Show simple item record

Predikce profilů spotřeby elektrické energie
dc.contributor.advisorFink, Jiří
dc.creatorBartoš, Samuel
dc.date.accessioned2017-09-28T09:47:54Z
dc.date.available2017-09-28T09:47:54Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11956/90500
dc.description.abstractPrediction of energy load profiles is an important topic in Smart Grid technologies. Accurate forecasts can lead to reduced costs and decreased dependency on commercial power suppliers by adapting to prices on energy market, efficient utilisation of solar and wind energy and sophisticated load scheduling. This thesis compares various statistical and machine learning models and their ability to forecast load profile for an entire day divided into 48 half-hour intervals. Additionally, we examine various preprocessing methods and their influence on the accuracy of the models. We also compare a variety of imputation methods that are designed to reconstruct missing observation commonly present in energy consumption data.en_US
dc.description.abstractPredikce profilů spotřeby elektrické energie je důležitým tématem Smart Grid technologií. Přesné předpovědi mohou vést redukci cen a snížení závislosti na komerčních dodavatelích energie pomocí adaptace na ceny na energetickém trhu, efektivního využití solární a větrné energie a promyšleného plánování spotřeby. Tato diplomová práce porovnává různé statistické modely s metodami strojového učení, a také jejich schopnost předpovídat profily spotřeby elektrické energie na celý den rozdělený do 48 půlhodinových časových intervalů. Dále se věnujeme různým metodám předzpracování dat a jejich vlivu na přesnost modelů. Navíc také porovnáváme rozličné metody imputace dat, které rekonstruuji chybějící pozorování častokrát přítomné v datech energetické spotřeby.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecttime seriesen_US
dc.subjectstate-space modelsen_US
dc.subjectneural networksen_US
dc.subjectimputationen_US
dc.subjectpreprocessingen_US
dc.subjectčasové řadycs_CZ
dc.subjectstavo-prostorové modelycs_CZ
dc.subjectneuronové sítěcs_CZ
dc.subjectimputacecs_CZ
dc.subjectpředzpracovánícs_CZ
dc.titlePrediction of energy load profilesen_US
dc.typediplomová prácecs_CZ
dcterms.created2017
dcterms.dateAccepted2017-09-07
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId186860
dc.title.translatedPredikce profilů spotřeby elektrické energiecs_CZ
dc.contributor.refereeVan Leeuwen, Richard
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPredikce profilů spotřeby elektrické energie je důležitým tématem Smart Grid technologií. Přesné předpovědi mohou vést redukci cen a snížení závislosti na komerčních dodavatelích energie pomocí adaptace na ceny na energetickém trhu, efektivního využití solární a větrné energie a promyšleného plánování spotřeby. Tato diplomová práce porovnává různé statistické modely s metodami strojového učení, a také jejich schopnost předpovídat profily spotřeby elektrické energie na celý den rozdělený do 48 půlhodinových časových intervalů. Dále se věnujeme různým metodám předzpracování dat a jejich vlivu na přesnost modelů. Navíc také porovnáváme rozličné metody imputace dat, které rekonstruuji chybějící pozorování častokrát přítomné v datech energetické spotřeby.cs_CZ
uk.abstract.enPrediction of energy load profiles is an important topic in Smart Grid technologies. Accurate forecasts can lead to reduced costs and decreased dependency on commercial power suppliers by adapting to prices on energy market, efficient utilisation of solar and wind energy and sophisticated load scheduling. This thesis compares various statistical and machine learning models and their ability to forecast load profile for an entire day divided into 48 half-hour intervals. Additionally, we examine various preprocessing methods and their influence on the accuracy of the models. We also compare a variety of imputation methods that are designed to reconstruct missing observation commonly present in energy consumption data.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV