Operads and field theory
Operády a teorie pole
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/70695Identifiers
Study Information System: 143358
Collections
- Kvalifikační práce [11242]
Author
Advisor
Consultant
Doubek, Martin
Referee
Křižka, Libor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Physics
Department
Mathematical Institute of Charles University
Date of defense
11. 9. 2014
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
operády, algebry nad operádami, homotopy algebry, master rovnice, teorie poleKeywords (English)
operads, algebras over operads, homotopy algebras, master equation, field theoryOperády a ich varianty, modulárne a cyklické operády, prirodzene popisujú skladanie objektov rôznych typov. Práca poskytuje prístupný úvod do teórie operád, formalizmu používaného v [1] a modernej aplikácie modulárnych operád vo fyzike [2]. S pomocou príkladov uvedieme Batalin-Vilkovisky formalizmus ako nástroj na kohomologickú integráciu dráhového integrálu v kvantovej teórii pola. Master rovnica, podmienka na akciu, plynie z tohoto formalizmu. Riešenia master rovnice ale taktiež popisujú algebry nad Feynmanovou transformáciou modulárnej operády. Preskúmame master rovnicu takto definovanú na modulárnej operáde a zhrnieme aplikáciu tejto teórie do uzavretej strunovej teórie pola. [1] Martin Doubek, Branislav Jurco, and Korbinian Muenster. Modular operads and the quantum open-closed homotopy algebra. 2013. arXiv: 1308.3223 [math-AT]. [2] Serguei Barannikov. "Modular operads and Batalin-Vilkovisky geometry". In: International Mathematics Research Notices 2007 (2007), rnm075.
Operads and their variants, modular and cyclic operads, naturally describe compositions of objects of various types. We provide an accessible introduction to the theory of operads, the formalism for modular operads from [1] and modern application of modular operads to physics, due to Barannikov [2]. Through examples, we introduce Batalin-Vilkovisky formalism as a tool for cohomological integration of path integral in quantum field theories. A master equation, consistency condition for action, follows from this formalism. Solutions to master equation also describe algebras over Feynman transform of a modular operad. We explore the master equation defined in terms of modular operad and review an application to closed string field theory. [1] Martin Doubek, Branislav Jurco, and Korbinian Muenster. Modular operads and the quantum open-closed homotopy algebra. 2013. arXiv: 1308.3223 [math-AT]. [2] Serguei Barannikov. "Modular operads and Batalin-Vilkovisky geometry". In: International Mathematics Research Notices 2007 (2007), rnm075.