Odhady metodou maximální věrohodnosti a jejich aproximace
Maximum likelihood estimators and their approximations
bakalářská práce (NEOBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/57850Identifikátory
SIS: 93166
Kolekce
- Kvalifikační práce [11217]
Autor
Vedoucí práce
Oponent práce
Zvára, Karel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Finanční matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
28. 1. 2014
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Neprospěl
Klíčová slova (česky)
Odhady parametru, Metoda Maximální věrohodnosti, MMV, Stabilní rozdělení, Charakteristická funkce, Test dobry shody, Rao-CramerKlíčová slova (anglicky)
Parametr estimates, Maximum Likelihood estimators, MLE, Stable distribution, Characteristic function, Pearson's chi-squared test, Rao-CrámerNázev práce: Odhady metodou maximální věrohodnosti a jejich aproximace Autor: Anastasia Tyuleneva Ústav: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr. Vadym Omelchenko Abstrakt: Metoda maximální věrohodnosti je jedna z nejoptimálnějších a nejpřesnějších metod, kterých lze použít pro odhady rozdělení a parametru. V této práci se seznámíme s plusy a mínusy této metody a porovnáme ji s jinými odhadovými modely. V teoretické části uvedeme důležité pojmy a věty pro definování obecného postupu při odhadování parametru a pro práci s realnými daty. V praktické části aplikujeme MMV na vzorových rozděleních pro nalezení neznámých parametrů. Na závěr aplikujeme tuto metodu na reálných datech cen a výnosu EEX AG, Germani. A taktéž ji porovnáme s jinými modely pro odhadování rozdělení a parametru a vybereme nejlepší rozdělení z nabízených. Vsechny testy a odhady budou prováděny pomoci softwaru Mathematica. Klíčová slova: odhady parametru, Metoda Maximální věrohodnosti, MMV, Stabilní rozdělení, Charakteristická funkce, Test dobry shody, Rao-Cramer.
Title: Maximum likelihood estimators and their approximations Author: Anastasia Tyuleneva Department: Department of Probability and Mathematical Statistics Supervisor: Mgr. Vadym Omelchenko Abstract: Maximum likelihood estimators method is one of the most effective and accurate methods that was used for estimation distributions and parameters. In this work we will find out the pros and cons of this method and will compare it with other estimation models. In the theoretical part we will review important theorems and definitions for creating common solution algorithms and for processing the real data. In the practical part we will use the MLE on the case study distributions for estimating the unknown parameters. In the final part we will apply this method on the real price data of EEX A. G, Germani. Also we will compare this method with other typical methods of estimation distributions and parameters and chose the best distribution. All tests and estimators will be provided by Mathematica software. Keywords: parametr estimates, Maximum Likelihood estimators, MLE, Stable distribution, Characteristic function, Pearson's chi-squared test, Rao-Crámer. .