Adaptivní hp nespojitá Galerkinova metoda pro nestacionární stlačitelné Eulerovy rovnice
Adaptivní hp nespojitá Galerkinova metoda pro nestacionární stlačitelné Eulerovy rovnice
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/49356Identifikátory
SIS: 78442
Katalog UK: 990014318820106986
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Konzultant práce
Šolín, Pavel
Oponent práce
Dolejší, Vít
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Numerická a výpočtová matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
8. 2. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
numerické simulace, metoda konečných prvků, Eulerovy rovnice, hp-adaptivita, nespojitá Galerkinova metodaKlíčová slova (anglicky)
numerical simulation, finite element method, Euler equations, hp-adaptivity, discontinuous Galerkin methodStlačitelné Eulerovy rovnice popisují pohyb stlačitelných nevazkých tekutin. Používají se v mnoha oblastech leteckého, automobilového a jaderného inženýrství, chemie, ekologie, klimatologie, i jinde. Matematicky, stlačitelné Eulerovy rovnice představují hyperbolický systém skládající se z několika nelineárních parciálních diferenciálních rovnic (zákony zachování). Tyto rovnice jsou řešeny nejčasteji pomocí metody konečných objemů (MKO), a metody konečných prvků (MKP) nízkého řádu. Nicméně, oba tyto přístupy nedosahují vyššího řádu přesnosti, a navíc je dobře známo, že konformní metoda konečných prvků není optimální nástroj pro diskretizaci rovnic prvního řádu. Nejnadějnější přístup k přibližnému řešení stlačitelných Eulerových rovnic je nespojitá Galerkinova metoda, která kombinuje stabilitu MKO s vynikajícími aproximačními vlastnostmi MKP vyššího řádu. Cílem této diplomové práce byl vývoj, implementace a testování nových algoritmů pro adaptivní řešení nestacionárních stlačitelných Eulerovových rovnic na základě vyššího řádu nespojité Galerkinovy metody (hp-DG). Základem pro nové metody byly nespojitá Galerkinova metoda a časoprostorové hp-MKP algoritmy na dynamických sítích pro nestacionární problémy druhého řádu. Nové algoritmy byly implementovány a testovány v rámci open source knihovny Hermes.
The compressible Euler equations describe the motion of compressible inviscid fluids. They are used in many areas ranging from aerospace, automotive, and nuclear engineering to chemistry, ecology, climatology, and others. Mathematically, the compressible Euler equations represent a hyperbolic system consisting of several nonlinear partial differential equations (conservation laws). These equations are solved most frequently by means of Finite Volume Methods (FVM) and low-order Finite Element Methods (FEM). However, both these approaches are lacking higher order accuracy and moreover, it is well known that conforming FEM is not the optimal tool for the discretization of first-order equations. The most promissing approach to the approximate solution of the compressible Euler equations is the discontinuous Galerkin method that combines the stability of FVM, with excellent approximation properties of higher-order FEM. The objective of this Master Thesis was to develop, implement and test new adaptive algorithms for the nonstationary compressible Euler equations based on higher-order discontinuous Galerkin (hp-DG) methods. The basis for the new methods were the discontinuous Galerkin methods and space-time adaptive hp-FEM algorithms on dynamical meshes for nonstationary second-order problems. The new algorithms...
