Show simple item record

Metrické prostory se vzdálenostmi z pologrupy
dc.contributor.advisorHubička, Jan
dc.creatorKonečný, Matěj
dc.date.accessioned2021-03-25T22:07:27Z
dc.date.available2021-03-25T22:07:27Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/107080
dc.description.abstractStrukturální Ramseyova teorie je obor na rozmezí kombinatoriky a teorie modelů s hlubokými souvislostmi s dynamickými systémy. Ramseyovskost většiny známých ramseyovských tříd v konečném binárním symetrickém relačním jazyce se dá dokázat s využitím nějaké varianty tzv. shortest path completion (například Sauerovy S-metrické prostory, Conantovy zobecněné metrické prostory, Braunfel- dovy Λ-ultrametrické prostory či Cherlinovy metricky homogenní grafy). V této práci zkoumáme limity shortest path completion. Nabízíme abstrakci - met- rické prostory se vzdálenostmi z pologrupy - pro všechny zmíněné ramseyovské třídy a studujeme ramseyovské expanze a EPPA (extension property for partial automorphisms) této abstrakce. Na tyto výsledky lze také nahlížet jako na důkaz toho, že samotná otázka, které neúplné struktury mají zúplnění v nějaké amal- gamační třídě, je zajímavá a důležitá. Naše výsledky mají i další aplikace (jako například stationary independence relations). Jako důsledek našich obecných vět znovu dokážeme výsledky Hubičky a Nešetřila o Sauerových S-metrických prostorech, výsledky Hubičky, Nešetřila a autora o Conantových generlizovaných metrických prostorech, Braunfeldovy výsledky o Λ-...cs_CZ
dc.description.abstractThe structural Ramsey theory is a field on the boundary of combinatorics and model theory with deep connections to topological dynamics. Most of the known Ramsey classes in finite binary symmetric relational language can be shown to be Ramsey by utilizing a variant of the shortest path completion (e.g. Sauer's S-metric spaces, Conant's generalised metric spaces, Braunfeld's Λ-ultrametric spaces or Cherlin's metrically homogeneous graphs). In this thesis we explore the limits of the shortest path completion. We offer a unifying framework - semigroup-valued metric spaces - for all the aforementioned Ramsey classes and study their Ramsey expansions and EPPA (the extension property for partial automorphisms). Our results can be seen as evidence for the importance of studying the completion problem for amalgamation classes and have some further applications (such as the stationary independence relation). As a corollary of our general theorems, we reprove results of Hubička and Nešetřil on Sauer's S-metric spaces, results of Hubička, Nešetřil and the author on Conant's generalised metric spaces, Braunfeld's results on Λ-ultrametric spaces and the results of Aranda et al. on Cherlin's primitive 3-constrained metrically homogeneous graphs. We also solve several open problems such as EPPA for Λ-ultrametric...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmetric spaceen_US
dc.subjectsemigroupen_US
dc.subjectRamsey theoryen_US
dc.subjecthomogeneous structureen_US
dc.subjectRamsey expansionen_US
dc.subjectmetrický prostorcs_CZ
dc.subjectpologrupacs_CZ
dc.subjectRamseyova teoriecs_CZ
dc.subjecthomogenní strukturacs_CZ
dc.subjectramseyovská expanzecs_CZ
dc.titleSemigroup-valued metric spacesen_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-11
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId203824
dc.title.translatedMetrické prostory se vzdálenostmi z pologrupycs_CZ
dc.contributor.refereePultr, Aleš
dc.identifier.aleph002282453
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineDiscrete Models and Algorithmsen_US
thesis.degree.disciplineDiskrétní modely a algoritmycs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní modely a algoritmycs_CZ
uk.degree-discipline.enDiscrete Models and Algorithmsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csStrukturální Ramseyova teorie je obor na rozmezí kombinatoriky a teorie modelů s hlubokými souvislostmi s dynamickými systémy. Ramseyovskost většiny známých ramseyovských tříd v konečném binárním symetrickém relačním jazyce se dá dokázat s využitím nějaké varianty tzv. shortest path completion (například Sauerovy S-metrické prostory, Conantovy zobecněné metrické prostory, Braunfel- dovy Λ-ultrametrické prostory či Cherlinovy metricky homogenní grafy). V této práci zkoumáme limity shortest path completion. Nabízíme abstrakci - met- rické prostory se vzdálenostmi z pologrupy - pro všechny zmíněné ramseyovské třídy a studujeme ramseyovské expanze a EPPA (extension property for partial automorphisms) této abstrakce. Na tyto výsledky lze také nahlížet jako na důkaz toho, že samotná otázka, které neúplné struktury mají zúplnění v nějaké amal- gamační třídě, je zajímavá a důležitá. Naše výsledky mají i další aplikace (jako například stationary independence relations). Jako důsledek našich obecných vět znovu dokážeme výsledky Hubičky a Nešetřila o Sauerových S-metrických prostorech, výsledky Hubičky, Nešetřila a autora o Conantových generlizovaných metrických prostorech, Braunfeldovy výsledky o Λ-...cs_CZ
uk.abstract.enThe structural Ramsey theory is a field on the boundary of combinatorics and model theory with deep connections to topological dynamics. Most of the known Ramsey classes in finite binary symmetric relational language can be shown to be Ramsey by utilizing a variant of the shortest path completion (e.g. Sauer's S-metric spaces, Conant's generalised metric spaces, Braunfeld's Λ-ultrametric spaces or Cherlin's metrically homogeneous graphs). In this thesis we explore the limits of the shortest path completion. We offer a unifying framework - semigroup-valued metric spaces - for all the aforementioned Ramsey classes and study their Ramsey expansions and EPPA (the extension property for partial automorphisms). Our results can be seen as evidence for the importance of studying the completion problem for amalgamation classes and have some further applications (such as the stationary independence relation). As a corollary of our general theorems, we reprove results of Hubička and Nešetřil on Sauer's S-metric spaces, results of Hubička, Nešetřil and the author on Conant's generalised metric spaces, Braunfeld's results on Λ-ultrametric spaces and the results of Aranda et al. on Cherlin's primitive 3-constrained metrically homogeneous graphs. We also solve several open problems such as EPPA for Λ-ultrametric...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.code1
dc.contributor.consultantNešetřil, Jaroslav
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990022824530106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV