Structure and approximation of real planar algebraic curves
Struktura a aproximace reálných rovinných algebraických křivek
rigorous thesis (RECOGNIZED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/103771Identifiers
Study Information System: 203714
Collections
- Kvalifikační práce [11242]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical structures
Department
Mathematical Institute of Charles University
Date of defense
25. 10. 2018
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
rovinná algebraická křivka, racionální parametrizace, opěrná funkce, topologie křivky, singulární bod, duální Hermitovská interpolace, racionální Puisovy řady, aproximace inflexeKeywords (English)
planar algebraic curve, rational parametrization, support function, curve topology, singular point, dual Hermite interpolation, rational Puiseux series, inflection approximationBěžným problémem výpočetní geometrie je hledání topologicky přesné aproximace algebraické křivky, které se většinou zakládá na nalezení sin- gulárních bodů křivky. Ty se hledají pomocí algebraických operací s rovnicí křivky. Náš přístup je geometričtější a bere v potaz i následnou přesnou aproximaci. Náš algoritmus hledá a aproximuje hladké monotónní oblouky křivky, které v některých případech mohou procházet i singularitami. Krajní body těchto oblouků počítáme nejen z rovnice křivky, ale i pomocí opěrné funkce. Jejich konektivita je pak určena pomocí lokálních vlastností křivky v daném bodě, které získáváme z racionálních Puiseových řad. Reprezentaci pomocí opěrné funkce využíváme i pro následnou interpo- laci oblouků. Ty dohoromady tvoří aproximaci celé křivky. Tato aproximace má mnoho praktických vlastností, například: Můžeme efektivně měřit její aktuální Hausdorffovu vzdálenost od křivky a díky tomu jednoduše zkon- struovat aproximaci mající omezenou chybu. Navíc je racionální a zajišt'uje i racionalitu ofsetů. Nicméně se její topologie může lišit od topologie původní křivky. Zavádíme pojem tečných trojúhelníků, jejichž pomocí dokážeme najít a libovolně omezit...
Finding a topologically accurate approximation of a real planar algebraic curve is a classic problem in Computer Aided Geometric Design. Algorithms describing the topology search primarily the singular points and are usually based on algebraic techniques applied directly to the curve equation. In this thesis we propose a more geometric approach, taking into account the subsequent high-precision approximation. Our algorithm is primarily based on the identification and approximation of smooth monotonous curve segments, which can in certain cases cross the singularities of the curve. To find the characteristic points we use not only the primary algebraic equation of the curve but also, and more importantly, its implicit support function representation. Using the rational Puiseux series, we describe local properties of curve branches at the points of interest and exploit them to find their connectivity. The support function representation is also used for an approximation of the segments. In this way, we obtain an approximate graph of the entire curve with several nice properties. It approximates the curve within a given Hausdorff distance. The actual error can be measured efficiently. The ap- proximate curve and its offsets are piecewise rational. And the question of topological equivalence of the...