Show simple item record

Maximum likelihood estimators in time series
dc.contributor.advisorPawlas, Zbyněk
dc.creatorTritová, Hana
dc.date.accessioned2017-05-08T17:00:30Z
dc.date.available2017-05-08T17:00:30Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/50288
dc.description.abstractPráce se zabývá maximálně věrohodnými odhady v časových řadách. Čtenář se seznámí se třemi základními modely časových řad: autoregresní posloupností (AR), posloupností klouzavých součtů (MA) a jejich kombinací (ARMA). Dále zjistí, jak vypadají jejich základní charakteristiky, např. střední hodnota nebo rozptyl. Pak zde nalezne odvození odhadů parametrů metodou maximální věrohodnosti - obecně a ve zmíněných modelech časových řad. Pro modely AR(1) a MA(1) jsou uvedeny ještě odhady metodou momentů a metodou nejmenších čtverců a závěr je věnován příkladům, které slouží ke srovnání všech tří metod.cs_CZ
dc.description.abstractThe thesis deals with maximum likelihood estimators in time series. The reader becomes familiar with three important models for time series: autoregressive model (AR), moving average model (MA) and autoregressive moving average (ARMA). Thereafter he can find out the form of their main characteristics, e.g. population mean and variance. Then there is the derivation of parameter estimates - generally and for mentioned models of times series. There are also stated two other methods for finding estimators of AR(1) and MA(1) parameters - method of moments and least squares method. The end is dedicated to examples which compares all three methods.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmaximálně věrohodný odhadcs_CZ
dc.subjectčasová řadacs_CZ
dc.subjectautoregresní posloupnostcs_CZ
dc.subjectposloupnost klouzavých součtůcs_CZ
dc.subjectmaximum likelihood estimationen_US
dc.subjecttime seriesen_US
dc.subjectautoregressive processen_US
dc.subjectmoving average processen_US
dc.titleMaximálně věrohodné odhady v časových řadáchcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-05
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId75724
dc.title.translatedMaximum likelihood estimators in time seriesen_US
dc.contributor.refereeZikmundová, Markéta
dc.identifier.aleph001384118
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráce se zabývá maximálně věrohodnými odhady v časových řadách. Čtenář se seznámí se třemi základními modely časových řad: autoregresní posloupností (AR), posloupností klouzavých součtů (MA) a jejich kombinací (ARMA). Dále zjistí, jak vypadají jejich základní charakteristiky, např. střední hodnota nebo rozptyl. Pak zde nalezne odvození odhadů parametrů metodou maximální věrohodnosti - obecně a ve zmíněných modelech časových řad. Pro modely AR(1) a MA(1) jsou uvedeny ještě odhady metodou momentů a metodou nejmenších čtverců a závěr je věnován příkladům, které slouží ke srovnání všech tří metod.cs_CZ
uk.abstract.enThe thesis deals with maximum likelihood estimators in time series. The reader becomes familiar with three important models for time series: autoregressive model (AR), moving average model (MA) and autoregressive moving average (ARMA). Thereafter he can find out the form of their main characteristics, e.g. population mean and variance. Then there is the derivation of parameter estimates - generally and for mentioned models of times series. There are also stated two other methods for finding estimators of AR(1) and MA(1) parameters - method of moments and least squares method. The end is dedicated to examples which compares all three methods.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV