Towards efficient numerical computation of flows of non-Newtonian fluids
K efektivním numerickým výpočtům proudění nenewtonských tekutin
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/108384Identifiers
Study Information System: 142344
Collections
- Kvalifikační práce [11242]
Author
Advisor
Consultant
Hron, Jaroslav
Souček, Ondřej
Vohralík, Martin
Referee
Herzog, Roland
Süli, Endré
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical and Computer Modelling
Department
Mathematical Institute of Charles University
Date of defense
28. 6. 2019
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
nenewtonské tekutiny, konstitutivní teorie, tekutiny s aktivací, apriorní analýza pro velká data, aposteriorní odhady chyby, předpodmíněníKeywords (English)
non-Newtonian fluids, constitutive theory, fluids with activation, large-data a priori analysis, a posteriori error estimates, preconditioningV první části práce se zabýváme konstitutivní teorií nestlačitelných tekutin charakterizovaných spojitým monotónním vztahem mezi gradientem rychlosti a Cauchyho napětím. Speciální pozornost je věnována třídě aktivovaných tekutin, které se před aktivací chovají jako Eulerovy tekutiny, zatímco po aktivaci je jejich odezva stejná jako odezva Navierovy-Stokesovy tekutiny či tekutiny mocninného typu. Pro tuto třídu tekutin je provedena detailní existenční analýza pro velká data k stacionárním a nestacionárním třídimen- zionálním prouděním vystavených buď okrajové podmínce nulové rychlosti, či řadě podmínek skluzového typu, včetně volného skluzu, Navierova skluzu a kombinovaného přilnutí-skluzu. Druhá část se zabývá lokalizací W−1,q normy za předpokladu, že uvažo- vaný funkcionál se nuluje na fukcích s lokálním nosičem, které tvoří rozklad jednotky. To zvláště dovoluje zajistit lokální aposteriorní efektivitu u par- cialních diferencialních rovnic v divergentním tvaru s residuály ve W−1,q . V třetí části předkládáme novou analýzu tzv. PCD (pressure convection- diffusion) předpodmínění. Nejdříve budujeme novou teorii PCD předpod- mínění jakožto operátoru v nekonečně-dimenzionálních prostorech. Potom poskytujeme metodiku ke konstrukci diskrétních PCD operátorů pro širokou třídu diskretizací tlaku. Hlavní přínos...
In the first part of this thesis we are concerned with the constitutive the- ory for incompressible fluids characterized by a continuous monotone rela- tion between the velocity gradient and the Cauchy stress. We, in particular, investigate a class of activated fluids that behave as the Euler fluid prior activation, and as the Navier-Stokes or power-law fluid once the activation takes place. We develop a large-data existence analysis for both steady and unsteady three-dimensional flows of such fluids subject either to the no-slip boundary condition or to a range of slip-type boundary conditions, including free-slip, Navier's slip, and stick-slip. In the second part we show that the W−1,q norm is localizable provided that the functional in question vanishes on locally supported functions which constitute a partition of unity. This represents a key tool for establishing local a posteriori efficiency for partial differential equations in divergence form with residuals in W−1,q . In the third part we provide a novel analysis for the pressure convection- diffusion (PCD) preconditioner. We first develop a theory for the precon- ditioner considered as an operator in infinite-dimensional spaces. We then provide a methodology for constructing discrete PCD operators for a broad class of pressure discretizations. The...