Zobrazit minimální záznam

Mikrospopické množiny a kapky v Banachových prostorech
dc.contributor.advisorLukeš, Jaroslav
dc.creatorPospíšil, Marek
dc.date.accessioned2017-06-01T08:02:57Z
dc.date.available2017-06-01T08:02:57Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/77260
dc.description.abstractNejprve definujeme mikroskopické množiny na reálné ose a zkoumáme jejich vztah k množinám Hausdorffovy a Lebesgueovy míry nula a k množinám první kategorie. V druhé části dokazujeme Ekelandův variační princip a jeho ekvivalenci s větou o okvětních plátcích, Danešovou větou o kapce, Brézis-Browderovou větou, Phelpsovým lemmatem a Caristi-Kirkovou větou. Dále zkoumáme jeho vztah k Bishop-Phelpsově větě. Přitom definujeme pojem kapky jako konvexní obal množiny a bodu. V části třetí dokazujeme, že vlastnost kapky je v jistém smyslu ekvivalentní reflexivitě. Prostor má vlastnost kapky, pokud kapku z Danešovy věty lze najít i v obecnějším případě, než zaručuje věta samotná. Dále tuto vlastnost charakterizujeme pomocí aproximativní kompaktnosti. V poslední části se zabýváme mikroskopickou vlastností kapky, která je oproti původní vlastnosti kapky méně přísná. Zjistíme však, že tyto dva pojmy jsou pro jisté množiny v reflexivních prostorech ekvivalentní.cs_CZ
dc.description.abstractFirst we define microscopic sets on the real axis and study their relation to the sets of Hausdorff and Lebesgue measure zero and the sets of first category. In the second part, we prove the Ekeland's variational principle and its equivalence with the the Daneš's drop theorem, the Brézis-Browder's theorem, the Phelps' lemma and the Caristi-Kirks's theorem. Furthermore, we discuss its relation to the Bishop-Phelps' theorem. Doing so we define the notion of a drop as the convex hull of a set and a point. In the third part we prove that the drop property equals reflexivity in some sense. A space has the drop property if it is possible to find the drop from the Daneš's theorem even in a more general case than the theorem itself guarantees. Furthermore, we characterize this property using the approximative compactness. Last, we study the microscopic drop property that is more relaxed than the original drop property. We find out that those two notions are for certain sets in reflexive spaces equivalent.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectBanachovy prostorycs_CZ
dc.subjectmikroskopické množinycs_CZ
dc.subjectkapkycs_CZ
dc.subjectDanešova větacs_CZ
dc.subjectBanach spacesen_US
dc.subjectmicroscopis setsen_US
dc.subjectdropsen_US
dc.subjectDanes theoremen_US
dc.titleMicroscopic sets and drops in Banach spacesen_US
dc.typediplomová prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-02-08
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId174007
dc.title.translatedMikrospopické množiny a kapky v Banachových prostorechcs_CZ
dc.contributor.refereeZelený, Miroslav
dc.identifier.aleph002070000
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csNejprve definujeme mikroskopické množiny na reálné ose a zkoumáme jejich vztah k množinám Hausdorffovy a Lebesgueovy míry nula a k množinám první kategorie. V druhé části dokazujeme Ekelandův variační princip a jeho ekvivalenci s větou o okvětních plátcích, Danešovou větou o kapce, Brézis-Browderovou větou, Phelpsovým lemmatem a Caristi-Kirkovou větou. Dále zkoumáme jeho vztah k Bishop-Phelpsově větě. Přitom definujeme pojem kapky jako konvexní obal množiny a bodu. V části třetí dokazujeme, že vlastnost kapky je v jistém smyslu ekvivalentní reflexivitě. Prostor má vlastnost kapky, pokud kapku z Danešovy věty lze najít i v obecnějším případě, než zaručuje věta samotná. Dále tuto vlastnost charakterizujeme pomocí aproximativní kompaktnosti. V poslední části se zabýváme mikroskopickou vlastností kapky, která je oproti původní vlastnosti kapky méně přísná. Zjistíme však, že tyto dva pojmy jsou pro jisté množiny v reflexivních prostorech ekvivalentní.cs_CZ
uk.abstract.enFirst we define microscopic sets on the real axis and study their relation to the sets of Hausdorff and Lebesgue measure zero and the sets of first category. In the second part, we prove the Ekeland's variational principle and its equivalence with the the Daneš's drop theorem, the Brézis-Browder's theorem, the Phelps' lemma and the Caristi-Kirks's theorem. Furthermore, we discuss its relation to the Bishop-Phelps' theorem. Doing so we define the notion of a drop as the convex hull of a set and a point. In the third part we prove that the drop property equals reflexivity in some sense. A space has the drop property if it is possible to find the drop from the Daneš's theorem even in a more general case than the theorem itself guarantees. Furthermore, we characterize this property using the approximative compactness. Last, we study the microscopic drop property that is more relaxed than the original drop property. We find out that those two notions are for certain sets in reflexive spaces equivalent.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990020700000106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV