Úlohy optimálního investování řešitelné pomocí lineárního programování
Optimal investment problems solvable using linear programming
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/61881Identifiers
Study Information System: 155026
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Kopa, Miloš
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Probability and Mathematical Statistics
Date of defense
24. 6. 2015
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Good
Keywords (Czech)
Optimalizace portfolia, míra rizika, lineární programování, podmíněná hodnota v riziku, střední absolutní odchylkaKeywords (English)
Portfolio optimization, Risk measure, Linear programming, Conditional Value at Risk, Mean absolute deviationProblém optimalizace portfolia patří ke klasickým optimalizačním úlohám. Účelem úlohy je maximalizovat očekávaný výnos a přitom minimalizovat riziko při skládání finančního portfolia. Bakalářská práce popisuje některé míry rizika vedoucí na úlohu lineárního programování následně je aplikuje na reálná data z finančních trhů. V práci je popsán model s podmíněnou hodnotou v riziku, MAD-model a model minimax. Aplikace na reálná data z finančních trhů byla provedena na datech z frankfurtské burzy v programu Wolfram Mathematica 9.0 pomocí funkce LinearProgramming. Výsledkem jsou optimální portfolia z jedenácti uvažovaných modelů pro každé ze šesti omezení na minimální výnos. Nalezená portfolia jsou dále hodnocena dle dat z následujícího roku. Powered by TCPDF (www.tcpdf.org)
Portfolio optimization problem is a classical optimization problem, where the expected return of the portfolio is maximized and the risk is minimized. In this bachelor thesis some LP solvable portfolio optimization models are studied. Application on real life financial data is also included. Model with Conditional Value at Risk, MAD-model and Minimax model are described. In numerical analysis data from Frankfurt Stock Exchange are used and optimization has been made by Wolfram Mathematica 9.0 function LinearProgramming. As a result we got optimal portfolios for eleven different models for each of six minimal expected return constraints. The portfolios have been then evaluated according to the data from next year period. Powered by TCPDF (www.tcpdf.org)