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Katedra teoretické informatiky a matematické logiky,
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2009



Chcela by som pod’akovat’ prof. RNDr. Petrovi Simonovi, DrSc., za jeho
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differentiable one. Then we will show that a typical compact set in R2 is a
discontinuum. And lastly, we will show that a typical planar continuum is
an indecomposable one. A valuable tool will be the Baire theorem, the use
of which will ensure, besides the density, also the fact that the given set is
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Introduction

Most people would say that typical are things which are easy to be found
and are nice in some way. even in mathematics such belief was common in
the past centuries. However, in some cases this appeared to be wrong. The
notion of what is typical needed to be defined in a more precise way in order
to be used in mathematics and here the Baire cathegory came handy. A set
of typical elements was defined so that its complement has to be meagre, in
other words, in order for a set to be the set of typical elements in some space,
it has to be a countable intersection of open dense sets in that space. In a
complete metric space such a set is dense itself, due to the Baire theorem.
Therefore a set of typical elements in a complete metric space, defined as a
dense set, which is as well a countable intersection of open sets, is defined in
a very natural way, close to what we would instinctively hold for typical. An
easy example of such a set is the set of irrational numbers in R, since they
form a dense set, which can be writen as the intersection of all sets Rr{r},
where r ∈ Q and this intersection is obviously countable. This example was
easy and still, the irrational numbers are a more complicated construction
than the rationals and were discovered only by a student of Pythagoras and
until then people didn’t believe that such numbers might exist. But in some
spaces, there are elements so bizarre that mathematicians did not believe
that such things could exist, let alone be typical, and they were discovered
only lately, but they still are typical. In this bachelor thesis I will show
three examples of such objects. First I will show that typical continuous
functions on [0, 1] are nowhere differentiable. Then I will show that in the
space of all compact sets in R2, the discontinua are typical objects. And
lastly, in the last chapter I will show that typical planar continua are the
indecomposable ones. Examples of each of these objects were given only in
the last two centuries and the proofs that they are typical are even more
recent. And they are so bizarre that before these examples were introduced,
most mathematicians believed that such objects simply can’t exist.
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Chapter 1

Definitions and Baire Theorem

1.1 Definitions

First I will list the general definitions which I will use in this work and
afterwards the definitions needed in the single chapters. The general de-
finitions come from [1] and the definitions related to the third and fourth
chapter are from [2]. The historical notes at the beginning of each chapter
are mostly borrowed from [3].

A metric space is an ordered pair (X, d), where X is a nonempty set
and d is a function from X×X to R, satisfying following conditions:

d(x, y) ≥ 0 & d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

The last condition is called the triangle inequality.
A topological sapce is an ordered pair (X, τ), where X is a nonempty set

and τ⊆ P(X) is a set of subsets of X, satysfying following conditions:

∅ ∈ τ & X ∈ τ

for ∀A,B ∈ τ , their intersection A ∩B ∈ τ

for ∀A ⊆ τ , the union
⋃

A ∈ τ

X is called an underlying set in both cases. d is called a metric on X and
τ is called a topology on X. The sets in τ are called open in (X, τ).
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From now on I will write only X instead of (X, d) or (X, τ) and d will
denote the metric on X and τ will denote the topology on X unless specified
otherwise.

A set B is called a base of a topology τ , if
{⋃

A; A ⊆ B
}∪{∅, X} = τ .

We can easily see that having a metric space (X, d) we can define a topology
on X with the base B = {Bd(x, ε); x ∈ X, ε > 0} . This topology is said to
be induced by the metric d .

Having two topological spaces (X, τ) and (Y, σ), a mapping f :X → Y is
called a homeomorphism if it satisfies following conditions:

f is both surjective and injective

for ∀A ∈ τ, f(A) ∈ σ

for ∀B ∈ σ, f−1(B) ∈ τ

Let now X be a nonempty set and τ and σ two topologies on X. We say
that τ and σ coincide on X, if the identity mapping idX : X → X is a
homeomorphism of (X, τ) and (X, σ).

Remark. Let’s have a set X 6= ∅ and τ and σ topologies on X, generated by
bases Bτ and Bσ, respectively. If for ∀x ∈ X and ∀A ∈ Bτ , such that x∈A,
there ∃B ∈ Bσ, such that x ∈ B ⊆ A and if for ∀x ∈ X and ∀B ∈ Bσ, such
that x∈B, there ∃A ∈ Bτ , such that x ∈ A ⊆ B, then τ and σ coincide.

Proof. Let A∈ τ be any set, open in τ . Then A =
⋃

Aα∈A

Aα for some system

A⊆Bτ . Now for ∀Aα ∈A and for ∀x ∈ Aα, there ∃Bx, α ∈ Bσ, such that
x ∈ Bx, α ⊆ Aα, hence Aα ⊆

⋃
x∈Aα

Bx, α ⊆ Aα and therefore A =
⋃

Aα∈A
x∈Aα

Bx, α ,

which is open in σ. Similarly, any set, open in σ, will be open in τ as well
and therefore idX is a homeomorphism of (X, τ) and (X, σ).

A sequence {xn}n∈N of elements of X is said to be Cauchy, if for every
real ε > 0 there is n0 ∈ N such that for ∀m, n ∈ N, where m,n ≥ n0, the
distance d(xm, xn) < ε .

A complete metric space is a metric space X, in which every Cauchy
sequence {xn}n∈N converges to a limit x. In other words, for every Cauchy
sequence {xn}n∈N in X there is a point x ∈ X, such that for every real
ε > 0 there is an n0 ∈ N, such that for every integer n ≥ n0 , the distance
d(xn, x) < ε.
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A set A ⊆ X is said to be dense in X if for every nonempty and open
set Y ⊆X, A ∩Y 6= ∅ .

A set A ⊆ X is said to be Gδ if there exists a collection of open sets
{An ⊆ X}n∈N such that A =

⋂
n∈N

An .

Now we can define a typical element of a complete metric space as follows:
Having a complete metric space X and A ⊆X which is Gδ and dense in

X, we call all the elements of A typical elements of X. A is called the set
of typical elements of X.

Let (X, d) be a complete metric space, τd topology on X induced by
d, (Y, σ) a topological space and f : (X, τd) → (Y, σ) a homeomorphism.
Then for any set A ⊆ Y , which is dense in (Y, σ), f−1(A) will be dense in
(X, τd), since for ∀B ∈ τd, there ∃f(B) ∈ σ, hence f(B) ∩ A 6= ∅ and then
∅ 6= f−1

(
f(B) ∩ A

)
= B ∩ f−1(A). Also for any Gδ set A ⊆ Y , the set

f−1(A) will be Gδ in (X, τd), because f−1(A) = f−1
( ⋂

n∈N
An

)
=

⋂
n∈N

f−1(An),

where f−1(An) are open in (X, τd).
Therefore if we find a set which is dense and Gδ in a space that is homeo-
morphic with a compact space, then the homeomorphic inverse image of A
will be the set of typical elements in the compact space X.

In the following chapters I will search for the typical elements in some par-
ticular spaces. Following definitions will apply to these.

In the second chapter I will show that nowhere differentiable functions
are the typical elements of the space of continuous functions, defined on the
closed unit interval [0, 1].

A function f : [0, 1] → R is said to be continuous if for ∀ x ∈ [0, 1] and
∀ ε > 0, ∃ δ > 0 such that for ∀ y ∈ R, |x− y| < δ ⇒ |f(x)− f(y)| < ε .

The space consisting of all continuous functions, defined on [0, 1] is de-
noted C([0, 1]) and endowed with a metric d, defined as follows:

f, g ∈ C([0, 1]) then d(f, g) = sup
x∈[0,1]

(|f(x)− g(x)|)

For a function f ∈ C([0, 1]) and a point t ∈ [0, 1] if following right-hand
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limit exists and is finite

d+f(t)

dt
= lim

h→0+

∣∣∣∣
f(t + h)− f(t)

h

∣∣∣∣

then
d+f(t)

dt
is called the right derivative of f in the point t and f is said to

be right differentiable in t. If following left-hand limit exists and is finite

d−f(t)

dt
= lim

h→0−

∣∣∣∣
f(t + h)− f(t)

h

∣∣∣∣

then
d−f(t)

dt
is called the left derivative of f in t and f is said to be left dif-

ferentiable in t. If
d+f(t)

dt
=

d−f(t)

dt
=

d f(t)

dt
,

d f(t)

dt
is called the derivative

of f in t and f is said to be differentiable in t.
A function f ∈ C[0, 1] is said to be nowhere differentiable, if it is not

differentiable in any point x ∈ [0, 1].

In the third chapter I will show that discontinua are the typical ele-
ments of the space of all nonempty compact sets in the plane. Since in this
chapter we will work in R2, the definitions can be restricted to the Euclidean
case.

A set A ⊆R2 is said to be closed if R2 r A is open.
A is said to be bounded if A is contained in some ball of finite radius in R2.
A is said to be compact if A is both closed and bounded.

Denote X2 the space consisting of all nonempty compact sets in R2 and
denote Eε(A)=

⋃
x∈A

B(x, ε) the union of all open ε-balls around points in A.

Now we can define distance in X2 as follows:
A,B ∈X2 then dH(A,B) = inf{ε; Eε(A)⊃B and Eε(B)⊃A}

dH is obviously a metric and it is called the Hausdorff metric. Distance
in the space of all nonempty bounded sets in R2 can also be defined this
way, but it won’t be a metric, because it does not satisfy the condition
dH(x, y) = 0 ⇒ x = y.
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For k∈N and {A1, . . . , Ak} a collection of open subsets of R2, put

V (A1, . . . , Ak) =
{

B ∈ X2; such that B ⊆
k⋃

n=1

An and B ∩ An 6= ∅

for ∀n = 1, . . . , k
}

Now put BV =
{
V (A1, . . . , Ak); k ∈ N, Un ⊆ R2 open for ∀n = 1, . . . , k

}
.

BV is obviously base of a topology on X2. This topology is called the Vie-
toris topology.

The Vietoris topology and the topology induced by the Hausdorff metric
coincide on any space of compact subsets of R2. The proof of this is in the
third chapter, in statement 5.

A metric space D is said to be perfect, if D contains no isolated points.
A metric space D is totally disconnected, if any connected subset of D con-
tains only one point.
A totally disconnected, perfect compact metric space is called a disconti-
nuum.
Therefore in R2 a discontinuum is a compact set D ∈ X2, such that D con-
tains no isolated points and any connected subset of D is a singleton.

In the fourth chapter I will show that indecomposable continua are typ-
ical in the space of all continua in plane. In this chapter we will work in
R2, so the definitions restricted to the Euclidean case will be sufficient again.

A metric space P is said to be connected if for ∀ B, C ⊆ P , where B, C
are open, B ∩ C = ∅ and B ∪ C =P , either B = P and C = ∅ , or C = P
and B = ∅ . We can easily see that if the sets B,C are closed, we get an
equvalent definition.
A set A ⊆ R2 is said to be connected if it is a connected metric space as a
subspace of R2 .
A set ∅ 6= A ⊂ R2 is called a continuum if A is both compact and connected.
Since A is compact, it is also closed in R2 and hence any set B ⊆ A, closed
in A is closed in R2, too. Therefore we can define a continuum in R2 equiv-
alently, as a set A⊂R2, which is compact and for ∀B, C ⊂R2, where B, C
are closed, B∩C = ∅ and B∪C =A, either B =A and C = ∅, or C =A and
B= ∅.
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Furthermore, it is obvious that a compact set A ⊂ R2 is a continuum if
and only if for ∀U, V ⊆R2, where U, V are open, such that U ∩ V = ∅ and
U ∪V ⊃A , either U ∩A = ∅ and V ∩A = A , or U ∩A = A and V ∩A = ∅ .

Denote C the set of all continua in R2. Endowed with the Hausdorff
metric, restricted to C, C is a metric space.

A continuum K ⊂ R2 is said to be indecomposable if for ∀ C1, C2 ⊆ K,
where C1, C2 are continua in R2, such that K = C1 ∪ C2, at least one of
C1, C2 is equal to K.

For two topological spaces X,Y , a mapping f : X → Y is said to
be continuous, if the inverse image of any open set in Y is open in X.
Having a continuous mapping f : [0, 1] → X, the set U = f([0, 1]) is called
a path in X. If f(0)=x ∈ X and f(1)=y ∈ X, then U is the path, joining
x and y.

1.2 Baire Theorem

Theorem (Baire). Let X be a complete metric space and {An ⊆X}n∈N a
collection of sets that are open and dense in X. Then

⋂
n∈N

An is dense in X.

Proof. Let G1 be any nonempty and open subset of X. G1∩A1 6= ∅, because
A1 is dense. Therefore there exists x1 ∈ G1 ∩A1. Moreover, G1 ∩A1 is open,
because it is the intersection of two open sets. Therefore there exists a real
number ε1 ∈ (0, 1

22 ) such that both the open ball G2 = {x ∈X; d(x1, x) < ε1}
and the closed ball G2 = {x ∈X; d(x1, x) ≤ ε1} lie in G1 ∩A1 .

G2 is a nonempty and open subset of X and hence we can repeat the
construction using the sets G2 and A2 . This way we obtain the point x2,
the real number ε2 ∈ (0, 1

23 ) and the set G3 . Recursively we will obtain the
following sequences:

the sequence {xn}n∈N of elements of X
the sequence {εn}n∈N of real numbers, such that for ∀n ∈ N, εn∈(0, 1

2n+1 )

and the sequence {Gn}n∈N of open subsets of X, such that Gn+1 ⊆ Gn

We can easily see that
⋂

n∈N
Gn ⊆

⋂
n∈N

Gn ⊆
⋂

n∈N
An ∩G1 .
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Now for ∀ε > 0 we can find n0 ∈ N, such that
1

2n0
< ε. Then for

∀n≥ n0, n ∈ N, the point xn lies in Gn ⊆ Gn0 . Therefore for ∀m,n≥ n0,
m, n ∈ N,

d(xn, xm) < diam(Gn0) = 2 εn0 < 2
1

2n0+1
=

1

2n0
< ε

Which means that the sequence {xn} is Cauchy and because X is complete,
it converges to a limit x ∈X.
From the construction above we have that for ∀n ∈ N, {xm}m>n ⊆ Gn ⊆ Gn ,
which is closed. Hence

⋂
n∈N

Gn is also closed and x ∈ ⋂
n∈N

Gn ⊆
⋂

n∈N
An ∩ G1 ,

which means that
⋂

n∈N
An ∩G1 6= ∅ and hence

⋂
n∈N

An is dense in X.

Now let (X, d) be a metric space and (Y, τ) a topological space, which
is homeomorphic to the space (X, τd) with topology induced by d and let
{An ⊆Y }n∈N be a collection of sets that are open and dense in (Y, τ). We
now have {f−1(An) ⊆X}n∈N , a collection of sets that are open and dense in
(X, τd), which is complete and hence open and complete in (X, d). Therefore⋂
n∈N

f−1(An) = f−1(
⋂

n∈N
An) is dense in (X, d) and thus in (X, τd) and therefore

⋂
n∈N

An is dense in (Y, τ). Obviously, the completness of the space X in the

Baire theorem is a needlessly strong condition and we can use a stronger
version of the theorem, which is borrowed from [4].

