Struktura samomalých grup a modulů
Structure of self-small groups and modules
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/52108Identifikátory
SIS: 113172
Katalog UK: 990016269290106986
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Šaroch, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické struktury
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
20. 9. 2013
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Název práce: Struktura samomalých grup a modulů Autor: Josef Dvořák Katedra: Katedra algebry Vedoucí diplomové práce: Mgr. Jan Žemlička, Ph.D. E-mail vedoucího: zemlicka@karlin.mff.cuni.cz Abstrakt: Práce shrnuje základní strukturní vlastnosti samomalých grup. Dále důkladně buduje teorii kvocientových kategorií dle Serreových tříd, přičemž se následně soustředí na kvocientovou kategorii dle třídy B ome- zených abelovských grup, nebot' ta je, jak je ukázáno, kategoriálně ekviva- lentní kvazikategorii, tj. kategorii s objekty abelovskými grupami a mnoa- žia-naa-mi homomorfismů Q⊗ZHomA (A, B). Tento přístup je dále rozvíjen ve větší obecnosti ve formě zobecněných kvocientových kategorií. Jsou též dopodrobna studovány duality mezi kvazikategoriemi beztorních a fak- torově divisibilních grup konečného ranku, resp. mezi kategoriemi samo- malých grup konečného ranku, přičemž tato dualita je užita na modifiko- vaný Fuchsův problém č. 34. Klíčová slova: samomalá grupa, faktorově divisibilní grupa, kvazikategorie, kvocientová kategorie 1
Title: Structure of self-small groups and modules Author: Josef Dvořák Department: Department of Algebra Supervisor: Mgr. Žemlička Jan, Ph.D. Supervisor's e-mail address: zemlicka@karlin.mff.cuni.cz Abstract: The thesis sums up the basic properties of self-small groups. Furthermore it thoroughly builds the theory od quotient categories by Serre classes, with focus on quotient category modulo the class B of boun- ded groups, which, as demonstrated, is equivalent to the quasicategory, i.e. category of abelian groups with Hom-sets being Q⊗Z HomA (A, B). This approach is developed into the theory of generalized quasi-categories. The dualities between quasi-caterogories od torsion-free and quotient-divisible categories of finite rank, resp. between categories of finite-rank self-small groups are studied and they are emloyed to the partial solution of Fuchs' problem no. 34. Keywords: self-small group, quotient divisible group, quasicategory, quo- tient category 1
