Regularizační vlastnosti Krylovovských metod
Regularization properties of Krylov subspace methods
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/108033Identifikátory
SIS: 208023
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Kučera, Václav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
21. 6. 2019
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
Krylovův prostor, iterační proces, ill-posed úlohy, regularizaceKlíčová slova (anglicky)
Krylov subspace, iterative process, ill-posed problems, regularizationCílem této práce je studovat a popsat regularizační vlastnosti iteračních Kry- lovovských metod pro řešení lineárních algebraických ill-posed problémů zatí- žených bílým šumem. Nejprve popíšeme vlastnosti těchto problémů, především vysokou citlivost na změny v datech. Ukážeme, že klasické metody pro řešení aproximačních úloh (jako například metoda nejmenších čtverců) zde selhávají. Proto se budeme věnovat objasnění regularizačních vlastností projekcí na Kry- lovovův prostor. Uvedeme základní Krylovovské regularizační metody, konkrétně RRGMRES, CGLS a LSQR, a ilustrujeme jejich chování na modelových příkla- dech z Regularizačního toolboxu v prostředí MATLAB. 1
The aim of this thesis is to study and describe regularizing properties of iterative Krylov subspace methods for finding a solution of linear algebraic ill- posed problems contaminated by white noise. First we explain properties of this kind of problems, especially their sensitivity to small perturbations in data. It is shown that classical methods for solving approximation problems (such as the least squares method) fail here. Thus we turn to explanation of regularizing pro- perties of projections onto Krylov subspaces. Basic Krylov regularizing methods are considered, namely RRGMRES, CGLS, and LSQR. The results are illustrated on model problems from Regularization toolbox in MATLAB. 1