Theorem (Baire). Let X be a topological space, which is homeomorphic to
some complete metric space and {An ⊆X}n∈N a collection of sets that are
open and dense in X. Then

⋂
n∈N

An is dense in X.
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Chapter 2

Nowhere differentiable
functions in C([0, 1])

Until the early 19th century the general belief among mathematicians was
that any continuous function is differentiable except maybe at a few isolated
points. In 1806 André-Marie Ampère even tried to prove this hypothesis.
However, on July, 1872 an example of a continuous, nowhere differentiable
function on an interval was presented by the German mathematician Karl
Theodor Wilhelm Weierstrass (1815-1897) in a lecture at the Royal Academy
of Science in Berlin. This function was defined by the formula

W (x) =
∞∑

k=0

akcos(bkπx)

where a ∈ (0, 1), b is an odd integer and ab > 1 + 3π
2

. This function was
first published in 1875, which made it the first example of a continuous,
nowhere differentiable function to be published. Still, it was not the first such
construction. The earliest such function is due to the Czech mathematician
Bernard Bolzano (1781-1848), who constructed it around 1830, yet was not
published until 1922. Unlike many other constructions, Bolzano function
is constructed as the limit of a sequence of continuous functions defined as
follows.

1) Let [a0, b0] be the desired domain and A0, B0 two real numbers.

Then f0(x) = A0 +
B0 − A0

b0 − a0

(x− a0)

2) Let {[ai, bi]}2n

i=1 be the maximum intervals, where the function fn−1

is linear and {Ai, Bi}2n

i=1 real numbers, such that Ai = fn−1(ai) and
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Bi = fn−1(bi).
Now Bn(x) is defined as a piecewise linear function, which is linear
on the intervals[
ai, ai +

3

8
(bi − ai)

] [
ai +

3

8
(bi − ai),

1

2
(bi + ai)

]

[
1

2
(bi + ai), ai +

7

8
(bi − ai)

] [
7

8
(bi − ai), bi

]

with following values at the endpoints

fn(ai) = Ai , fn(ai +
3

8
(bi − ai)) = Ai +

5

8
(Bi − Ai),

fn(
1

2
(bi + ai)) = Ai +

1

2
(Bi − Ai),

fn(
7

8
(bi − ai)) = Bi +

1

8
(Bi − Ai), fn(bi) = Bi

Then Bolzano function is defined B = lim
n∈N

fn .

Another example of a continuous nowhere differentiable function was

Figure 2.1: Weierstrass function with the parameter values a = 1/2, b = 5

given by the Swiss mathematician Charles Cellérier (1818-1889) around
1860, but was first published in 1890. This function is very similar to the
example given by Weierstrass and it is defined by the formula

C(x) =
∞∑

k=0

1

ak
sin(akx)
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where a is a sufficiently large (a > 1000) even number.
Many other examples were given later. In this chapter I will show that

nowhere differentiable functions are typical elements of C([0, 1]).
In order to be able to use the Baire theorem, we need the following

statement.

Statement 1. C([0, 1]) is a complete metric space.

Proof. Let {fn ∈ C([0, 1])}n∈N be a Cauchy sequence of functions in C([0, 1]),
which means that for ∀ε > 0, there ∃n0 ∈ N such that for ∀m,n ∈ N and
m, n≥n0 , ε > d(fm, fn) = sup

x∈[0,1]

|fm(x)− fn(x)| ≥ |fm(x)− fn(x)| for every

x ∈ [0, 1].
So now we have sequences {fn(x)}n∈N of real numbers that are Cauchy and
because R is a complete metric space, each of them converges to a limit
lim

n→∞
fn(x) ∈ R . We can define a function f : [0, 1] → R pointwise as

f(x) = lim
n→∞

fn(x).

Since {fn}n∈N is a Cauchy sequence, for ∀ε > 0 there exists n0 ∈ N, such

that for ∀m,n ≥ n0 and for ∀x ∈ [0, 1], |fn(x)− fm(x)| <
ε

2
. Since

f(x) = lim
n→∞

fn(x) , for ∀n ≥ n0 , |fn(x)− f(x)| ≤ ε

2
< ε. Because this was

true for ∀x ∈ [0, 1], we get that sup
x∈[0,1]

|fn(x)− f(x)| = d(fn, f) < ε for every

n ≥ n0 . And thus the function f is the limit of the sequence {fn}n∈N .
Now we just need to show that f ∈ C([0, 1]). Let ε be any positive real
number. Now because the function f is the limit of the sequence {fn}n∈N ,

there exists an n ∈ N, such that d(fn, f) <
ε

3
, which means that for every

x ∈ [0, 1] |fn(x)− f(x)| <
ε

3
. Furthermore, since fn is continuous, there

is a real number δ > 0, such that for ∀y ∈ [0, 1] | x− y| < δ implies

|fn(x)− fn(y)| < ε

3
.

Now using triangle inequality we get

|f(x)− f(y)| = |f(x)− f(y)− (fn(x)− fn(y)) + fn(x)− fn(y)| ≤
≤ |f(x)− fn(x)|+ |f(y)− fn(y)|+ |fn(x)− fn(y)| <
<

ε

3
+

ε

3
+

ε

3
= ε

For any real number ε > 0 we have found δ > 0 such that for ∀y ∈ [0, 1] ,
|x− y| < δ implies |f(x)− f(y)| < ε , which means that the function f is
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continuous and thus f ∈ C([0, 1]).
We found a limit for any Cauchy sequence in C([0, 1]) and thus proved that
C([0, 1]) is a complete metric space.

Now denote A the set of all nowhere differentiable functions in C([0, 1]).
In order to show that it is the set of typical elements of C([0, 1]), I will need
following statements.

Statement 2. The set B ⊂ C([0, 1]) of all functions from C([0, 1]) for which

lim
h→0+

∣∣∣f(t+h)−f(t)
h

∣∣∣ = ∞ at each point t ∈ [0, 1) is dense in C([0, 1]).

Proof. For each n ∈ N denote

Bn =
{

f ∈ C([0, 1]);∀t∈ [0, 1− 1
n
],∀α∈ (0, 1− t],∃h∈(0, α],

∣∣∣f(t+h)−f(t)
h

∣∣∣>n
}

.

We can easily see that B =
⋂

n∈N
Bn .

Now for ∀f ∈ Bn, ∀t ∈ [0, 1− 1
n
] and for ∀α ∈ (0, 1 − t], there ∃h ∈ (0, α],

such that we have
∣∣∣f(t+h)−f(t)

h

∣∣∣ > n . Because h > 0, |f(t + h)− f(t)| > h.n ,

which means that there exists a real number ε > 0, such that
|f(t + h)− f(t)| > h.n + ε > h.n .
Now let Gε,f be the open ball

{
g ∈ C([0, 1]); d(f, g) < ε

2

}
. For ∀g ∈ Gε,f we

have

ε

2
> d(f, g) = sup

x∈[0,1]

|f(x)− g(x)| ≥ |f(x)− g(x)| for ∀x ∈ [0, 1].

Since for ∀n ∈ N is t ∈ [0, 1] and t+h ∈ [0, 1], |f(t+h)− g(t+h)| < ε

2
and

|f(t)− g(t)| < ε

2
.

Now, using the triangle inequality we get the following

|g(t+h)− g(t)| = |g(t+h)− g(t)− (f(t+h)− f(t)) + f(t+h)− f(t)| ≥
≥ |f(t+h)− f(t)| − |f(t+h)− g(t+h)| − |f(t)− g(t)| >
> hn + ε − ε

2
− ε

2
= hn

and hence for every t ∈ [0, 1− 1
n
] and for every α ∈ (0, 1 − t] we have

found an h ∈ (0, α], such that

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ > n . Since this is true for

∀g ∈ Gε,f , Gε,f ⊆ Bn for ∀f ∈ C([0, 1]) and thus Bn is open for ∀n ∈ N.
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Now we just need to prove that each Bn is dense. Suppose that Bn is
not dense. Then there will exist an open set F ⊆ C([0, 1])rBn . Because the
set of all polynomials from [0, 1] to R is dense in C([0, 1]), there has to exist a
polynomial p ∈F and since F is open, there also has to exists a real number
ε > 0, such that the open ball Fε,p = {f ∈ C([0, 1]); d(f, p) < ε} ⊆ F . Now
we take a function g ∈ C([0, 1]), satisfying following conditions

sup
x∈[0,1]

| g(x)| < ε

for ∀t ∈ [0, 1), ∃ lim
h→0+

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ 6= ∞

for ∀t ∈ [0, 1),∃α ∈ (0, 1− t],∀h ∈ (0, α],∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ > lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ + n

An example of such function g is a piecewise linear function constructed
using the folowing construction.

Since p is a polynomial, there is a real nubber m, such that

lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ < m

.
Then define g : [0, 1] → R

for t ∈
[

2kε

m + n
,
ε + 2kε

m + n

]
, g(t) = (m + n)

(
t− 2kε

m + n

)
− ε

2

for t ∈
[
ε + 2kε

m + n
,
2ε + 2kε

m + n

]
, g(t) = −(m + n)

(
t− 2ε + 2kε

m + n

)
− ε

2

for k ∈ N. g is linear in each interval

[
2kε

m + n
,
ε+2kε

m + n

]
and

[
ε+2kε

m + n
,
2ε+2kε

m + n

]
.

g

(
2kε

m + n

)
= (m + n)

(
2kε

m + n
− 2kε

m + n

)
− ε

2
= −ε

2
=

= −(m + n)

(
2kε

m + n
− 2ε + 2(k − 1)ε

m + n

)
− ε

2
= g

(
2kε

m + n

)

g

(
ε + 2kε

m + n

)
= (m + n)

(
ε + 2kε

m + n
− 2kε

m + n

)
− ε

2
=

ε

2
=

= −(m + n)

(
ε + 2kε

m + n
− 2ε + 2kε

m + n

)
− ε

2
= g

(
ε + 2kε

m + n

)
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Hence g ∈ C([0, 1]). Moreover, g(t) ∈ [−ε

2
,
ε

2
] and so sup

x∈[0,1]

| g(x)| =
ε

2
< ε.

lim
h→0+

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ = m + n > lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ + n for all t ∈ [0, 1),

hence g constructed like this satisfies the conditions.
Now we put f = g + p .

d(f, p) = sup
x∈[0,1]

|f(x)− p(x)| = sup
x∈[0,1]

| g(x) + p(x)− p(x)| = sup
x∈[0,1]

| g(x)| < ε

Hence f ∈ Fε,p ⊆ F .

But we also have

lim
h→0+

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ = lim
h→0+

∣∣∣∣
(g+p)(t+h)− (g+p)(t)

h

∣∣∣∣ =

= lim
h→0+

∣∣∣∣
g(t+h) + p(t+h)− g(t)− p(t)

h

∣∣∣∣ ≥

≥ lim
h→0+

(∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣−
∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣
)

=

= lim
h→0+

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣− lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ ≥

≥ lim
h→0+

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣− lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ >

> lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ + n− lim
h→0+

∣∣∣∣
p(t+h)− p(t)

h

∣∣∣∣ = n

We have lim
h→0+

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n, which means that there exists a real

number ε > 0, such that lim
h→0+

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n+ε > n. There also exists

δ > 0, such that for ∀h ∈ (0, δ),

∣∣∣∣ lim
h→0+

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣−
∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣
∣∣∣∣< ε,

thus

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n for ∀h ∈ (0, δ), which means that f ∈ Bn .

We have found a function f ∈ F ∩ Bn which was supposed to be empty,
which is a contradiction and each Bn has to be dense.
Now we can use Baire theorem and thus B =

⋂
n∈N

Bn is dense in C([0, 1]).
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Statement 2., together with some parts of the proof was borrowed from [5].
All the functions in B are obviously nowhere differentiable, so B ⊆ A.

Since B is dense, A is also dense. Now we just need to prove that A is Gδ.

Statement 3. A is Gδ .

Proof. For ∀n ∈ N denote

An =

{
f ∈ C([0, 1]); ∀t ∈ [

1
n
, 1− 1

n

]
,∀α ∈ (0, 1− t],∀β ∈ (0, t]

∃h ∈ (0, α],

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n

or ∃h ∈ [−β, 0),

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n

or ∃h1(0, α] and h2 ∈ [−β, 0),∣∣∣∣
f(t+h1)− f(t)

h1

− f(t+h2)− f(t)

h2

∣∣∣∣ >
1

n

}

A1
n =

{
f ∈ C([0, 1]); ∀t ∈ [

1
n
, 1− 1

n

]
,∀α ∈ (0, 1− t]

∃h ∈ (0, α],

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n

}

A2
n =

{
f ∈ C([0, 1]); ∀t ∈ [

1
n
, 1− 1

n

]
,∀β ∈ (0, t]

∃h ∈ [−β, 0),

∣∣∣∣
f(t+h)− f(t)

h

∣∣∣∣ > n

}

A3
n =

{
f ∈ C([0, 1]); ∀t ∈ [

1
n
, 1− 1

n

]
,∀α ∈ (0, 1− t],∀β ∈ (0, t]

∃h1(0, α] and h2 ∈ [−β, 0),∣∣∣∣
f(t+h1)− f(t)

h1

− f(t+h2)− f(t)

h2

∣∣∣∣ >
1

n

}

We can easily see that A =
⋂

n∈N
An and An = A1

n ∪ A2
n ∪ A3

n for ∀n ∈ N.

Let f be any function in A1
n . Then for ∀t ∈ [

1
n
, 1− 1

n

]
and ∀α ∈ (0, 1 − t]

there is h ∈ (0, α], such that |f(t+h)− f(t)| > hn . Hence there exists a
real number ε > 0, such that |f(t+h)− f(t)| > hn + ε > hn . Now let Gε,f
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be the open ball {g ∈ C([0, 1]); d(f, g) < ε
2
}. For ∀g ∈ Gε,f we have

ε

2
> d(f, g) = sup

x∈[0,1]

|f(x)− g(x)| ≥ |f(x)− g(x)| for ∀x ∈ [0, 1].

Since for ∀n ∈ N is t ∈ [0, 1] and t+h ∈ [0, 1], |f(t+h)− g(t+h)| < ε

2
and

|f(t)− g(t)| < ε

2
.

Now, using the triangle inequality we get the following

|g(t+h)− g(t)| = |g(t+h)− g(t)− (f(t+h)− f(t)) + f(t+h)− f(t)| ≥
≥ |f(t+h)− f(t)| − |f(t+h)− g(t+h)| − |f(t)− g(t)| >
> hn + ε − ε

2
− ε

2
= hn

and hence for every t ∈ [ 1
n
], 1− 1

n
] and for every α ∈ (0, 1 − t] we have

found an h ∈ (0, α], such that

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ > n . Since this is true for

∀g ∈ Gε,f , Gε,f ⊆ A1
n for ∀f ∈ C([0, 1]) and thus A1

n is open for ∀n ∈ N.

Now let f ba any function in A2
n . For ∀t ∈ [

1
n
, 1− 1

n

]
and for ∀β ∈ (0, t]

there is h ∈ [−β, 0), such that |f(t+h)− f(t)| > |h|n . And again, there is
a real number ε > 0, such that |f(t+h)− f(t)| > |h|n + ε > |h|n . Now for
∀g ∈ Gε,f we have

ε

2
> d(f, g) = sup

x∈[0,1]

|f(x)− g(x)| ≥ |f(x)− g(x)| for ∀x ∈ [0, 1].

Since for ∀n ∈ N is t ∈ [0, 1] and t+h ∈ [0, 1], |f(t+h)− g(t+h)| < ε

2
and

|f(t)− g(t)| < ε

2
.

Now again, using the triangle inequality we get

|g(t+h)− g(t)| = |g(t+h)− g(t)− (f(t+h)− f(t)) + f(t+h)− f(t)| ≥
≥ |f(t+h)− f(t)| − |f(t+h)− g(t+h)| − |f(t)− g(t)| >
> |h|n + ε − ε

2
− ε

2
= |h|n

For every t ∈ [ 1
n
], 1−1

n
] and for every β ∈ (0, t] we have found an h ∈ [−β, 0),

such that

∣∣∣∣
g(t+h)− g(t)

h

∣∣∣∣ > n . Since this is true for ∀g ∈ Gε,f , Gε,f ⊆ A2
n
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for ∀f ∈ C([0, 1]) and thus A2
n is open for ∀n ∈ N.

And similarly for A3
n . Let f ba any function in A3

n . For ∀t ∈ [
1
n
, 1− 1

n

]
and

for ∀α ∈ (0, 1− t] and ∀β ∈ (0, t] there are h1 ∈ (0, α] and h2 ∈ [−β, 0), such
that |h2f(t+h1)− h2f(t)− h1f(t+h2) + h1f(t)| > |h1h2|n . And again,
there is a real number ε > 0, such that
|h2f(t+h1)− h2f(t)− h1f(t+h2) + h1f(t)| > |h1h2|n + ε > |h1h2|n . Now
let Fε,f be the open ball {g ∈ C([0, 1]); d(f, g) < ε

4
}. For ∀g ∈ Fε,f we have

ε

2
> d(f, g) = sup

x∈[0,1]

|f(x)− g(x)| ≥ |f(x)− g(x)| for ∀x ∈ [0, 1].

For ∀n ∈ N is t ∈ [0, 1], t+h1 ∈ [0, 1] and t+h2 ∈ [0, 1], thus

|f(t+h1)− g(t+h1)| < ε

2
, |f(t+h2)− g(t+h2)| < ε

2
and |f(t)− g(t)| < ε

2
.

And again, using the triangle inequality we get

|h2g(t+h1)− h2g(t)− h1g(t+h2) + h1g(t)| =
= |h2g(t+h1)− h2g(t)− h1g(t+h2) + h1g(t)−
− (

h2f(t+h1)− h2f(t)− h1f(t+h2) + h1f(t)
)
+

+ h2f(t+h1)− h2f(t)− h1f(t+h2) + h1f(t)| ≥
≥|h2f(t+h1)−h2f(t)−h1f(t+h2)+h1f(t)|−|h2| |f(t+h1)−g(t+h1)|−
− |h2| |f(t)−g(t)| − |h1| |f(t+h2)−g(t+h2)| − |h1| |f(t)−g(t)| >

> |h1h2|n + ε − ε

4
− ε

4
− ε

4
− ε

4
= |h1h2|n

For every t ∈ [ 1
n
], 1− 1

n
] and for every α ∈ (0, 1 − t] and β ∈ (0, t] we have

found h1 ∈ (0, α] and h2 ∈ [−β, 0), such that
|h2g(t+h1)− h2g(t)− h1g(t+h2) + h1g(t)| > |h1h2|n . Since this is true for
∀g ∈ Fε,f , Fε,f ⊆ A3

n for ∀f ∈ C([0, 1]) and thus A3
n is open for ∀n ∈ N.

An = A1
n∪A2

n∪A3
n is the union of three open sets and hence open. A =

⋂
n∈N

An

is Gδ .

The set A of all nowhere differentiable functions in C([0, 1]) is the set of
typical elements of C([0, 1]).
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Chapter 3

Discontinua in the space of
nonempty compact sets in R2

The first known example of a discontinuum was discovered in 1875 by
a British mathematician Henry John Stephen Smith (1826-1883) and intro-
duced in 1883 by a German mathematician Georg Ferdinand Ludwig Phillip
Cantor (1845-1918). It is known as the Cantor ternary, the Cantor set or the
Cantor discontinuum. There are more ways how to describe this set. We can
get it from the closed unit interval [0, 1], using the following constuction: in
the first step we delete the open interval (1

3
, 2

3
), in the second step we delete

the open intervals (1
9
, 2

9
) and (7

9
, 8

9
) and so on, in each step deleting the open

middle thirds of all line segments that are left. The points left after this
process form the Cantor set.

Another way how to describe this set is through considering the points

0 1
1

3

2

3

Figure 3.1: First few steps of the construction of the Cantor ternary set

in the interval [0, 1] in the ternary notation. The number 1
3

can be writen
as 0,13 = 0,222 . . .3 and 2

3
can be writen as 0,1222 . . .3 = 1,23 . Since in

the first step of the construcion all the points between these two numbers
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are removed, all the remaining numbers can be written in the ternary no-
tation with 0 or 2 on the first decimal place. Number 1

9
can be writen as

0,013 = 0,00222 . . .3 and 2
9

as 0,01222 . . .3 = 1,023 . Therefore after the first
step, where the intervals (1

9
, 2

9
) and (2

3
+ 1

9
, 2

3
+ 2

9
) are removed, all the remain-

ing numbers can be writen with 0’s and 2’s on the first two decimal places.
The Cantor ternary set is hence the set of all numbers in [0, 1] that can be
writen in ternary notation with only 0’s and 2’s on their decimal places.
And yet another way how to describe the Cantor set is as a space that is
homeomorphic to {0, 1}ω, which is obvious from the ternary notation.

Another example of a discontinuum is called the Smith-Volterra-Cantor
set or the fat Cantor set. It is constructed similarly to the Cantor ternary
set, but instead of deleting the middle thirds of intervals, we delete the open
middle quarters. This gives a space that is homeomorphic to the Cantor set,

0 1
3

8

5

8

Figure 3.2: First few steps of the construction of the Smith-Volterra-Cantor set

but, unlike the Cantor ternary set, which has the Lebesque measure zero,
the fat Cantor set has the Lebesque measure 1

2
.

In 1970 Stephen Willard proved that any two totally disconnected, per-
fect compact metric spaces are homeomorphic [2, p. 216-217] and thus, since
the Cantor set is a totally disconnected, perfect compact metric space, that
it is the only such space up to a homeomorphism. Which gives an alternative
definition of a discontinuum as a topological space, which is homeomorphic
to the Cantor set. One might think that there can’t be many sets homeomor-
phic to such a bizarre space, but opposite is the truth. In fact, discontinua
form a set of typical elements of X2, as I will show in this chapter.

In order to be able to use the Baire theorem and to define the set of
typical elements, we need to prove the following statements.

Statement 4. The space X2, with the Hausdorff metric, is complete.

Proof. Let {An; An∈X2}n∈N be a Cauchy sequence in X2 and let B be the
set of all Cauchy sequences {an; an ∈ An}n∈N . Since R2 is complete, all the
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sequences in B have limits in R2. Therefore we can define setA=
{
a=lim

n∈N
an;

{an}n∈N ∈B
}
.

Now we will show that the closure A is the limit of the sequence {An}n∈N.
Since {An}n∈N is Cauchy, for ∀ε > 0 we have n0 ∈ N such that for ∀m,n ≥ n0

the distance d(Am, An) < ε . Since d is symmetric, we can put m ≤ n .
Hence Eε(Am) ⊇ An for ∀n ≥ m ≥ n0 , thus for every Cauchy sequence
{an; an ∈ An}n∈N its elements an are in Eε(Am) for ∀n ≥ m and so the
limit lim

n∈N
an ∈ Eε(Am). Since this is true for every {an}n∈N ∈ B, we get

A ⊆ Eε(Am) ⊂ E2ε(Am) for ∀m ≥ n0 .
In order to prove that E2ε(A) ⊇ Am for ∀m ≥ n0 for some n0 ∈ N ,

we need to find a sequence {an; an ∈ An}n∈N for each x ∈ Am, such that∣∣∣x− lim
n∈N

an

∣∣∣ < 2ε . First we will pick a strictly increasing sequence of integers

{mk}k∈N , such that for ∀m, n ≥ mk the distance d(Am, An) < ε
2k . Such

sequence can be found, since {An}n∈N is a Cauchy sequence.
Now we put n0 = m1 and for an arbitrary m ≥ m1 and x ∈ Am we put
am = x and pick am2 ∈ Am2 , such that |x − am2| < ε

2
. Such am2 can

be found, because m2,m ≥ m1 and thus d(Am, Am2) < ε
2

follows from the
definition of the sequence {mk}k∈N , hence E ε

2
(Am2) ⊇ Am and so there is

a point am2 ∈ Am2 , such that |x− am2| < ε
2
. All the other elements an for

n < m2 can be picked arbitrary.
We define the rest of the sequence using the induction. Let’s assume that
we already have all am for m ≤ mk . Having an integer mk ≤ n ≤ mk+1 ,
we know that d(An, Amk

) < ε
2k from the definition of the sequence {mk}k∈N

and so E ε
2k

(An) ⊇ Amk
and so we can find a point an ∈ An , such that

|amk
− an| < ε

2k .
We can easily see that for ∀m,n∈N, such that mk≤m,n≤mk+1 the distance
|am−an| = |am−amk

+amk
−an| ≤ |am−amk

|+ |amk
−an| < ε

2k + ε
2k = ε

2k−1

for k≥2, which implies that |amk
−amk+1

|< ε
2k−1 . Furthermore, for ∀n≥m≥mk

we can find a mj ∈ N , such that mj ≤ n ≤ mj+1 and thus we get the
following

|am − an| =
∣∣am − amk

+ amk
− amk+1

+ · · ·+ amj−1
− amj

+ amj
− an

∣∣ ≤
≤ |amk

− am|+
∣∣amk

− amk+1

∣∣ + · · ·+
∣∣amj−1

− amj

∣∣ +
∣∣amj

− an

∣∣ <

<
ε

2k
+

j∑

i=k

ε

2i
<

ε

2k−2
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Therefore {an}n∈N is a Cauchy sequence of points in R2 and hence converges
to a limit a = lim

n∈N
an and so we can find m ∈ N , such that for ∀n ≥ m ,

|an − a| < ε
2
. We take i ≥ 2 , such that mi ≥ m . Now we get the following

inequality

|x− a| =
∣∣x− am2 + am2 − am3 + · · ·+ ami−1

− ami
+ ami

− a
∣∣ ≤

≤ |x− am2|+ |am2− am3|+ · · ·+
∣∣ami−1

− ami

∣∣ + |ami
− a| <

<
ε

2
+

i−1∑

k=2

ε

2k−1
+

ε

2
< 2 ε

For n0 =m1 and for each x∈Am we have found a sequence {an; an ∈ An}n∈N ,

such that
∣∣∣x− lim

n∈N
an

∣∣∣ < 2ε and thus for ∀m ≥ n0 , E2ε(A) ⊇ Am .

Hence for a sufficiently large n0 ∈ N and for ∀m ≥ n0 , d(A,Am) < 2ε .
We can easiy see that d(A, A) < δ for ∀δ > 0 and so for ∀m ≥ n0 we
get d(Am, A) ≤ d(Am, A) + d(A, A) < 3ε . Since ε was an arbitrary positive
real number, we can put A = lim

n∈N
An . It is obviously closed and because

E3ε(Am) ⊇ A for some m ∈ N , it is also bounded and hence A ∈ X2. For
an arbitrary Cauchy sequence in X2 we have found its limit in X2 and hence
proven that the space X2 of all nonempty compact sets in R2, endowed with
the Hausdorff metric, is complete.

Statement 5. Let X be any space of compact subsets of R2, endowed with
the Hausdorff metric. Then the Vietoris topology τV and the topology τH

induced by the Hausdorff metric dH coincide on X.

Proof. BH =
{

B(A, ε) = {B ∈ X; Eε(A)⊇B & Eε(B)⊇A}; A ∈X, ε > 0
}

and BV =
{

V(A1, . . . , Ak)={B∈X;
k⋃

n=1

An⊇B & B∩An 6=∅ for ∀n=1, . . . , k};

k ∈N, An ⊆ R2 open in R2
}

are the bases of topologies τH and τV , respec-

tively.
If for ∀B ∈ X2 and for ∀B(A, ε) ∈ BH , such that B ∈ B(A, ε), we could
find V (A1, . . . , Ak) ∈ BV , such that B ∈ V (A1, . . . , Ak) ⊆ B(A, ε) and for
∀B ∈ X2 and for ∀V(A1, . . . , Ak) ∈ BV , such that B ∈ V (A1, . . . , Ak), we
could find B(A, ε) ∈ BH , such that B ∈ B(A, ε) ⊆ V (A1, . . . , Ak), the two
topologies would coincide.
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Let B ∈ X be an arbitrary set and B(A, ε) ∈ BH any open ball, such
that B ∈ B(A, ε). Now put A1 = Eε(A) and pick An ⊆ R2 for n = 2, . . . , k
such that

for ∀n=2, . . . , k, ∃ an ∈ R2, such that An = B(an,
ε
2
)

for ∀n=2, . . . , k, An ∩ A 6= ∅
for ∀n=2, . . . , k, An ∩B 6= ∅

k⋃
n=2

⊇ A

Such sets can be found, because B ∈ B(A, ε), hence A ⊆ Eε(B) and there-
fore for ∀ a ∈ A, there ∃ b ∈ B, such that | a− b| < ε and so there ∃x ∈ R2,
such that | a − x| < ε

2
> |x − b|. Therefore we can find a cover of A with

ε
2
-balls, which are intersecting B. Since A is bounded, An can be picked in

such a way that k is finite. Furthermore, An⊆Eε(A) for n=2, . . . , k, thus
k⋃

n=1

An = Eε(A).

Since B ∈ B(A, ε), it must be B ⊆ Eε(A) =
k⋃

n=1

An = A1 . The sets An

for n = 2, . . . , k were picked in such a way that An ∩ B 6= ∅, so we get
B ∈ V (A1, . . . , Ak).
Having C ∈ V (A1, . . . , Ak), we know that C ⊆ A1 = Eε(A). For ∀a ∈ A,
there ∃An, such that a ∈ An and since C ∩ An 6= ∅, there ∃ c ∈ C ∩ An.
Therefore | a− c| < ε

2
+ ε

2
= ε, hence A ⊆ Eε(C), which means that the set

C ∈ B(A, ε) and V (A1, . . . , Ak) ⊆ B(A, ε).
Let B ∈ X be an arbitrary set and V (A1, . . . , Ak) ∈ BV any set, such

that B ∈ V (A1, . . . , Ak). Pick ε > 0, such that

for ∀n = 1, . . . , k, there ∃an ∈ An ∩B, such that B(an, 2ε) ⊆ An

Eε(B) ⊆
k⋃

n=1

An

Such ε can be found, since An are all open and B ⊆
k⋃

n=1

An is closed and

B⊂R2 is nonempty and bounded, so it cannot be both closed and open. Now

put A = B ∪
k⋃

n=1

B(an,
ε
2
) , where an are the points from the first condition

for ε.
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Obviously, A is closed, bounded and nonempty. Furthermore A ⊆ Eε(B)
and Eε(A) ⊆ A ⊆ B, thus B ∈ B(A, ε).

Having C ∈ B(A, ε), we know C ⊆ Eε(A) = Eε(B)∪
k⋃

n=1

B(an, 3ε
2
) ⊆

k⋃
n=1

An .

Moreover, for ∀n = 1, . . . , k, there ∃ an ∈ A∩An , such that B(an, 2ε) ⊆ An

and since A ⊆ Eε(C), there ∃ c ∈ C, such that | an − c| < ε and hence
c ∈ An . Therefore C ∩ An 6= ∅ for ∀n = 1, . . . , k, which means that
C ∈ V (A1, . . . , Ak) and B(A, ε) ⊆ V (A1, . . . , Ak).

Since this statement was true for any space of compact subsets of R2,
it is true for X2 as well. Now we have everything ready for the following
statement.

Statement 6. Denote A the set of all discontinua in the plane. Then A
is dense and Gδ in the space X2 of all compact sets in the plane with the
Vietoris topology.

Proof. For n∈N put B1
n =

{
B(x, 1

4n
); x ∈ R2

}
and A1

n =
{
{A1, . . . , Ak}⊂B1

n;

such that for ∀Ai , there ∃Aj , such that Ai∩Aj = ∅ and Aj ⊆ E 1
2n

(Ai)
}

and then put A1
n =

⋃
{A1,...,Ak}∈A1

n

V (A1, . . . , Ak) . It is obvious that A1
n is the set

of all X ∈ X2, such that for ∀x ∈ X the point x ∈ E 1
n
(Xr{x}) , because

any set with this property can be covered with a finite number of 1
4n

-balls,
satysfying the condition in A1

n , but if ∃ x ∈ X, such that x /∈ E 1
n
(Xr{x}),

then there has to be a 1
4n

-ball B, such that x ∈ B, hence B ⊆ B(x, 1
2n

)
and E 1

2n
(B) ⊆ B(x, 1

n
), which is disjoint with Xr{x} and so any 1

4n
-ball in

E 1
2n

(B), disjoint with B, is disjoint with X and therefore X /∈ A1
n .

A1
n is obviously open for ∀n∈N . Moreover, having any V (B1, . . . , Bk)∈BV ,

we can pick points xi, yi ∈ Bi , such that |xi − yi| < 1
n

for ∀i = 1, . . . , k,
since Bi are all open. Then we can easily find open 1

4n
-balls B1

i , B
2
i , such

that xi ∈ B1
i , yi ∈ B2

i , B1
i ⊆ E 1

2n
(B2

i ) and B2
i ⊆ E 1

2n
(B1

i ) . Therefore

we get that {B1
1 , B

2
1 , . . . , B

1
k, B

2
k} ∈ A1

n and hence {x1, y1, . . . , xk, yk} lies in
V (B1, . . . , Bk) ∩ A1

n , which is therefore nonempty. Since any set X ∈ τV is
a union of sets from BV , the intersection X ∩A1

n will be nonempty as well,
hence the set A1

n is dense for ∀n ∈ N .
It is obvious that the set A1 =

⋂
n∈N

A1
n is the set of all X ∈ X2, such that X
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contains no isolated point. Since all the A1
n are open and dense in τV , A1 is

Gδ and due to the Baire theorem also dense in τV .

Now for n∈N put B2
n =

{
B(x, 1

n
); x ∈ R2

}
and A2

n =
{
{A1, . . . , Ak} ⊂B2

n;

such that Ai∩Aj = ∅ for any i 6=j
}

and then put A2
n =

⋃
{A1,...,Ak}∈A2

n

V (A1, . . . , Ak) .

A2
n is obviously open for ∀n∈N . Moreover, having any V (B1, . . . , Bk)∈BV ,

we can pick a point xi ∈ Bi for ∀i = 1, . . . , k. We get a finite number of iso-
lated points, therefore we can easily find disjoint open 1

n
-balls B1, . . . , Bm,

such that for ∀i = 1, . . . , k, there ∃j, such that xi∈Bj . {B1, . . . , Bm} ∈ A2
n

and thus {x1, . . . , xk} lies in V (B1, . . . , Bk)∩A2
n , which is hence nonempty.

Since any set X ∈ τV is a union of sets from BV , the intersection X ∩ A2
n

will be nonempty as well, therefore the set A2
n is dense for ∀n ∈ N .

It is obvious that the set A2 =
⋂

n∈N
A2

n is the set of all X ∈ X2, such that any

connected subset of X consists of just one point. Since all the A2
n are open

and dense in τV , A2 is Gδ and due to the Baire theorem also dense in τV .
Since A = A1 ∩ A2 and both A1 and A2 are dense and Gδ in τV , the set A,
consisting of all discontinua in R2 is also dense and Gδ in τV .

Some ideas in this proof are borrowed from [6].
Since the set A of all discontinua in R2 is Gδ and dense in τV , it is also

Gδ and dense in τH and hence in the metric space of all compact subsets
of R2 with the Hausdorff metric, which means that it is the set of typical
elements of X2.
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Chapter 4

Indecomposable continua in
the space of all continua in R2

The first known example of an indecomposable continuum comes from
1910 and is due to the Dutch mathematician Luitzen Egbertus Jan Brouwer
(1881-1966). He constructed it as a counterexample to a claim made in 1904
by A. Schoenflies, who stated that there do not exist three distinct regions in
the plane with a common boundary. Brouwer constructed planar continua
which were the common boundary of three regions and showed that they
are indecomposable.
One of the simplest examples of a planar indecomposable continuum is
called the Knaster’s bucket handle, named after the Polish mathematician
BronisÃlaw Knaster (1893-1990), who discovered it. It is constructed from
a square by an infinite process, repeatedly removing parts of the original
square. Another examples of planar indecomposable continua are the pseu-
doarc, which was discovered by B. Knaster as well and the Lakes of Wada
continuum.

In this chapter I will show that indecomposable continua are the typical
elements of the space C of all planar continua.

In order to be able to use the Baire theorem and to define the set of typ-
ical elements of C, endowed with the Hausdorff metric d, we need to prove
that (C, dH) is a complete metric space. Furthermore, the Vietoris topology
τV coincides with the topology τH, induced by the Hausdorff metric on the
space C, since these two topologies coincide on any space of compact subsets
of R2, as was proved in the previous chapter in the statement 5. and C is a
space of all planar continua, which are nonempty connected compact subsets
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of R2. Therefore we will be able to use the Vietoris topology to prove that
indecomposable continua are typical elements of C. So all we now need is
the following statement.

Figure 4.1: The Knaster’s bucket handle

Statement 7. The space C, consisting of all planar continua, together with
the Hausdorff metric, is complete.

Proof. Let {An; An ∈ C}n∈N be a Cauchy sequence in C. In the previous
chapter, in statement 4., we have already proven that a set A , defined as
the closure of a set A , consisting of the limit points of all Cauchy sequences
{an; an ∈ An}n∈N , is a limit of the sequence {An}n∈N and A is compact. All
we need, to prove the statement, is that if all An are connected, A will be
connected as well.
Let’s assume that all An are connected, while A is not. Then ∃B, C ⊂ R2

closed sets, such that B ∩ C = ∅ , B ∪ C = A and B 6= ∅ 6= C and ∃ ε > 0 ,
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such that Eε(B) ∩ Eε(C) = ∅ , Eε(B) ∪ Eε(C) ⊃ A , Eε(B) ∩ A 6= ∅ and
Eε(C) ∩ A 6= ∅ . Since A is the limit of {An}n∈N , there ∃n0 ∈ N , such
that for ∀m ≥ n0 the set Am ⊂ Eε(A) = Eε(B) ∪ Eε(C) . Since Am is
connected, it must be a subset of either Eε(B) or Eε(C) . Let’s assume that
Am ⊂ Eε(B) and Am ∩ Eε(C) = ∅ . Then Eε(Am) ⊆ Eε

(
Eε(B)

) ⊆ R2rC .

Hence Eε(Am) ∩ C = ∅ and since C ⊂ A , we get that A * Eε(Am) and
therefore d(Am, A) > ε , which is contradiction. Thus A = lim

n∈N
An has to

be connected as well and A ∈ C, hence the space C, consisting of all planar
continua, together with the Hausdorff metric is complete.

Now we have everything we need to formulate the following statement.

Statement 8. Denote A the set of all indecomposable continua in the plane.
Then A is dense and Gδ in the space C of all compact sets in plane with the
Vietoris topology.

Proof. For n ∈ N put B1
n =

{
B(x, ε); x ∈ R2, ε ∈ (0, 1

4n
]
}
. Let’s say that

a finite collection {A1, . . . , Ak} ⊂ B1
n, such that

k⋃
i=1

Ai is connected, has a

property Pn if, having any A1,A2 ⊆ {A1, . . . , Ak}, such that the sets
⋃

A1

and
⋃

A2 are both connected and A1 ∪ A2 = {A1, . . . , Ak}, for ∀Ai ∈ A1,
there ∃Aj ∈ A2, such that Aj ⊆ E 1

2n
(Ai) or for ∀Aj ∈A2, there ∃Ai ∈A1,

such that Ai⊆E 1
2n

(Aj).

Now put A1
n =

{
{A1, . . . , Ak}⊂B1

n; such that {A1, . . . , Ak} has the property

Pn

}
and then put A1

n =
⋃

{A1,...,Ak}∈A1
n

V (A1, . . . , Ak) .

A1
n is obviously open for ∀n∈N . Moreover, having any V (B1, . . . , Bm)∈BV ,

if V (B1, . . . , Bm) is nonempty, then there are open connected sets B′
i⊆Bi for

∀i = 1, . . . , m, such that
m⋃

i=1

B′
i is connected. Pick ai ∈ B′

i for ∀i = 1, . . . ,m,

such that ai 6= aj for i 6= j. Since
m⋃

i=1

B′
i is open and connected, we can find

a path U1 ⊆
m⋃

i=1

B′
i , joining a1 and a2 and

m⋃
i=1

B′
irU1 will still be open and

connected and a2 ∈
m⋃

i=1

B′
irU1. Therefore we can find a path U2 , joining

a2 and a3 . This way we get paths U1, . . . , Um−1 and the path U =
m−1⋃
i=1

Ui ,
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which is joining a1 and am and going through ai for i=2, . . . ,m − 1. This

is closed and hence there ∃ δ ∈ (0, 1
2n

], such that Eδ(U) ⊆
m⋃

i=1

B′
i . If we

B′

1

B′

2

B′

3

B′

4

B′

5

B′

6

Eδ(U)

A1

A2

A3

Ak

U

...

...

now put A1, . . . , Ak in a way shown in the picture above, we can easily see
that V (A1, . . . , Ak) ⊆ V (B1, . . . , Bm)∩A1

n, which is therefore nonempty and
hence A1

n is also dense in the space C.
Now if we have a continuum C ∈ A1

n, then there are open 1
4n

-balls
A1, . . . , Ak, such that C ∈ V (A1, . . . , Ak). Whenever we have two continua
C1, C2 ⊆ C, such that C1 ∪ C2 = C, then there are A1, A2 ⊆ {A1, . . . , Ak},
such that C1 ∈ V (A1) and C2 ∈ V (A2). Moreover A1 ∪A2 = {A1, . . . , Ak},
since C1 ∪ C2 = C and both

⋃
A1 and

⋃
A2 are connected, because C1

and C2 are connected. Therefore, due to the way, in which A1, . . . , Ak were
picked, for ∀Ai ∈ A1, there ∃Aj ∈ A2, such that Aj ⊆ E 1

2n
(Ai) and hence⋃

A1 ⊆ E 1
2n

(
⋃

A2), or for ∀Aj∈A2, there ∃Ai∈A1, such that Ai⊆E 1
2n

(Aj)

and hence
⋃

A2 ⊆ E 1
2n

(
⋃

A1). Since C1 ∩ Ai 6= ∅ for ∀Ai ∈ A1 and all

the Ai ∈ A1 are open 1
4n

-balls, we get that
⋃

A1 ⊆ E 1
2n

(C1). Similarly,⋃
A2 ⊆ E 1

2n
(C2). Therefore we get C1 ⊆

⋃
A1 ⊆ E 1

2n
(
⋃

A2) ⊆ E 1
n
(C2) or

C1⊆
⋃

A1⊆E 1
2n

(
⋃

A2)⊆E 1
n
(C2). Hence for any continuum C ∈ ⋂

n∈N
A1

n, if

we have two continua C1, C2 ⊆ C, such that C1 ∪ C2 = C, then C1 ⊆ C2

or C2 ⊆ C1. But since both C1 and C2 are closed, we get that C1 ⊆ C2
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or C2 ⊆ C1 and because C1 ∪ C2 = C, one of them has to be equal to C,
which means that C is indecomposable. Therefore the set

⋂
n∈N

A1
n contains

only indecomposable continua.
On the other hand, if we have an indecomposable continuum C ∈ C and
two continua C1, C2 ⊆ C, such that C1 ∪ C2 = C, then C1 = C or C2 = C,
and hence C2 ⊆ C1 or C1 ⊆ C2 . Now let n ∈ N be an arbitrary integer.

For any {A1, . . . , Ak} ⊆ B1
n, such that C ∈ V (A1, . . . , Ak), the union

k⋃
i=1

Ai

is obviously connected. Moreover, having any A1,A2 ⊆ {A1, . . . , Ak}, such
that the sets

⋃
A1 and

⋃
A2 are both connected and A1∪A2 = {A1, . . . , Ak},

we can easily find continua C1, C2 ⊆ C, such that C1 ∪C2 = C, C1 ∈ V (A1)
and C2 ∈ V (A2). For ∀Ai ∈ A1, there ∃xi ∈ Ai ∩ C1. If C1 ⊆ C2, then
xi ∈ C2 and therefore there ∃Aj ∈ A2, such that xi ∈ Aj ∩C2. Since Ai is a
1
4n

-ball, we get Ai ⊆ E 1
2n

({xi}) ⊆ E 1
2n

(Aj). Similarly, if C2 ⊆ C1, then for

∀Aj ∈ A2, ther ∃Ai ∈ A1, such that Aj ⊆ E 1
2n

(Ai). Therefore the system

{A1, . . . , Ak} has the property Pn and it is in A1
n and thus C ∈ A1

n. Since
n ∈ N was an arbitrary number, the continuum C ∈ ⋂

n∈N
A1

n. This is true

for any indecomposable continuum C ∈ C and therefore all indecomposable
planar continua are in the set

⋂
n∈N

A1
n.

Hence the set A =
⋂

n∈N
A1

n is the set of all indecomposable continua in R2 and

it is Gδ and due to the Baire theorem also dense in the space C, consisting
of all planar continua, endowed with the Vietoris topology.

Some ideas in this proof are borrowed from [7].
Since the set A of all indecomposable continua in R2 is Gδ and dense in

the space of all planar continua with τV , it is also Gδ and dense in C with
τH and hence with the Hausdorff metric, which means that it is the set of
typical elements of C.
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