Structural properties of hereditary permutation classes
Strukturální vlastnosti dědičných tříd permutací
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/90578Identifiers
Study Information System: 177097
Collections
- Kvalifikační práce [10932]
Author
Advisor
Referee
Valtr, Pavel
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Theoretical Computer Science
Department
Computer Science Institute of Charles University
Date of defense
7. 9. 2017
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
permutační třídy, splittovatelnost, amalgamovatelnost, 1-amalgamovatelnostKeywords (English)
permutation classes, splittability, amalgamability, 1-amalgamabilityPermutační třída C je splittovatelná pokud je obsažena v mergi svých dvou vlastních podtříd, a je 1-amalgamovatelná pokud pro libovolné permutace σ, τ ∈ C, každá s jedním vyznačeným prvkem, dokážeme najít permutaci π ∈ C, která obsahuje σ i τ tak že jejich vyznačené prvky splývají. V této práci zkoumáme 1-amalgamovatelnost a splittovatelnost permutačních tříd. Již dříve bylo dokázáno, že nesplittovatelnost implikuje 1-amalgamovatelnost. My ukážeme, že tyto dvě vlastnosti permutačních tříd nejsou ekvivalentní nalezením permutační třídy, která je splittovatelná a zároveň 1-amalgamovatelná. Navíc ukážeme, že existuje nekonečně mnoho takových permutačních tříd. Naše konstrukce je založená na konceptu LR-nafouknutí nebo více obecně na dědičných 2-obarvení, které v této práci také zavedeme a které by mohly být zajímavé i mimo naše použití. 1
A permutation class C is splittable if it is contained in a merge of its two proper subclasses, and it is 1-amalgamable if given two permutations σ, τ ∈ C, each with a marked element, we can find a permutation π ∈ C containing both σ and τ such that the two marked elements coincide. In this thesis, we study both 1-amalgamability and splittability of permutation classes. It was previously shown that unsplittability implies 1-amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation classes by showing that there is a permutation class that is both splittable and 1-amalgamable. Moreover, we show that there are infinitely many such classes. Our construction is based on the concept of LR-inflations or more generally on hereditary 2-colorings, which we both introduce here and which may be of independent interest. 1