Stochastic Differential Equations with Gaussian Noise
Stochastické diferenciální rovnice s Gaussovským šumem
rigorous thesis (RECOGNIZED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/103805Identifiers
Study Information System: 207379
Collections
- Kvalifikační práce [11325]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Probability, mathematical statistics and econometrics
Department
Department of Probability and Mathematical Statistics
Date of defense
31. 10. 2018
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
Stochasická hyperbolická rovnice, Ornstein-Uhlenbeckův proces, invariantní míra, odhady parametrů, silná konzistence, asymptotická normalitaKeywords (English)
Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, parameter estimation, strong consistency, asymptotic normalityNázev práce: Stochastické diferenciální rovnice s Gaussovským šumem Autor: Josef Janák Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí disertační práce: Prof. RNDr. Bohdan Maslowski, DrSc., Katedra pravděpodobnosti a matematické statistiky Abstrakt: V práci studujeme stochastické parciální diferenciální rovnice druhého řádu se dvěma neznámými parametry. Nalezneme tvar silně spojité semigrupy (S(t), t ≥ 0) pro hyperbolický systém řízený Brownovým pohybem a také tvar kovarian- čního operátoru invariantní míry Q (a,b) ∞ . Na základě ergodických vět odvodíme dvě vhodné skupiny odhadů ve smyslu minimálního kontrastu a dokážeme jejich silnou konzistenci i asymptotickou normalitu. Dále se zabýváme odhady založenými na "po- zorovacím okně", což vede k dalším skupinám silně konzistentních odhadů. Popisu- jeme jejich vlastnosti a speciální případy i jejich asymptotickou normalitu. Výsledky aplikujeme na stochastickou vlnovou rovnici s Brownovým šumem a ilustrujeme je v mnoha počítačových simulacích. Klíčová slova: Stochastická hyperbolická rovnice, Ornstein-Uhlenbeckův proces, invariantní míra, odhady parametrů, silná konzistence, asymptotická normalita.
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.