dc.contributor.advisor | Janovský, Vladimír | |
dc.creator | Mitro, Erik | |
dc.date.accessioned | 2018-02-21T10:53:45Z | |
dc.date.available | 2018-02-21T10:53:45Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/94800 | |
dc.description.abstract | The thesis deals with periodic solutions of ordinary differential equations and examining of their stability. We are mainly limited to scalar differential equations. The first chapter is devoted to the stability of periodic solutions that is related to the Poincaré map. The aim is to decide on the asymptotic stability/instability of the fixed point of this map. To this end we need to compute derivatives of the Poincaré map of the first order or, possibly, of the higher orders. In the second chapter we introduce the concept of bifurcation and we examine the population model. In the third chapter we briefly mention the Van der Pol oscillator i.e the system of two equations. We illustrate the theory by examples. | en_US |
dc.description.abstract | V práci sa zaoberáme periodickými riešeniami obyčajných diferenciálnych rovníc a skúmaním ich stability. Obmedzujeme sa predovšetkým na skalárne diferenciálne rovnice. Prvá kapitola je venovaná stabilite periodických riešení, ktorá súvisí s Poincareho mapou. Cieľom je rozhodnúť o asymptotickej stabilite/nestabilite pevného bodu Poincareho mapy. K tomu potrebujeme vypočítať prvú deriváciu Poncareho mapy, poprípade derivácie vyšších rádov. V druhej kapitole si zadefinujeme pojem bifurkácia a preskúmame populačný model. V tretej kapitole sa krátko zmienime o Van der Polovom oscilátore tj. systéme dvoch rovníc. Celú teóriu ilustrujeme na príkladoch. | cs_CZ |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | ODE | en_US |
dc.subject | periodic solutions | en_US |
dc.subject | parameter dependence | en_US |
dc.subject | bifurcation | en_US |
dc.subject | ODR | cs_CZ |
dc.subject | periodické riešenia | cs_CZ |
dc.subject | závislosť na parametroch | cs_CZ |
dc.subject | bifurkácia | cs_CZ |
dc.title | Periodické riešenia obyčajných diferenciálnych rovníc | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2018 | |
dcterms.dateAccepted | 2018-01-31 | |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 168553 | |
dc.title.translated | Periodic solutions of ordinary differential equations | en_US |
dc.title.translated | Periodická řešení obyčejných diferenciálních rovnic | cs_CZ |
dc.contributor.referee | Felcman, Jiří | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V práci sa zaoberáme periodickými riešeniami obyčajných diferenciálnych rovníc a skúmaním ich stability. Obmedzujeme sa predovšetkým na skalárne diferenciálne rovnice. Prvá kapitola je venovaná stabilite periodických riešení, ktorá súvisí s Poincareho mapou. Cieľom je rozhodnúť o asymptotickej stabilite/nestabilite pevného bodu Poincareho mapy. K tomu potrebujeme vypočítať prvú deriváciu Poncareho mapy, poprípade derivácie vyšších rádov. V druhej kapitole si zadefinujeme pojem bifurkácia a preskúmame populačný model. V tretej kapitole sa krátko zmienime o Van der Polovom oscilátore tj. systéme dvoch rovníc. Celú teóriu ilustrujeme na príkladoch. | cs_CZ |
uk.abstract.en | The thesis deals with periodic solutions of ordinary differential equations and examining of their stability. We are mainly limited to scalar differential equations. The first chapter is devoted to the stability of periodic solutions that is related to the Poincaré map. The aim is to decide on the asymptotic stability/instability of the fixed point of this map. To this end we need to compute derivatives of the Poincaré map of the first order or, possibly, of the higher orders. In the second chapter we introduce the concept of bifurcation and we examine the population model. In the third chapter we briefly mention the Van der Pol oscillator i.e the system of two equations. We illustrate the theory by examples. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |