Degenerate Parabolic Stochastic Partial Differential Equations
Degenerované parabolické stochastické parciální diferenciální rovnice
rigorózní práce (UZNÁNO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/67394Identifikátory
SIS: 151056
Katalog UK: 990017845210106986
Kolekce
- Kvalifikační práce [11978]
Autor
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
18. 6. 2014
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Uznáno
Klíčová slova (česky)
degenerované parabolické stochastické parciální diferenciální rovnice, kinetické řešení, BGK model, stochastické diferenciální rovniceKlíčová slova (anglicky)
degenerate parabolic stochastic partial differential equations, kinetic solution, BGK model, stochastic differential equationsTato disertace se zaměřuje na několik problémů, které vy- vstávají při studiu degenerovaných parabolických stochastických parcialních diferenciálních rovnic, stochastických hyperbolických zákonů zachování a stochastických diferenciálních rovnic se spojitými koeficienty. V první části studujeme degenerované parabolické stochastické parciální diferenciální rov- nice, adaptujeme pojem kinetické formulace a kinetického řešení a ukážeme existenci, jednoznačnost a spojitou závislost na počáteční podmínce. Jako přípravný výsledek pak dokážeme regularitu řešení v nedegenerovaném přípa- dě za předpokladu hladkých koeficientů s omezenými derivacemi. Ve druhé části uvažujeme stochastické hyperbolické zákony zachování a studujeme je- jich aproximaci ve smyslu Bhatnagar-Gross-Krooka. Konkrétně, popíšeme zákony zachování jakožto hydrodynamickou limitu stochastického BGK mod- elu jestliže mikroskopická škála jde k nule. V poslední části předkládáme nový a elementární důkaz Skorokhodova klasického výsledku o existenci slabého řešení stochastických diferenciálních rovnic se spojitými koeficienty, jež splňují vhodnou Lyapunovskou podmínku. 1
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochas- tic forcing and study their approximations in the sense of Bhatnagar-Gross- Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkohod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition. 1
