Aplikace Baireovy věty
Aplikace Baireovy věty
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/31034Identifiers
Study Information System: 50098
Collections
- Kvalifikační práce [11217]
Author
Advisor
Referee
Pyrih, Pavel
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Theoretical Computer Science and Mathematical Logic
Date of defense
18. 9. 2009
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Very good
Cielom tejto práce je v troch roznych prípadoch dokázat', že množina prvkov s danou vlastnost'ou je množina typických prvkov. Najskor dokážeme, že typická spojitá funkcia, definovaná na intervale [0; 1], nemá deriváciu v žiadnom bode. Potom dokážeme, že typická kompaktná podmnožina R2 je diskontinuum. A napokon ukážeme, že typické rovinné kontinuum je nerozložitel'né. Doležitým nástrojom bude Baireova veta, ktorej použitie nám okrem hustosti zaistí zároveň aj to, že daná množina je spočetným prienikom otvorených množín.
The aim of this work is to show, having three di®erent spaces and a set of elements with some common property in each one of them that the given set is the set of typical elements in that space. First we will show that a typical continuous function deffined on the interval [0; 1] is a nowhere differentiable one. Then we will show that a typical compact set in R2 is a discontinuum. And lastly, we will show that a typical planar continuum is an indecomposable one. A valuable tool will be the Baire theorem, the use of which will ensure, besides the density, also the fact that the given set is a countable intersection of open sets.