Show simple item record

Deep neural networks and their application for image data processing
dc.contributor.advisorMrázová, Iveta
dc.creatorGolovizin, Andrey
dc.date.accessioned2017-06-01T07:59:44Z
dc.date.available2017-06-01T07:59:44Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/77244
dc.description.abstractV oblasti rozpoznávání obrázků dnes patří k nejslibnějším modelům tzv. hluboké neuronové sítě, které často dosahují výrazně lepších výsledků než tradiční techniky, navíc bez nutnosti cíleného předzpracování vstupních dat. Tato práce se zabývá studiem a analýzou vlastností tří základních variant hlubokých neuronových sítí, a to neokognitronu, konvolučních neuronových sítí a DBN-sítí (deep belief networks). Na základě rozsáhlého testování popisovaných modelů na standardní úloze rozpoznávání ručně psaných číslic se jako nejvhodnější pro rozpoznávání obecných obrazových dat jeví konvoluční neuronové sítě. Ty jsme proto použili i při rozpoznávání obrázků z rozsáhlých datových sad CIFAR-10 a ImageNet. Pro optimalizaci architektury použité sítě jsme navrhli vlastní algoritmus prořezávání založený na analýze hlavních komponent (PCA). Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.description.abstractIn the area of image recognition, the so-called deep neural networks belong to the most promising models these days. They often achieve considerably better results than traditional techniques even without the necessity of any excessive task-oriented preprocessing. This thesis is devoted to the study and analysis of three basic variants of deep neural networks-namely the neocognitron, convolutional neural networks, and deep belief networks. Based on extensive testing of the described models on the standard task of handwritten digit recognition, the convolutional neural networks seem to be most suitable for the recognition of general image data. Therefore, we have used them also to classify images from two very large data sets-CIFAR-10 and ImageNet. In order to optimize the architecture of the applied networks, we have proposed a new pruning algorithm based on the Principal Component Analysis. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectumělé neuronové sítěcs_CZ
dc.subjectkonvoluční neuronové sítěcs_CZ
dc.subjectDBN-sítěcs_CZ
dc.subjectobrazová datacs_CZ
dc.subjectklasifikacecs_CZ
dc.subjectartificial neural networksen_US
dc.subjectconvolutional neural networksen_US
dc.subjectdeep belief networksen_US
dc.subjectimage dataen_US
dc.subjectclassificationen_US
dc.titleDeep neural networks and their application for image data processingen_US
dc.typediplomová prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-02-09
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId158689
dc.title.translatedDeep neural networks and their application for image data processingcs_CZ
dc.contributor.refereeHolan, Tomáš
dc.identifier.aleph002070299
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV oblasti rozpoznávání obrázků dnes patří k nejslibnějším modelům tzv. hluboké neuronové sítě, které často dosahují výrazně lepších výsledků než tradiční techniky, navíc bez nutnosti cíleného předzpracování vstupních dat. Tato práce se zabývá studiem a analýzou vlastností tří základních variant hlubokých neuronových sítí, a to neokognitronu, konvolučních neuronových sítí a DBN-sítí (deep belief networks). Na základě rozsáhlého testování popisovaných modelů na standardní úloze rozpoznávání ručně psaných číslic se jako nejvhodnější pro rozpoznávání obecných obrazových dat jeví konvoluční neuronové sítě. Ty jsme proto použili i při rozpoznávání obrázků z rozsáhlých datových sad CIFAR-10 a ImageNet. Pro optimalizaci architektury použité sítě jsme navrhli vlastní algoritmus prořezávání založený na analýze hlavních komponent (PCA). Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enIn the area of image recognition, the so-called deep neural networks belong to the most promising models these days. They often achieve considerably better results than traditional techniques even without the necessity of any excessive task-oriented preprocessing. This thesis is devoted to the study and analysis of three basic variants of deep neural networks-namely the neocognitron, convolutional neural networks, and deep belief networks. Based on extensive testing of the described models on the standard task of handwritten digit recognition, the convolutional neural networks seem to be most suitable for the recognition of general image data. Therefore, we have used them also to classify images from two very large data sets-CIFAR-10 and ImageNet. In order to optimize the architecture of the applied networks, we have proposed a new pruning algorithm based on the Principal Component Analysis. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV