Stochastické metody v krystalografii
Stochastic Methods in Crystallography
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/124646Identifikátory
SIS: 217469
Katalog UK: 990024256230106986
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Konzultant práce
Seitl, Filip
Oponent práce
Pawlas, Zbyněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
4. 2. 2021
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
rozdělení misorientací|mozaika|markovské Monte Carlo|krystalografieKlíčová slova (anglicky)
misorientation distribution|tessellation|Markov chain Monte Carlo|crystallographyV práci zavedeme mozaiky jako model mikrostruktury zrn v polykrystalickém ma- teriálu. Dále představíme potřebné popisy trojrozměných orientací pro kótování buněk. Představíme potřebnou teorii markovských řetězců abychom mohli používat MCMC algo- ritmy. Hlavním úkolem pak bude simulovat možná rozdělení misorientací mezi sousedními buňkami mozaiky. K tomu zavedeme parametrický stochastický model a ukážeme, že ná- hodný výběr z hledaného rozdělení lze simulovat pomocí MCMC metody. V závěrečné části diskutujeme výsledky simulací v závislosti na parametru a geometrii mozaiky. 1
First we define marked tessellations to use as a model for polycrystalline structure. Then we list the necessary descriptions of orientations to use as marks for the tessellation. We formulate the necessary theory of Markov chains, so that we can use MCMC algo- rithms. The main goal is to simulate possible distributions of misorientations between neighboring cells of a tessellation. For that we formulate a parametric stochastic model and show, that we can simulate from the target distribution using an MCMC method. In the final chapter, we discuss how the results depend on the parameter and geometry of the tessellation. 1
