Náhodná pole faset
Random fields of facets
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/61852Identifikátory
SIS: 155099
Kolekce
- Kvalifikační práce [11233]
Autor
Vedoucí práce
Oponent práce
Pawlas, Zbyněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
16. 6. 2015
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
Eukleidovský prostor, faseta, rozdělení pravděpodobnostiKlíčová slova (anglicky)
Euclidean space, facet, probability distributionProces faset je speciálním případem bodového procesu v Eukleidovském pro- storu Rd , kde body jsou reprezentované kompaktními podmnožinami nadrovin v Rd s danou orientací, velikostí a tvarem. Zaměříme se na konečný proces fa- set s hustotou exponenciálního typu vzhledem k rozdělení Poissonova bodového procesu. Jeho submodel simulujeme pomocí Metropolisova-Hastingsova algoritmu rození a zániku. Takto sestrojený proces tvoří homogenní Markovský řetězec. Spe- ciálně v prostoru R2 pak odvodíme jeho stacionární rozdělení. V prostorech R2 a R4 provedeme numerické simulace a ukážeme chování tohoto řetězce pro různé parametry modelu. 1
Facet process is a special example of a point process in Euclidean space Rd , where points are in this case represented by compact subsets of hyperplanes in Rd with given orientation, size and shape. We focus on finite facet processes with density from exponential family with respect to the distribution of Poisson point process. Its submodel is simulated using the Metropolis-Hastings birth death algorithm, which gives us a homogeneous Markov chain. Specially in R2 space we derive its stationary distribution. In spaces R2 and R4 we perform numerical simulations to show behavior of the chain for various parameters in such model. 1