Using algebra in geometry
Využití algebry v geometrii
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/79720Identifiers
Study Information System: 85690
Collections
- Kvalifikační práce [11217]
Author
Advisor
Referee
Šmíd, Dalibor
Blagojevic, Pavle
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Algebra, Theory of Numbers and Mathematical Logic
Department
Department of Algebra
Date of defense
3. 11. 2015
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (Czech)
Homologická nevnořitelnost, věty Hellyho typu, Kühnelova domněnka o nevnořitelnosti do varietKeywords (English)
Homological non-embeddability, Helly Type Theorems, Kühnel's conjecture of non-embeddability of skeleta of simplices into manifoldsVyužití algebry v geometrii Pavel Paták Katedra: Katedra algebry Vedoucí disertační práce: Mgr. Pavel Růžička,Ph.D., Katedra algebry 1 Abstrakt V této práci jsme vyvinuli metodu, která kombinuje algebru, algebraickou topologii a kombinatoriku a vede k výsledkům o nevnořitelnosti. Klíčovou novinkou našeho přístupu je studium nevnořitelnostních argumentů z homologického úhlu pohledu. Sílu tohoto přístupu demonstrujeme dokázáním dvou nových zajímavých vět. Prvně ukážeme, že k-dimenzionální skeleton b 2k+2 k + k + 3 -dimenzionálního simplexu nejde vno- řit do variety M dimenze 2k s Bettiho číslem βk(M; Z2) ≤ b. Jde o první konečný horní odhad pro Kühnelovu domněnku o nevnořitelnosti simplexů do variet. Poté dokážeme obecnou větu Hellyho typu pro množiny v Rd : Existuje funkce h(b, d) taková, že kdykoli máme konečný systém F množin v Rd takový, že ˜βi ( G; Z2) ≤ b pro všechny G F a všechna 0 ≤ i ≤ d/2 −1, pak Hellyho číslo systému F je nejvýše h(b, d). Pokud nás pouze zajímá, zda je Hellyho číslo omezené, tato věta shrnuje širokou třídu dřívějších vět Hellyho typu pro množiny v Rd . Klíčová slova: Homologická nevnořitelnost, věty Hellyho typu, Kühnelova domněnka
Using algebra in geometry Pavel Paták Department: Department of Algebra Supervisor: Mgr. Pavel Růžička, Ph.D., Department of Algebra 1 Abstract In this thesis, we develop a technique that combines algebra, algebraic topology and combinatorial arguments and provides non-embeddability results. The novelty of our approach is to examine non- embeddability arguments from a homological point of view. We illustrate its strength by proving two interesting theorems. The first one states that k-dimensional skeleton of b 2k+2 k + k + 3 -dimensional simplex does not embed into any 2k-dimensional manifold M with Betti number βk(M; Z2) ≤ b. It is the first finite upper bound for Kühnel's conjecture of non-embeddability of simplices into manifolds. The second one is a very general topological Helly type theorem for sets in Rd : There exists a function h(b, d) such that the following holds. If F is a finite family of sets in Rd such that ˜βi ( G; Z2) ≤ b for any G F and every 0 ≤ i ≤ d/2 − 1, then F has Helly number at most h(b, d). If we are only interested whether the Helly numbers are bounded or not, the theorem subsumes a broad class of Helly types theorems for sets in Rd . Keywords: Homological Non-embeddability, Helly Type Theorem, Kühnel's conjecture of non-embeddability of ske- leta of simplices into manifolds