Show simple item record

Degenerované parabolické stochastické parciální diferenciální rovnice
dc.creatorHofmanová, Martina
dc.date.accessioned2017-05-27T03:05:44Z
dc.date.available2017-05-27T03:05:44Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/67394
dc.description.abstractTato disertace se zaměřuje na několik problémů, které vy- vstávají při studiu degenerovaných parabolických stochastických parcialních diferenciálních rovnic, stochastických hyperbolických zákonů zachování a stochastických diferenciálních rovnic se spojitými koeficienty. V první části studujeme degenerované parabolické stochastické parciální diferenciální rov- nice, adaptujeme pojem kinetické formulace a kinetického řešení a ukážeme existenci, jednoznačnost a spojitou závislost na počáteční podmínce. Jako přípravný výsledek pak dokážeme regularitu řešení v nedegenerovaném přípa- dě za předpokladu hladkých koeficientů s omezenými derivacemi. Ve druhé části uvažujeme stochastické hyperbolické zákony zachování a studujeme je- jich aproximaci ve smyslu Bhatnagar-Gross-Krooka. Konkrétně, popíšeme zákony zachování jakožto hydrodynamickou limitu stochastického BGK mod- elu jestliže mikroskopická škála jde k nule. V poslední části předkládáme nový a elementární důkaz Skorokhodova klasického výsledku o existenci slabého řešení stochastických diferenciálních rovnic se spojitými koeficienty, jež splňují vhodnou Lyapunovskou podmínku. 1cs_CZ
dc.description.abstractIn this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochas- tic forcing and study their approximations in the sense of Bhatnagar-Gross- Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkohod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdegenerované parabolické stochastické parciální diferenciální rovnicecs_CZ
dc.subjectkinetické řešenícs_CZ
dc.subjectBGK modelcs_CZ
dc.subjectstochastické diferenciální rovnicecs_CZ
dc.subjectdegenerate parabolic stochastic partial differential equationsen_US
dc.subjectkinetic solutionen_US
dc.subjectBGK modelen_US
dc.subjectstochastic differential equationsen_US
dc.titleDegenerate Parabolic Stochastic Partial Differential Equationsen_US
dc.typerigorózní prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-06-18
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId151056
dc.title.translatedDegenerované parabolické stochastické parciální diferenciální rovnicecs_CZ
dc.identifier.aleph001784521
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspělcs_CZ
thesis.grade.enPassen_US
uk.abstract.csTato disertace se zaměřuje na několik problémů, které vy- vstávají při studiu degenerovaných parabolických stochastických parcialních diferenciálních rovnic, stochastických hyperbolických zákonů zachování a stochastických diferenciálních rovnic se spojitými koeficienty. V první části studujeme degenerované parabolické stochastické parciální diferenciální rov- nice, adaptujeme pojem kinetické formulace a kinetického řešení a ukážeme existenci, jednoznačnost a spojitou závislost na počáteční podmínce. Jako přípravný výsledek pak dokážeme regularitu řešení v nedegenerovaném přípa- dě za předpokladu hladkých koeficientů s omezenými derivacemi. Ve druhé části uvažujeme stochastické hyperbolické zákony zachování a studujeme je- jich aproximaci ve smyslu Bhatnagar-Gross-Krooka. Konkrétně, popíšeme zákony zachování jakožto hydrodynamickou limitu stochastického BGK mod- elu jestliže mikroskopická škála jde k nule. V poslední části předkládáme nový a elementární důkaz Skorokhodova klasického výsledku o existenci slabého řešení stochastických diferenciálních rovnic se spojitými koeficienty, jež splňují vhodnou Lyapunovskou podmínku. 1cs_CZ
uk.abstract.enIn this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochas- tic forcing and study their approximations in the sense of Bhatnagar-Gross- Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkohod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV