Zobrazit minimální záznam

Principal components
dc.contributor.advisorHlávka, Zdeněk
dc.creatorZavadilová, Anna
dc.date.accessioned2018-11-02T08:54:10Z
dc.date.available2018-11-02T08:54:10Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/103440
dc.description.abstractPráce představuje hlavní komponenty jako užitečný nástroj pro snížení di- menze datového souboru. V první části jsou uvedeny teoretické vlastnosti hlav- ních komponent a je zde odvozena konstrukce biplotu. Dále jsou shrnuty heu- ristické procedury pro volbu optimálního počtu hlavních komponent. Následně jsou uvedeny asymptotické vlastnosti výběrových vlastních čísel kovarianční a bílé Wishartovy matice, rozliší se případy rovnosti některých vlastních čísel. Ve druhé části je podrobně popsáno asymptotické rozdělení největšího vlastního čísla bílé Wishartovy matice doplněné o grafické ilustrace. Na základě tohoto asymptotic- kého rozdělení odvodíme test počtu signifikantních vlastních čísel a představíme souvislost testu s volbou vhodného počtu hlavních komponent. V závěrečné části práce shrneme pokročilé výpočetní metody pro volbu počtu hlavních komponent. Práce je doplněna grafickými ilustracemi a simulační studií v softwarech Wolfram Mathematica a R.cs_CZ
dc.description.abstractThis thesis presents principal components as a useful tool for data dimensio- nality reduction. In the first part, the basic terminology and theoretical properties of principal components are described and a biplot construction is derived there as well. Besides, heuristic methods for a choice of the optimum number of prin- cipal components are summarised there. Subsequently, asymptotical properties of sample eigenvalues of covariance and white Wishart matrices are described and cases of equality of some eigenvalues are distinguished at the same time. In the second part of the thesis, asymptotic distribution of the largest eigenva- lue of white Wishart matrices is described, completed with graphic illustrations. A test of the number of significant eigenvalues is suggested on the basis of this limiting distribution, and the connection of this test to the number of suitable principal components is presented. The final part of the thesis provides an over- view of advanced computational methods for the choice of an adequate number of principal components. The thesis is completed with graphical illustrations and a simulation study using Wolfram Mathematica and R.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectHlavní komponentycs_CZ
dc.subjectTracyho-Widomovo rozdělenícs_CZ
dc.subjectvýběrová vlastní číslacs_CZ
dc.subjectPrincipal componentsen_US
dc.subjectsample eigenvaluesen_US
dc.subjectTracy-Widom distributionen_US
dc.titleHlavní komponentycs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-09-05
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId181070
dc.title.translatedPrincipal componentsen_US
dc.contributor.refereeNagy, Stanislav
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPráce představuje hlavní komponenty jako užitečný nástroj pro snížení di- menze datového souboru. V první části jsou uvedeny teoretické vlastnosti hlav- ních komponent a je zde odvozena konstrukce biplotu. Dále jsou shrnuty heu- ristické procedury pro volbu optimálního počtu hlavních komponent. Následně jsou uvedeny asymptotické vlastnosti výběrových vlastních čísel kovarianční a bílé Wishartovy matice, rozliší se případy rovnosti některých vlastních čísel. Ve druhé části je podrobně popsáno asymptotické rozdělení největšího vlastního čísla bílé Wishartovy matice doplněné o grafické ilustrace. Na základě tohoto asymptotic- kého rozdělení odvodíme test počtu signifikantních vlastních čísel a představíme souvislost testu s volbou vhodného počtu hlavních komponent. V závěrečné části práce shrneme pokročilé výpočetní metody pro volbu počtu hlavních komponent. Práce je doplněna grafickými ilustracemi a simulační studií v softwarech Wolfram Mathematica a R.cs_CZ
uk.abstract.enThis thesis presents principal components as a useful tool for data dimensio- nality reduction. In the first part, the basic terminology and theoretical properties of principal components are described and a biplot construction is derived there as well. Besides, heuristic methods for a choice of the optimum number of prin- cipal components are summarised there. Subsequently, asymptotical properties of sample eigenvalues of covariance and white Wishart matrices are described and cases of equality of some eigenvalues are distinguished at the same time. In the second part of the thesis, asymptotic distribution of the largest eigenva- lue of white Wishart matrices is described, completed with graphic illustrations. A test of the number of significant eigenvalues is suggested on the basis of this limiting distribution, and the connection of this test to the number of suitable principal components is presented. The final part of the thesis provides an over- view of advanced computational methods for the choice of an adequate number of principal components. The thesis is completed with graphical illustrations and a simulation study using Wolfram Mathematica and R.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code2


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV