Stacionární stavy dynamických systémů
Steady states of dynamical systems
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/61785Identifikátory
SIS: 140447
Katalog UK: 990020066040106986
Kolekce
- Kvalifikační práce [11982]
Autor
Vedoucí práce
Oponent práce
Vlasák, Miloslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
15. 6. 2015
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
soustava obyčejných diferenciálních rovnic, dynamický systém, stacionární stav, stabilitaKlíčová slova (anglicky)
systems of ordinary differential equations, dznamicak systems, steady states, stabilityV práci se zabýváme kvalitativními vlastnostmi řešení diferenciálních rovnic v okolí stacionárních stavů. Stěžejní kapitola se týká planárních rovnic. Klíčovým pojmem je stabilita stacionárního bodu. Analýza stability úzce souvisí s linea- rizací, která ale v mnohých případech nestačí. Tehdy může pomoci např. Lja- punovova funkce. Zavedeme pojmy stabilní a nestabilní varieta, báze atrakce a topologická ekvivalence rovnic a nastíníme jejich důležitost v kvalitativní analýze. Teorii ilustrujeme na mnoha příkladech. V třetí kapitole se krátce zmíníme o nu- merické kontinuaci aplikované na hledání stacionárních stavů rovnice závislé na parametru λ. 1
In the thesis we analyse qualitative properties of dynamical systems near equilibria. We mainly deal with planar equations. The key notion is the stability of steady state. The stability analysis is closely connected to linearisation, which in many cases doesn't suffice. In that case Lyapunov function may help. We define stable and unstable manifold, basin of attraction, topological equivalence of equations and demonstrate their significance in qualitative analysis. The theory will be illustrated on examples. In the third chapter we briefly mention numerical continuation of steady states with respect to a parameter. 1
