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on the Gene Selection for Cancer Classification task (Tan et al. (2010)). This the-
sis expands on that work, and proposes a novel modification of the SVM-RFE
feature selection method called Evaluation-Based RFE (EB-RFE). This heuristic
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the original SVM-RFE on the studied machine learning task. In addition to the
performance gain, the proposed algorithm has also, in experimental use, proven
to have two other desirable properties. Firstly, EB-RFE produces much smaller
feature subsets than SVM-RFE, which leads to more compact models. Secondly,
unlike SVM-RFE, the EB-RFE heuristic is easily scalable with the computational
time well beyond the possibilities of current high-end consumer CPUs.
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Introduction

Thanks to the availability of computational power, it is possible to train ma-
chine learning models with a large number of automatically generated features,
in order to improve their performance. However, the performance of a model
is usually greatly dependent on the particular feature subset that the model is
trained on. Furthermore, a large number of features rules out the possibility of
exhaustive enumeration search for the optimal feature subset, emphasizing the
role of the feature selection heuristics.

This thesis studies the possibility of selecting the features using the machine
learning algorithm known as the Support Vector Machines (SVM).

Chapter 1 provides a rigorous mathematical description of the SVM.
Chapter 2 analyses two feature selection algorithms, namely the Recursive

Feature Elimination (SVM-RFE) published by Guyon et al. (2002) and the Bit-
Flip/Attribute-Flip heuristics by Samb et al. (2012). Their inherent characteris-
tics, limitations and performances are discussed and measured. The performance
is measured using an experimental R implementation that includes the SVM ker-
nel, parameters and class weights tuning, which are necessary for the SVM to
perform well.

In Chapter 3, a novel modification of the SVM-RFE algorithm called Evalu-
ation-Based SVM-RFE (EB-RFE) is proposed. Three of the main properties of
EB-RFE are discussed in this chapter.

Firstly, this algorithm has experimentally proven to perform significantly bet-
ter than the original SVM-RFE.

Secondly, it is demonstrated that the EB-RFE heuristic is able to produce
much smaller feature subsets, which leads to a sparse representation of the result-
ing SVM classifier. This is a positive quality, since, for several reasons, sparsity
with respect to input features is a desirable property of a classifier as well as its
accuracy (Tan et al. (2010)).

Thirdly, unlike the SVM-RFE heuristic, EB-RFE can be tuned using a single
parameter, which provides the possibility to scale the runtime according to the
available computational power. This way, SVM models that are more sparse
and yet perform better can be obtained in exchange for greater computational
demands.

All results were obtained using the VPS-30-En dataset, which was used by
Holub et al. (2012) for the task of lexical verb sense disambiguation. The results
of that study are also used for performance comparison.

Particular care was taken to demonstrate the statistical significance of the
results presented in this thesis.
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Chapter 1

Support Vector Machines

The Support Vector Machines (SVM) are a well-performing, off-the-shelf met-
hod of supervised machine learning. The first idea was published by Boser et al.
(1992). Today, the SVM is being widely used and researched. Its current itera-
tion, the soft margin SVM, was first published by Cortes and Vapnik (1995).

This chapter is dedicated to the derivation of the SVM algorithm, to the justi-
fication of its correctness and existence, and to the discussion of its performance.

There are various ways of the algorithm derivation (e.g. introducing the du-
ality either using the Lagrange theory or by exploiting the duality in the Rosen-
blatt’s Perceptron). Similarly, there are various interpretations of the same terms,
and this chapter refers to sources using different notation. One of the goals of
this chapter is therefore to maintain consistency throughout the SVM theory
explanation.

This rigorous description of the SVM will later be useful for the theory of the
SVM-based feature selection.

1.1 Intuition about SVM

Definition 1. Let n, N ∈ N, x1, . . . , xn ∈ R, y ∈ {−1, 1}. An input example is
defined as an (n + 1)-dimensional vector x = (x1, . . . , xn, y). Its last component
is called a label. A set of N input examples will be referred to as a labelled input
dataset of length N. A dataset of examples without the label component is called
unlabelled. The quantities x1, . . . , xn are referred to as attributes.

Definition 2 (Linear machine). Let X = (x1, . . . ,xN)> be an unlabelled input
dataset. Let w ∈ Rn, b ∈ R. A linear learning machine is defined as a real
function

(w, b) ..= f : Rn → R

x 7→ 〈w · x〉+ b =
n∑
i=1

wixi + b,

where 〈 · 〉 denotes an inner product of two vectors.

Note. Every fixed c ∈ R defines a hyperplane H = {x ∈ Rn : f(x) = c}. All such
hyperplanes are mutually parallel.
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Definition 3 (Linear classifier). Such linear machine f that satisfies f(Rn) = L,
where L = {l1, . . . , lk} is a finite set of real labels, is called a linear classifier.

For simplicity purposes, only the binary classifiers, with a label set L =
{−1, 1}, are considered. By definition, the binary classifier f labels an unla-
belled input example x with a label y = sgn(f(x)). By convention sgn(0) = 1.
The function h(x) = y is called a hypothesis function.

Definition 4. For a given labelled dataset and a linear classifier f , an input
vector (x, y) is called correctly classified, if sgn(h(x)) = y.

Definition 5. A hyperplane {x : f(x) = 〈w · x〉 + b = 0} is referred to as a
separating hyperplane (w, b). A labelled training set X is said to be linearly sepa-
rable, if there exists a separating hyperplane (w, b), such that the linear classifier
(w, b) correctly classifies all the input examples.

Note. The notation (w, b) can either refer to the vector itself, or both to a separat-
ing hyperplane induced by this vector, or to the linear classifier, which classifies
using this hyperplane.

The SVM is a binary linear classifier operatig in a kernel-induced feature
space. It develops around a few main ideas applied together:

• Finding a separating hyperplane as correct and as confident as possible.
SVM is so called maximal margin classifier.

• Mapping the input space into a feature space, which is usualy high-dimensional
and therefore suitable for linear separation.

• Transforming the parameters optimisation problem into its Lagrange dual,
reducing significantly the computational complexity of the classification of
new inputs.

1.2 Maximal Margin Classifier

The SVM is a linear classifier – that means it needs a rule for finding the
(w, b) vector it uses for classification. The maximal margin classifier separates
the input space with such separating hyperplane, that, firstly, is correct, and se-
condly, has the maximum possible distance to the nearest training examples on
both sides.

The presumption of correctness is rather strong and later will be altered by
adding slack variables, but for now, assume that X = {(x1, y1) . . . (xN , yN)} is a
separable training set.

The following definition enables the derivation of the optimisation problem
that defines the maximum margin classifier:

Definition 6. A functional margin of an input example (xi, yi) = (xi1, . . . , xin, yi)
with respect to (w, b) is defined as

γ̂i = yi(〈w · xi〉+ b).
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A functional margin of an example with respect to a normalised hyperplane(
w
‖w‖ ,

b
‖w‖

)
is then called a geometric margin:

γi = yi

(〈
w

‖w‖
· xi
〉

+
b

‖w‖

)
.

Finally, we define the functional (geometric) margin of a hyperplane (w, b)
with respect to a dataset X as γ̂ = min{γ̂i : xi ∈X} (γ = min{γi : xi ∈X}).

Note. The functional margin of a training example x with respect to (w, b) being
equal to 1 is equivalent to |〈w · x〉+ b| = 1.

Under the presumption of the dataset X being linearly separable, the task
to find the separating hyperplane that maximises the geometric margin of the
dataset X is equivalent to solving the following optimisation problem:

maximisew,b,γ γ

subject to yi(〈w · xi〉+ b) ≥ γ

i = 1, . . . , N,

‖w‖ = 1.

Note. The necessity of the norm of the weight vector beihg fixed is caused by the
fact, that rescaling the separating hyperplane by an arbitrary constant λ does
not change the geometric margin, i.e. the optimisation objective. However, note
that this transformation results in the functional margin being multiplied by the
same constant λ.

Equivalently, since γ = γ̂
‖w‖ , the problem is feasible to a transformation that

lacks the non-convex constraint ‖w‖ = 1:

maximisew,b,γ
γ̂

‖w‖
subject to yi(〈w · xi〉+ b) ≥ γ̂

i = 1, . . . , N.

Another desirable step would be transforming the objective function to a
convex form. A way to achive this is to introduce a scaling condition that the
functional margin be equal to 1:

γ̂ = 1.

Setting γ̂ = 1 is equivalent to multiplying w and b by 1
γ̂
, which is a known con-

stant for the dataset and the separating hyperplane. Also, maximizing γ̂
‖w‖ = 1

‖w‖

is equivalent to minimizing ‖w‖, or, equivalently, 1
2
‖w‖2.

The resulting optimisation problem takes the following form:

minimizew,b,γ
1

2
‖w‖2

subject to yi(〈w · xi〉+ b) ≥ 1

i = 1, . . . , N.

(1.1)
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This is an optimisation problem with quadratic objective and linear con-
straints, therefore it is guaranteed to have a solution – which can be found al-
gorithmically. However, it is favourable to modify the problem to its Lagrange
dual.

1.3 Lagrangian Transformation

For the purpose of finding the dual problem to the primal 1.1, let’s rewrite
the constraints as

gi(w) ..= −yi(〈w · xi〉+ b) + 1 ≤ 0, i = 1, . . . , N, (1.2)

and let’s denote the primal and dual objective functions as P(w), and D(α) resp.
The primal objective satisfies P(w) = 1

2
‖w‖2, and the dual D(α) is to be found

using the Lagrange transformation of the primal.

The Lagrangian of the original problem is then as follows:

L(w, b,α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(〈w · xi〉+ b)− 1], (1.3)

where α = (α1, . . . , αN) is an N -dimensional vector of Lagrange multipliers.

The primal objective function P(w), as well as the constraints gi(w) (1.2),
are convex in w. Also {w : gi(w) ≤ 0, i = 1, . . . , N} 6= ∅, thanks to the initial
assumption that the dataset X be separable.

Therefore, there exists a certain vector (w∗, b∗,α∗), which satisfies the equal-
ity P(w∗) = L(w∗, b∗,α∗) = D(α∗). Furthermore, (w∗, b∗,α∗) solves both the
primal and the dual problem and the Karush-Kuhn-Tucker conditions (KKT)
hold as follows:

1. (w∗, b∗,α∗) is the saddle point of L, i.e. ∇(w,b)L(w∗, b∗,α∗) = 0

2. α∗i gi(w
∗) = 0, i = 1, . . . , N

3. gi(w
∗) ≤ 0, i = 1, . . . , N

4. α∗i ≥ 0, i = 1, . . . , N .

Finding the saddle point of L(w, b,α) by setting the partial derivatives with
respect to all variables to zero:

∇wL(w, b,α) = w −
N∑
i=1

αiyixi = 0

∂L(w, b,α)

∂b
=

N∑
i=1

αiyi = 0.

(1.4)
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After plugging the equations 1.4 into the Lagrangian 1.3, we obtain the final
form of the objective function:

L(w, b,α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

yiyjαiαj〈xi · xj〉, (1.5)

which leads directly to the final form of the optimisation problem under conside-
ration:

maximizeα

N∑
i=1

αi −
1

2

N∑
i,j=1

yiyjαiαj〈xi · xj〉

subject to αi ≥ 0, i = 1, . . . , N

N∑
i=1

αiyi = 0.

(1.6)

The value of the weight vector w∗ of the desired separating hyperplane can
be obtained by plugging the solution α∗ of this optimisation problem into the
first equality of the saddle point (1.4). The bias value b∗ is then given by the
requirement that the functional margins of the nearest examples on both sides
be equal, and therefore takes the following form:

b∗ = −1

2

(
max
i:yi=−1

{〈w∗ · xi〉}+ min
i:yi=1
{〈w∗ · xi〉}

)
.

At this point, it is possible to classify a new unlabelled input x as

y = sgn(h(x)) = sgn(〈w∗ · x〉+ b∗) = sgn

(
N∑
i=1

α∗i yi〈xi · x〉+ b∗

)
, (1.7)

which is a particularly convenient form for the following reasons:

• The quantity that is calculated depends on the (scalar) inner products be-
tween the training inputs and the new one, which is a computationally
cheap operation.

• The quantity yi〈xi · x〉 is calculated only in the cases of α∗i > 0, which, as
follows from the KKT conditions, is equivalent to gi(w

∗) = 0. This means,
that only the training examples that define the geometric margin by laying
on its border, are calculated for the evaluation of a new input.

Note. The set

SV ..= {xi ∈X, i = 1, . . . , N : γ̂i = 1} = {xi ∈X, i = 1, . . . , N : gi(w) = 0}

is usually relatively small in comparison to the whole dataset. The vectors xi ∈
SV are referred to as support vectors.

It is the fact that the SVM classifies only using a small subset of inputs, that
is so beneficial to the overall performance of the classifier, and that also gives this
classifier its name.
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The SVM, as it is derived so far, is a so-called hard-margin SVM. It is a
linear machine able to classify an unlabelled input x based on its attributes
x1, . . . , xn. For a real-life problem, the use and performance of such machine has
some limitations:

• The presumption of the dataset X being separable still has to hold. Section
1.5 is dedicated to removing this constraint.

• The original attribute set x1, . . . , xn may not optimally expose the informa-
tion that the dataset carries, due to being unclean or highly inseparable in
the original space. Section 1.4 addresses this issue.

1.4 Kernels

The formerly mentioned issue is addressed by applying so called kernel trick :
Mapping the input dataset onto a suitable, purposedly chosen new set, but with-
out having to evaluate the mapped values, or even knowing the mapping itself,
in order to be able to classify a new example.

Definition 7 (kernel). Let X ⊂ Rn×N be an unlabelled dataset. Let

φ : Rn → F

x 7→ φ(x)

be some feature mappping from the input space to some feature space F ⊂ Rd,
d ∈ N. A kernel is then defined as a function

K : Rn × Rn → R
(x, z) 7→ K(x, z) = 〈φ(x) · φ(z)〉 .

Note that a kernel has to have an underlying feature mapping φ, in order to
be correctly defined.

The SVM is then trained on the feature space φ(X), using the features φ(xi),
instead of the attribute (input) spaceX and the attributes xi. However, mapping
each attribute on the corresponding feature one by one is not the actual workflow
of the SVM. The computational complexity of such algorithm would be O(n).
Furthermore, no requirements were laid upon the mapping φ, so evaluating the
feature φ(x), which depends on the number of the attributes N , can be expensive
itself.

All of the former theory of developing the classifier is valid in the feature space
φ(X) ⊂ Rd, as well as it is in the input space X ⊂ Rn, since no presumption
was made about neither d nor n. Therefore, the hypothesis in the feature space
looks as follows:

h(x) =
d∑
i=1

wiφi(x) + b.

Utilising the dual interpretation derived in the previous section (see 1.7), and
applying the kernel of chosen feature mapping φ, this equality can equivalently
be rewritten as

h(x) =
N∑
i=1

αiyi 〈φ(xi) · φ(x)〉+ b =
N∑
i=1

αiyiK(xi,x) + b. (1.8)
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Note. The last expression of 1.8 reveals, that the knowledge of the feature map is
redundant for the purpose of classification of a new example with the hypothesis
h(x). Only the kernel needs to be evaluated. Same is the situation in the case of
training the SVM on φ(X), because here, the objective to maximize is

∑N
i=1 αi−

1
2

∑N
i,j=1 yiyjαiαjK(xi,xj) (see Equation 1.6 for comparison).

Usualy, only the kernel, rather than the underlying mapping, is used to specify
an SVM classifier. Commonly used kernels and other implementation details are
to be found in Chang and Lin (2011).

Not every function φ : x 7→ φ(x) is a kernel. For the Mercer theorem that
states the necessary and sufficient conditions for a function to be a valid kernel,
refer to Cristianni and Shawe-Taylor (2000).

1.5 Soft Margin and Non-Separability

Although mapping the data to a high-dimensional feature space generally in-
creases the likelihood of linear separability (Ng (2011)), it is not guaranteed it is
going to be so in every case. Furthermore, an outlying input can alter the decision
boundary of the hard margin classifier dramatically. For the sake of robustness,
it is therefore favourable to allow the misclassification and rather introduce an
additional variable to penalize it.

The optimisation problem to solve is as follows:

minimizew,b,γ
1

2
‖w‖2 + C

N∑
i=1

ξi

subject to yi(〈w · xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

The classifier is allowed to classify with functional margin lower than 1, as
well as to misclassify at all. Such cases are penalized by the cost C being added
to the objective with the weight equal to the misclassification.

The process of derivation of the dual is similar to the maximal margin case.
The Lagrangian of the objective

L(w, b,α, ξ, r) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(〈w · xi〉+ b)− 1 + ξi]−
N∑
i=1

riξi

(1.9)
lends itself to partial derivatives, which have to be stationary at the saddle point
of L:

∇wL = w −
N∑
i=1

αiyixi = 0

∂L
∂b

=
N∑
i=1

αiyi = 0

∇ξL = C −α− r = 0.

(1.10)
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The objective function, that results from plugging the KKT equations 1.10
back to the original Lagrangian 1.9, is identical to the Lagrangian of the maximal
margin classifier (1.5). The resulting dual problem, with a kernel K applied,
therefore takes the following form:

maximizeα

N∑
i=1

αi −
1

2

N∑
i,j=1

yiyjαiαjK(xi,xj)

subject to C ≥ αi ≥ 0, i = 1, . . . , N

N∑
i=1

αiyi = 0.

Again, the constraints are inherited from the KKT conditions, which are guar-
anteed to hold.

The quadratic objective of the final form of the optimisation task can be solved
by a commercial optimisation software. The final value of the weight vector of
the classifier is then obtained by plugging the optimum α∗ back to the equations
1.10.

This way, the resulting SVM classifier is obtained.

Note. A softness of an SVM classifier can be referred to as a quantity. An SVM
that is sensitive to outlying examples and penalizes misclassification with a high
cost, is called a harder model. On the contrary, a softer model is characterized
by a low cost setting and insensitivity to noisy examples.
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Chapter 2

Feature Selection using SVM

In the process of training a classifier, using all the attributes available in the
training data may turn out to be counterproductive. One goal of this chapter is
to justify the need for feature pruning and selection, and relate this topic to the
theory of SVM.

The latter sections then study two existing feature selection heuristics and
their performance, using the data corpus called VPS-30-En, the same one used
by Holub et al. (2012) for the task of lexical verb sense disambiguation.

The same machine learning task was being performed in order to measure the
quality of the feature subsets that the studied feature selection models produced.
The results published by Holub et al. (2012) can therefore serve the purpose of
performance comparison baseline. The lexical verb sense disambiguation task is
thoroughly discussed in Section 2.5, including the description of the data.

Note. In the theory of SVM, it is crucial to distinguish between the terms attribute
and feature. An attribute is a dimension of an observation, e.g. an age of a person.
In the context of the entire dataset, an attribute is a vector of one dimension of
all observations – e.g. a vector of the ages of every person in the dataset. On the
other hand, a feature is a one to one projection of an attribute into the feature
space. The feature selection theory is not exclusively bound to the theory of
kernel-based machine learning. Furthermore, throughout this chapter, the SVM
can be thought of as a blackbox that turns a labelled training dataset into a
separating hyperplane.

This justifies the use of the term feature in the sense of the term attribute,
which is how both these terms will be used from now on.

Note. In this chapter it is necessary to be able to evaluate how useful a feature
subset can be as an input for a linear classifier. From now on, the performance
of a feature subset will be defined as the best achievable performance of a linear
machine which is given said feature subset as its input.

Similarly, the performance of a feature selection algorithm (or, equivalently,
a heuristic, a method, etc.) is defined as the performance of the feature subset it
produces.
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2.1 The Curse of Dimensionality

The curse of dimensionality is a term used by Marimont and Shapiro (1979).
It is a reference to the fact that a given dataset becomes more sparse with the
increasing number of the features in the data. It is therefore easier to train a
classifier in more dimensions. However, such a classifier is more likely to reflect
anomalies of that specific dataset, rather than inherent universal patterns. This
problem is known as overfitting.

The fact that for a given dataset the predictive ability of a classifier decreases
with increasing dimensionality of the feature space, is known as the Hughes Phe-
nomenon (Hughes (1968)).

The following example illustrates that with a richer feature space a random
dataset is more likely to be sparse.

Example. Let Ud, d ∈ N be a uniform probabilistic distribution on a d-dimensional
cube C = (−1, 1)× · · · × (−1, 1) = (−1, 1)d.

Consider an observation x of a random variable X ∼ Ud.
What is the probability P ..= P(‖x− 0‖ = ‖x‖ ≤ 1), i.e. that the random ob-

servation x will be no further from the center than by the distance of 1, measured
by the Eucleidean distance?

The volume of the d-dimensional ball with a radius equal to 1 is

V (B(0, 1)) =
2π

d
2

dΓ(d
2
)
,

whereas the volume of the mentioned cube C satisfies V (C) = 2d. What follows
is that

P =
V (B(0, 1))

V (C)
=

π
d
2

2d−1dΓ(d
2
)

=
1

d
·
(π

4

)d
· 2

Γ
(
d
2

) −−−→
d→∞

0.

The interpretation of this example is as follows: Provided that the distribution
of new examples in the neighbourhood of an observed point x is homogenous, the
likelihood of a new example being close to x is lower with the increasing number
of features d.

Therefore, in the cases, where the number of features exceeds the number of
observations, it is necessary to employ a feature selection or pruning mechanism.
The Following sections are dedicated to specific examples of such algorithms.

2.2 Recursive Feature Elimination

Recursive Feature Elimination (SVM-RFE) is a backward feature selection
algorithm published by Guyon, Weston, Barnhill, and Vapnik (2002). This al-
gorithm iteratively trains an SVM model using the current feature set, ranks
the features using the squares of the weights of the classifier w′w as a ranking
criteria, and removes the feature with the lowest rank from the feature set.

The weight vector w can indeed serve the purpose of feature ranking. It be-
comes clear, if it is obtained by an algorithm referred to as Rosenblatt’s Perceptron
by Rosenblatt (1957).
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2.3 Intuition using Rosenblatt’s Perceptron

The perceptron finds the separating hyperplane (w, b) by building up the
training examples. It updates the initial zero hypothesis by adding the misclassi-
fied positive (and subtracting the negative) training examples, as the Algorithm
1 demonstrates. As soon as the algorithm iterates through all the input examples
and finds all of them correctly classified, it terminates.

Algorithm 1 Rosenblatt’s Perceptron algorithm workflow (Rosenblatt (1957))

Require: X = (x1, . . . ,xN)> a linearly separable dataset

1: choose η > 0 . learning rate
2: k ← 0 . number of mistakes
3: w0 ← 0
4: b0 ← 0
5: R ← max1≤i≤N ‖xi‖
6: repeat
7: for i← 1 to N do
8: if yi(〈wk · xi〉+ bk) ≤ 0 then . (w, b) misclassifies xi
9: wk+1 ← wk + δyixi
10: bk+1 ← bk + δyiR

2

11: k ← k + 1
12: end if
13: end for
14: until no mistakes within for loop
15: return (wk, bk)

The following theorem and its corollary justify the convergence and correctness
of the Perceptron. The proof of the Novikoff theorem can be found in Cristianni
and Shawe-Taylor (2000).

Theorem 1 (Novikoff). Let X = (x1, . . . ,xN)> be a linearly separable dataset.
Denote R = max1≤i≤N ‖xi‖. Suppose there exists a hyperplane (w∗, b∗) such that
(〈w∗ ·x〉+ b∗) = 0 separates X and ‖w∗‖ = 1. Let γ be the functional margin of
(w∗, b∗) with respect to X. Then the number of mistakes t made by the perceptron
algorithm satisfies

t ≤
(

2R

γ

)2

.

Corollary. Novikoff’s theorem implies that the number of mistakes made by the
perceptron algorithm is finite, and therefore so is the number of iterations of
the algorithm itself. Since the perceptron only converges in case it has found a
separating hyperplane, its convergence also implies its correctness.

Assuming the initial hypothesis is a zero vector, the weight vector of the final
hypothesis takes the form of a linear combination of the input examples:

w =
N∑
i=1

αiyixi.
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Interestingly, this is the same expression as in the case of the weights of the
SVM classifier (see the Equations 1.4). However, the interpretation of the αi’s,
which were present as Lagrange multipliers, is now different. The value of αi
equals the number of cases when the misclassification of xi caused an update of
w. If an input xi that is rather dominant in one of its components (i.e. large
|xij|), proves to be influential in the learning process (i.e. large αi and therefore
large |wi|), it is natural to expect the feature j ∈ 1, . . . , n to be influential itself.

By this intuition, the weight vector of a linear classifier is a measure of how
each of the features influenced the learning process, and therefore how useful it
is as a predictor. SVM-RFE uses the SVMs as such a classifier.

2.4 SVM-RFE Workflow

The algorithm initiates with a labelled input datasetX. At each step, an SVM
model is trained on X, and the vector of the second powers of the components
of w is used to rank the features. Then the feature with the lowest ranking is
removed from the set of the remaining data columns. The next step is conducted
using a dataset without the removed column.

This means that at each iteration, one feature is removed. The algorithm
therefore converges after n steps, when the last feature is removed. The algorithm
returns the ranking of all the features (i.e. the order they were removed in).

See the Algorithm 2 for the SVM-RFE workflow pseudocode.

Algorithm 2 Original SVM-RFE workflow

Require: X = (x1, . . . ,xN)>, xi = (xi1, . . . , xin) is a training dataset

1: surviving features ← 1:N . starting with all features
2: rankings ← empty vector
3: while # of surviving features > 0 do
4: XSF ← copy of X containing only surviving features

5: (w, b) ← train SVM using XSF

6: ranking ← w′w . vector of second powers
7: worst feature← the one from the surviving features with the lowest

ranking

8: concatenate rankings with the worst feature

9: remove the worst feature from surviving features

10: end while
11: return rankings

2.5 SVM-RFE Implementation

One of the goals of this thesis is to evaluate the studied feature selection
heuristic’s performance using an existing data corpus as an input and the results
of a related machine learning task as a performance baseline. For a given feature
subset, an SVM is trained on each dataset of the corpus and the average SVM
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performance is calculated using cross-fold validation. The measured SVM per-
formance then defines the quality of the feature selection heuristic.

The data used for this purpose are the datasets from the VPS-30-En corpus.
The related machine learning task of lexical verb sense disambiguation, including
feature pruning techniques and their performance results, was published by Holub
et al. (2012). It is a multi-class supervised machine learning problem that uses
the VPS-30-En datasets. The classified examples are observations of contexts of
English verbs in natural language sentences, and the classes they are classified
into are the multiple possibilities of sense each of the verbs can have.

The VPS-30-En data corpus consists of 30 separate datasets, each of them
for one of the studied verbs. Some of the main properties of this corpus are as
follows:

• Each verb is classified into its own classes. The number of the classes varies
from 4 to 19. Most of the datasets have 5 to 9 classes.

• The majority of the features are common for all datasets. However, for
every verb a new set of tailored features is provided. This means that the
datasets have to be processed separately, which results in a unique feature
subset for each of them.

• Each of the datasets has more features, than observations. It is likely, that
after pruning the features using a feature selection mechanism such as SVM-
RFE, the SVM that is trained on the dataset will perform better. Such a
data corpus is suitable for experiments with feature selection techniques.

• The datasets are divided into 9 folds of approximately the same size. These
folds were used for cross-validation in the original research by Holub et al.
(2012). The cross-validation folds and methods used in this thesis are the
same. The results are therefore comparable.

• Most of the datasets are rather imbalanced – some classes are dominant,
some are very rare. See figure 2.1 for the illustration of some of the datasets’
imbalance.

The original code by Guyon (2002) published for the purposes of Guyon et al.
(2002) results reproduction was used as a base for custom implementation. The
entire implementation code for the studied methods can be found as an attach-
ment to this thesis.

2.6 Preprocessing and Tuning

The performance of the SVM-RFE is highly dependent on the setup of its
parameters. This section discusses the process and impacts of choosing the SVM-
RFE parameter combination.
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Figure 2.1: The distribution of class labels of some of the datasets from the
VPS-30-En corpus is imbalanced.
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cost

The e1071 R package interface to libsvm library does not allow for specific
data folds to be passed to the tune.svm method instead of the default random
ones. For this reason, a custom parameter tuning mechanism was implemented:

A cross-validation step was added to the RFE routine. The result is the mean
performance of the SVM with the current feature set. This cross-validation is
executed repeatedly with different cost parameter settings, and the best per-
forming cost setting is used in the next step (which trains on the same feature
set, but the entire dataset).

kernel

The original SVM-RFE implementation uses the linear kernel. However, for
the studied task, the radial basis kernel has proven to perform significantly better
and was kept as the kernel of choice. Since the underlying mapping of this kernel
maps to a space with a different dimension, the weight vector in the feature
space does not correspond to the original features. The svm$coefs property of
the svm object carrying the trained model maps the weight vector in the feature
space back to the input space. It was therefore used as a measure of the feature
importance.

The gamma parameter of the radial kernel was also experimented with. Based
on the results, the default value of γ = 1

# features
was kept and was being used

for all further experiments.

class weights

For the sake of comparability, the only measure of model performance used
in this thesis is merely the accuracy of the model, i.e.

Acc =
# correctly classified

# all test examples
.

A trained model is used to predict the classes of the test data, and the frac-
tion of correctly classified examples over the test dataset size is said to be the
performance of the model.

As it was previously mentioned, most of the studied datasets a have rather
imbalanced distribution of the class labels. Using the prediction accuracy as
a performance measure on such data leads to a model which ignores the rare
classes and predicts well the dominant ones to be chosen as the best performing.
However, due to its inability to predict the rare-during-traing classes, such a
model would not perform well on a dataset with a higher representation of the
classes it fails to predict.

The accuracy of a model which does not even attempt to predict the rare
classes, is limited by the incidence of the rare examples it surely misclassifies.
For that reason, experiments with the class weights were also conducted. Three
separate class weights settings were applied for each SVM-RFE run:

• cw1 = 1

• cw2 = 1
#class examples
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• cw3 = 1
#class examples

+ #classes,

i.e. all classes having the same weight, then the weights of the classes being
inversely proportional to the frequency of their occurence, and finally a setting
with a somewhat weaker preference of the rare classes.

noise pruning

It is hard to train an accurate SVM model, which is necessary to measure the
contribution of the features, on a noisy dataset (Tan et al. (2010)). The SVM-
RFE heuristic, which makes decisions solely based on the weight vector of an
SVM model trained on all of the features, is therefore prone to underperformance
on noisy data.

For this reason, finally, other experiments were conducted at the level of data
preprocessing. The features with variance lower than the preset threshold were
removed. Although this is the most elementary step of data processing, the
experiments with the threshold had to be conducted with fine-tuned models.
That is due to the significant variance and unpredictability of the performance
of a given model across different subsets of features supplied to the SVM-RFE
routine.

Based on the initial experiments, three levels of the threshold were preset for
further testing: var xi > 0.01, var xi > 0.02, and var xi > 0.05.

conclusions

The following observations emerged during the tuning process:

• The SVM kernel selection and cost and gamma parameters tuning results
are independent on the other aspects of optimisation. i.e. variance-based
feature pruning and class weight selection. Therefore, the kernel and cost
range for tuning should be selected (and fixed) first, to reduce the experi-
ment combinations.

• For the final accuracy, it is not critical to prune the features drastically in the
preprocessing phase. The SVM-RFE routine eliminates the features with
low variance anyway. However, with preprocessed data, the SVM-RFE runs
much faster. That is because SVM is not well scalable, so the first steps,
when the SVM is trained on most features, are the most computationally
expensive. These steps are ommited with pruned data.

• SVM-RFE is likely to produce a smaller feature subset with pruned data.

• The cost tuning subroutine tends to choose higher cost values at each step,
creating a harder margin model that is sensitive to outliers, when the pro-
vided data is pruned, and therefore cleaner. On the contrary, providing a
raw dataset results in a soft SVM being chosen as the best performing one.

• Forcing the SVM-RFE to be more sensitive to the rare classes by giving
them greater weights has the same effect as providing less pruned data
– small performance gain, significantly softer model at each step, larger
output feature set.

18



2.7 SVM-RFE Performance

The Table 2.1 compares the best results obtained by the tailored models T1,
T2, T3 used by Holub et al. (2012) with the SVM-RFE performance. It also
documents some of the observations mentioned in section 2.6.

Verb
Best tailored R1 R2 R3 R4 R5
M #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc

access T3 55 79.7 7 78.7 37 79.3 56 77.7 17 79.3 38 78
ally T2 54 79.6 12 72.8 12 72.4 21 68.4 87 71.6 58 73.2
arrive T3 41 82.6 41 73.6 63 73.2 55 73.6 9 73.2 68 72.8
breathe T3 41 81.0 35 76.3 43 76 30 76.8 63 80 67 78.9
claim T1 75 87.4 17 84.4 13 84.2 31 83.8 36 85.6 52 86
cool T3 36 67.6 28 70.7 76 71 57 68 75 72 80 71.3
crush T3 56 53.5 32 53.7 33 53.1 45 51.4 46 52.6 62 53.4
cry T3 44 80.4 41 80.4 41 80.8 61 79.2 68 78.8 39 79.2
deny T1 74 67.7 6 62.4 18 61.3 60 57.3 77 65 20 65.7
enlarge T3 43 84.8 25 86.7 48 86.1 45 85.1 25 87 30 87
enlist T3 51 89.9 11 86.7 20 87.7 38 88 17 89.7 52 89.7
forge T1 86 59.7 41 57.7 60 59.4 26 58.6 85 63.1 90 62.3
furnish T3 49 79.0 72 73 35 73.6 56 75 51 74 36 74
hail T1 73 85.4 75 85.6 53 85.6 43 84.3 37 88.3 44 87
halt T3 59 90.9 17 89.6 15 88.8 23 86 11 90 30 89.6
part T1 74 72.7 57 80 36 80 40 78.6 69 80 80 79.6
plough T3 44 76.5 28 77.7 31 77.7 34 74.9 48 73.6 51 73.3
plug T3 41 61.7 30 65.3 38 65.3 28 63 67 64.7 63 64.7
pour T3 77 63.8 72 63.6 72 63.3 63 63.3 82 64 105 64.3
say T1 82 90.8 51 89.6 49 89.4 64 89.2 77 90.2 73 89.4
smash T3 46 77.7 25 77.4 24 77.7 51 74.4 74 75 103 76.3
smell T3 37 63.7 63 62.3 64 58.3 53 58.3 67 61.7 62 61.3
steer T3 55 50.6 64 48.4 55 47.4 72 48 30 54 33 54.7
submit T3 76 86.8 19 89.2 30 90 30 90.4 11 88.4 8 88.8
swell T3 45 62.8 39 57.6 36 57.6 49 57.3 92 57.6 76 58.2
tell T3 69 81.2 36 82.2 78 81.6 64 81.8 77 83 82 83
throw T3 147 56.6 95 49.3 94 48.9 95 48.2 128 54.7 146 54.7
trouble T1 75 72.4 46 73.3 93 72.3 74 73 95 75 91 74.3
wake T1 75 77.7 69 81.7 22 80 33 78.3 13 82 35 81.7
yield T3 46 56.0 56 59 71 58.3 77 56.7 70 54.7 73 56.3

average 40 72.96 45 72.68 49 71.62 57 73.63 62 73.62

Table 2.1: Comparison of the best of T1, T2 and T3 models against SVM-RFE
models R1 – R5 with various setups. The three columns named as ”Best tailored”
are taken directly from Holub et al. (2012).

SVM-RFE models R1 - R5 are five of the best performing setups that were
tuned. Table 2.2 summarizes the setups of these models. An SVM model that is
trained on the output of R4, usually fails completely even to try to predict the
rare classes with the sensitivity being 0 or less than the proportion of such class.
That is due to the equal class weights. Therefore, the model R5 was chosen over
R4 as the final SVM-RFE choice for comparison with T1 – T3 models and for
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Model var. threshold class weights costs #F accuracy

R1 0.05 cw1 (14 , 1, 4, 16, 64) 40 72.96

R2 0.05 cw3 (14 , 1, 4, 16, 64) 45 72.68

R3 0.05 cw2 (14 , 1, 4, 16, 64) 49 71.62

R4 0.02 cw1 ( 1
16 ,

1
4 , 1, 4, 16, 64) 57 73.63

R5 0.02 cw3 ( 1
16 ,

1
4 , 1, 4, 16, 64) 62 73.62

Table 2.2: Five of the best performing SVM-RFE setups.

further experiments with SVM-RFE. The performance measures of the baseline
models, which are referred to as “Best tailored”, were copied from Holub et al.
(2012). For additional details regarding these models refer to this paper.

2.8 Flip Heuristics

As Guyon (2003) points out on page 1159, in a search for performance im-
proving modifications of a feature selection algorithm, “The only recommendation
that is almost surely valid is to try the simplest things first”.

Bit-Flip (BF) and Attribute-Flip (AF), published by Samb et al. (2012) are
a pair of such algorithms. Their approach is driven by a known drawback of
SVM-RFE (discussed, for instance, by Tan et al. (2010)), that the nested feature
subsets are monotonic. This means, that at some point it might be beneficial for
the routine to return back to a previously discarded attribute. SVM-RFE is not
capable of such action.

Both algorithms examine the neighboring attribute subsets of the SVM-RFE
result. If a better solution is found, it is used instead of the original one. This
way a previously discarded attribute can be brought back.

For the sake of the BF and AF description, let S be the set of the features
present in an SVM-RFE result.

The Bit-Flip algorithm examines every solution with exactly one feature in-
verted, i.e. if xi ∈ S (xj /∈ S), the set S \ xi (S ∪ xj) will be examined. The
set of all the subsets that Bit-Flip creates is then SBF = S+

BF ∪ S−BF , where
S+
BF = {X : X = S ∪ {xj}, xj /∈ S} and S−BF = {X : X = S \ {xj}, xj ∈ S}.

The Attribute-Flip algorithm swaps one feature xi ∈ S, with one feature
xj /∈ S that was discarded. The set of all solutions that are examined is therefore
SAF = {X : X = S ∪ {xi} \ {xj}, xi /∈ S, xj ∈ S}.

The design of the flip algorithms faces some challenges that may limit the
usability:

• They do not search through the neighboring solution space at each step
of the SVM-RFE. If a feature xi is discarded, all of the following nested
subsets are optimised based on the weight vector that does not include the
xi variable. This influence to every other step cannot be taken back by
finally enlisting the feature xi back.
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• The BF algorithm does not preserve the number of the features of the
subset. It either has one more, or one less. That is an advantage, since it is
desirable to have a smaller feature subset, but it also limits the use at every
step of the RFE, since such a setup would not be guaranteed to converge.

• The flip heuristics are computationally expensive – BF has a complexity of
O(n) and AF of O(n2), where n stands for the number of the features. This
limits their use at each step of SVM-RFE as well.

• No validity criteria is considered when the neighboring solutions are being
chosen. The flip algorithms simply use all the solutions that neighbor in
the defined way.
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Chapter 3

Evalution-Based RFE

Out of all the experiments that had been conducted in the search for an im-
provement of the SVM-RFE performance, one particular method has immensely
outperformed any other approach. This section is dedicated to the description of
this SVM-RFE modification. For the sake of readability, let’s refer to this routine
as the Evaluation-Based RFE (EB-RFE).

The EB-RFE is a modification that affects each step of the SVM-RFE with
a computational complexity of O(1). Thanks to this, it is applicable repeatedly
during the SVM-RFE runtime.

3.1 Algorithm Workflow

The EB-RFE algorithm requires the C constant to be preset. At each step
of the SVM-RFE routine, instead of the feature with the smallest weight being
instantly discarded, multiple features with the worst rankings are marked for
discarding in the next step. Multiple subsets S1, . . . , SC , are created this way,
each one with a different feature missing.

At the next step, each of the subsets S1, . . . , SC is cross-validated, and the
best performing subset is chosen.

This modification does not affect the number of steps of the routine, and
therefore it has no effect on the convergence as well. The EB-RFE routine has
the same input and output requirements and possibilities, as the original SVM-
RFE.

The original SVM-RFE routine only returns the ranking of the features. How-
ever, thanks to the possibility to tune and cross-validate at each step, it is possible
to return the best performing subset together with its performance as well. The
pseudocode of the EB-RFE workflow, including these modifications, is shown in
Algorithm 3. It is also the workflow of the R script attached to this thesis, which
was used to obtain the presented results.

3.2 Scalability and Other Properties

EB-RFE attempts to overcome all of the previously mentioned drawbacks of
the flip algorithms. Namely:
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Algorithm 3 Evaluation-based SVM-RFE workflow

Require: X = (x1, . . . ,xN)>, xi = (xi1, . . . , xin) is a training dataset divided
F times into a train/test pair

1: set C . # of the worst features to evaluate
2: set Costs . vector of cost values to tune through
3: SF ← 1:N . surviving features
4: best subset ← 1:N
5: best acc ← 0
6: for c← 1 to C do
7: SFC ← 1:N . surviving feature set candidates
8: end for
9: rankings ← empty vector
10: while # of SF > 0 do
11: for c← 1 to C do
12: for cost in Costs do
13: Xc ← copy of X containing only SFc
14: for fold← 1 to F do
15: (w, b) ← train SVM using train portion of XSF

16: accfold ← evaluate (w, b) using test portion of XSF

17: end for
18: acccost ← average of all accfold
19: end for
20: accc ← best of all acccost
21: if accc ≥ best acc then
22: best subset ← SFc
23: best acc ← accc
24: end if
25: end for
26: worst feature ← the feature with worst accc
27: concatenate rankings with the worst feature

28: remove the worst feature from SF

29: XSF ← copy of X containing only SF

30: (w, b) ← train SVM using XSF

31: ranking ← w′w
32: for c← 1 to C do . prepare candidates for removal
33: wfc ← the feature with the c-th lowest ranking
34: SFc ← SF without wfc
35: end for
36: end while
37: return rankings, best subset, best acc
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• Unlike the flip algorithms, EB-RFE drives the flow of the SVM-RFE at
each step by picking one of the C neighboring solutions. The evaluation of
the subsets using cross-validation is therefore conducted at each step of the
feature elimination as well.

• EB-RFE only marks some of the attributes for removal, not all that are
neighboring in the defined way. It does so based on their weights, which is
a relevant criteria to choose upon.

• EB-RFE has a constant computational complexity.

• EB-RFE requires the dataset to be divided into the train and test portions.
Another option is to cross-validate the subset candidates S1, . . . , SC on the
whole dataset, which is also how the current implementation works.

EB-RFE adds a new level of scalability to the algorithm that both the orig-
inal SVM-RFE and the flip methods lack. There is no constant, which could
be modified to “flip more”. Such need would require the algorithm to be modi-
fied. Similarly, the SVM-RFE cannot scale over the minimum granularity of the
number of features removed at a time being 1, which is a standard setting.

The performance of the EB-RFE routine increases with greater C. In the
case of the studied data, this relation is monotonic for the low settings of C.
Therefore, EB-RFE can scale towards better results with greater demands for
computational resources.

3.3 Performance

No parameter tuning was performed during the EB-RFE performance testing.
For the sake of comparability, all of the presented EB-RFE models in this section
have the same settings, as the R5 model (Table 2.2 shows the specification).

The performance of the EB-RFE has been tested with several C setups. It is
apparent, that the higher the C is set, the better is the resulting accuracy. This
dependence has been tested within the range C ∈ [1, 20]. Note that EB-RFE
with C = 1 is the same heuristic as the plain SVM-RFE.

Table 3.1 compares the baseline, which is given by the “Best tailored” model
by Holub et al. (2012), the original SVM-RFE with the R5 setup, and various
setups of the EB-RFE heuristic.

An EB-RFE model with C = X setup is listed as EBX.
The results of the “Best tailored” model in this table were copied from Holub

et al. (2012), which is where this model was originally published. The last five
rows of this table are clarified in the Table 3.2. Note that in the improvement
rows, the higher accuraccies and smaller feature subsets are considered better.

The probabilities P1 and P2 in the Table 3.1 were obtained by a student’s
t-Test, with a sample of the 30 improvements measured for a given column. This
means, that an assumption is being made that the improvements are observations
of a normal random variable, with an unknown mean µ, and with the variance
being estimated by the variance of the sample.
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The test is then conducted under the assumption of the H0 hypothesis being
valid, and with the hypotheses as follows:

H0 : µ ≤ 0

H1 : µ > 0.

The probabilities P1 and P2 in the Table 3.1 are then equal to 100% − P ,
where P stands for the P-value of the corresponding test.

The column ± refers to the EB20 model accuracy 95% confidence interval
radius. It is the 95 % confidence interval of a t-Test conducted with a sample of
9 results, each one from a different cross-validation fold. The hypothesis here is
that the real mean of the accuracy is equal to the sample mean, with the un-
equality as an alternative.

In some cases (namely words “deny”, “smash”, “smell”, “wake”, “yield”), the
EB-RFE routine produced two or three subsets with very similar performances.
In this cases, the smallest set (measured by count of features) is listed, even if the
performance (measured by accuracy) of such feature set is slightly suboptimal.

3.4 Runtime

The performance measures were conducted on a consumer grade computer
with an 8 virtual core Intel 6700hq CPU, and 16GB of DDR4 RAM. All of the
computation was performed on the CPU (not GPU).

The current EB-RFE implementation employs a virtual CPU cluster of the
size equal to the number of cores available on the hardware it is ran on. Each
verb from the corpus runs its own routine, which is attached to one of the cores.
This way, all the CPU power available is utilized, up to the point, when there
is no other task to replace a finished one (e.g. 23 words finished, 7 still running
on an 8 core CPU). To minimize the uneffective phase, the tasks were ordered
decreasingly according to their demands. This way, the computation runtime of
all the 30 tasks is proportional to the C parameter, with the dependence being

runtime ∼ 3.5 · C hours.

More than a half of the runtime accounts for the task corresponding to the
word “throw” to finish, even though it is triggered at the very beginning.

3.5 Discussion

This section discusses the possibilities of further development of the EB-RFE
model and some of its properties that have not yet been mentioned.

parallel computation

The current implementation of the EB-RFE algorithm is designed to be
launched on a consumer grade computer with a low number of CPU cores. How-
ever, the code can be easily rewritten for the use on a large scale CPU cluster.
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Verb
Best tailored R5 EB3 EB5 EB8 EB12 EB20
M #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc ± IBT IR5

access T3 55 79.7 38 78 11 78.7 9 79 6 80 18 82.3 32 81.7 6.4 2.5 4.7
ally T2 54 79.6 58 73.2 58 73.2 65 74 22 74.8 31 75.6 27 77.2 6.1 -3 5.5
arrive T3 41 82.6 68 72.8 2 73.2 5 75.6 8 77.2 5 77.6 24 80.4 6 -2.6 10.4
breathe T3 41 81.0 67 78.9 68 79.7 53 80.3 53 81.4 57 82 82 83.4 3.3 3 5.7
claim T1 75 87.4 52 86 50 86 51 86.8 11 87.4 43 87.6 19 89.6 3 2.5 4.2
cool T3 36 67.6 80 71.3 45 74.7 63 74.3 31 74.3 31 75.4 34 77.7 6.9 14.9 9
crush T3 56 53.5 62 53.4 52 54.6 30 56.6 30 56.6 31 57.4 37 58.8 5.2 9.9 10.1
cry T3 44 80.4 39 79.2 58 79.3 67 81.2 22 80.8 26 82.5 18 83.6 6 4 5.6
deny T1 74 67.7 20 65.7 18 67.7 18 67 22 68 10 69.4 34 69.7 5 3 6.1
enlarge T3 43 84.8 30 87 40 88 34 88.7 34 89.7 33 90.4 29 91.7 2.5 8.1 5.4
enlist T3 51 89.9 52 89.7 22 90.3 21 90.3 16 91.4 28 92 33 92.4 3.5 2.8 3
forge T1 86 59.7 90 62.3 77 63.2 88 63.1 70 64.8 74 66.6 67 67.4 3.3 12.9 8.2
furnish T3 49 79.0 36 74 46 75.3 40 76 18 77 25 78 51 78.7 4.3 -0.4 6.4
hail T1 73 85.4 44 87 31 87.6 25 89 25 90.3 25 90.9 27 91.3 4.2 6.9 4.9
halt T3 59 90.9 30 89.6 25 88.8 32 90.4 26 90.8 20 92 27 92 3.4 1.2 2.7
part T1 74 72.7 80 79.6 43 80.6 31 81.6 72 82 52 83.6 31 84.3 3.5 16 5.9
plough T3 44 76.5 51 73.3 27 75.6 24 78 21 80.5 31 81.3 19 81.2 6.7 6.1 10.8
plug T3 41 61.7 63 64.7 81 64.7 66 67.4 70 63.7 45 68.7 36 69 3.2 12.3 7.1
pour T3 77 63.8 105 64.3 89 65 62 65.6 72 66.3 86 67 58 70.3 6.4 10.2 9.3
say T1 82 90.8 73 89.4 69 89.6 63 90.2 44 90.8 26 90.6 20 93.2 2.1 2.6 4.3
smash T3 46 77.7 103 76.3 47 76.3 41 77.3 102 77.7 27 78 19 79.3 4.6 2.1 3.9
smell T3 37 63.7 62 61.3 91 62.3 51 62.3 16 62.4 14 63.3 20 64.7 2.8 1.6 5.5
steer T3 55 50.6 33 54.7 35 55.7 61 55.3 16 57.3 54 57.3 39 59 8.3 17 7.9
submit T3 76 86.8 8 88.8 7 89.2 8 90.4 8 90.4 7 89.6 29 91.6 2.4 5.5 3.2
swell T3 45 62.8 76 58.2 49 60 48 60.6 51 63.2 33 64 47 68 3.4 8.3 16.8
tell T3 69 81.2 82 83 79 83.6 64 83.6 72 84.6 65 84.6 34 86.4 2.6 6.4 4.1
throw T3 147 56.6 146 54.7 146 55.5 140 56.3 140 56.3 85 57.1 91 58.4 3.9 3.2 6.8
trouble T1 75 72.4 91 74.3 86 75 88 75.3 38 77 16 77.4 56 77.7 5 7.3 4.6
wake T1 75 77.7 35 81.7 40 83 18 82.7 29 83.7 11 83.3 25 84 4.6 8.1 2.8
yield T3 46 56.0 73 56.3 78 57.3 70 59 43 60.6 14 58.3 18 62.7 6.3 12 11.4
average × 60.9 74.01 61.6 73.62 52.3 74.46 47.9 75.26 39.6 76.12 34.1 76.79 36.1 78.19 × 6.13 6.54
IPREV × × × -1 -0.52 18 1.13 9 1.08 21 1.14 16 0.88 -6 1.82 × × ×
IBT × × × -1 -0.52 16 0.61 27 1.7 53 2.86 78 3.77 69 5.65 × × ×
P0(IBT > 0) × × × × 34.54 × 82.43 × 98.29 × 99.92 × 99.99 × 100 × × ×
IR5 × × × × × 18 1.13 29 2.23 55 3.4 81 4.31 71 6.2 × × ×
P0(IR5 > 0) × × × × × × 100 × 100 × 100 × 100 × 100 × × ×

Table 3.1: Comparison of the EB-RFE (EB3 – EB20), the best of the tailored
models, and the SVM-RFE (R5). The EB20 model performance is listed including
the 95 % confidence interval radius and the relative percentual improvement of
the accuracy over the “Best tailored” (IBT ) and the “R5” (IR5) models. The
IPREV row demonstrates the monotonicity of the EB-RFE performance, the IBT
compares each model against the best tailored model, and the IR5 row compares
each model against the SVM-RFE model R5.

IPREV Average relative improvement over the model listed to the left, in %

IBT Average relative improvement over the “Best tailored” model, in %
P0(IBT > 0) P1

..= Probability of IBT being greater than 0, in %

IR5 Average relative improvement over the SVM-RFE “R5” model, in %
P0(IR5 > 0) P2

..= Probability of IR5 being greater than 0, in %

Table 3.2: Performance statistics notation in Table 3.1

26



Instead of running the cross-validation of all C subsets serially, a separate task
can be sent to the cluster thread pool for each subset and each fold. This would
reduce the computational time approximately to the level of the original, unvali-
dated, SVM-RFE.

accuracy and compactness trade-off

Every feature subset, which is found during the EB-RFE workflow, is evalu-
ated. The relation between the iteration number and the measured performance
is usually concave, with one maximum. The subset found at the maximal phase is
then returned as the optimal solution. With the higher C settings, the algorithm
is more likely to find its optimum sooner. Also, this bigger feature subset usually
outperforms any of the smaller sets found with the smaller C settings.

However, as the “higher C” algorithm proceeds, it still produces better sub-
sets, than the “smaller C” models during their optimal phases.

The accuracy and compactness trade-off is a problem yet to be studied. Even
though the mentioned behavior is not exclusive, the current results indicate, that
a higher C setting is not harmful neither to the accuracy, nor sparsity, of the
resulting SVM classifier.

dynamic C parameter

A dynamic adjustment of the C parameter could provide the possibility of
the algorithm flow regulation. In a step, when a small subset of features with
apparently small weights is found, there is no need for the parameter C to be
high. On the other hand, if the decision rule is uncertain, it might be beneficial
to try to evaluate more of the candidate subsets.
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Conclusion

In this thesis, a thorough mathematical description of the machine learning
model called Support Vector Machines (SVM) was provided. The possibilities of
its use for the problem of feature selection are discussed and two existing feature
selection algorithms, namely Recursive Feature Selection (SVM-RFE) by Guyon
et al. (2002) and Bit Flip and Attribute Flip by Samb et al. (2012) are studied
theoretically.

Furthermore, the SVM-RFE performance was measured using an experimen-
tal R implementation. One of the important conclusions of these experiments is
the fact, that SVM-RFE, as well as the SVM itself, is greatly dependent on careful
parameter tuning, data processing and implementation decisions. The SVM-RFE
heuristic has also shown its computational inexpensivity and potential for further
modifications, which results from its simplicity.

The main contribution of this thesis is the proposition of a SVM-RFE modi-
fication called Evaluation-Based RFE (EB-RFE). To the best of our knowledge,
however simple, this method has neither been published nor used yet. Thorough
description and analysis of this heuristic is provided. Comparable results of the
EB-RFE performance were calculated using the reference VPS-30-En dataset and
the results of the related lexical verb sense disambiguation machine learning task
published by Holub et al. (2012).

The original SVM-RFE algorithm repeatedly removes the feature that con-
tributes the least to an SVM decision rule. By introducing an evaluation substep
into the SVM-RFE routine, the EB-RFE algorithm can determine which feature
to remove not only based on this heuristic, but also taking into account the real
performance of the possible resulting subsets.

A statistically significant performance gain of EB-RFE was proven during the
performance experiments. In addition to greater accuracy, the EB-RFE routine
has been able to produce much smaller feature subsets, which is one of the main
requirements laid upon any feature selection heuristic.

Finally, unlike the reference heuristics, the proposed algorithm has shown to
be capable of producing SVM models that are more sparse and yet perform better
in exchange for greater computational demands. Consequently, since it can be
easily implemented and launched on a CPU cluster of any size, EB-RFE has no
usability limitations as far as large scale machine learning applications go.
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