Based RFE (EB-RFE). This heuristic significantly improves the performance of the SVM classifier in comparison to the original SVM-RFE on the studied machine learning task. In addition to the performance gain, the proposed algorithm has also, in experimental use, proven to have two other desirable properties. Firstly, EB-RFE produces much smaller feature subsets than SVM-RFE, which leads to more compact models. Secondly, unlike SVM-RFE, the EB-RFE heuristic is easily scalable with the computational time well beyond the possibilities of current high-end consumer CPUs. Powered by TCPDF (www.tcpdf.org) | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
dc.identifier.lisID | 990021016100106986 | |