Kvadraturní formule Clenshaw-Curtisova typu pro Gegenbauerovu váhovou funkci
A quadrature formula of Clenshaw-Curtis type for the Gegenbauer weight-function
diploma thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/40815Collections
- Kvalifikační práce [9075]
Author
Advisor
Referee
Janovský, Vladimír
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Numerical and computational mathematics
Department
Department of Numerical Mathematics
Date of defense
17. 9. 2012
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Excellent
Keywords
Keywords not foundTáto práca sa venuje predovšetkým kvadratúrnym vzorcom založeným na Če- byševovom rozvoji, známym ako Clenshaw-Curtisove kvadratúry. V začiatkoch práce sa tak zaoberáme Čebyševovými polynómami, ich definíciami a vlastnost'a- mi. Tieto vedomosti využijeme k odvodeniu Clenshaw-Curtisovej kvadratúry. Značná čast' textu je venovaná porovnaniu tejto kvadratúry s obecne známou Gaussovou kvadratúrou ako teoreticky, tak aj na príkladoch. Clenshaw-Curtisovu kvadratúru následne rozšírime o Gegenbauerovu váhovú funkciu, čím získame nové metódy pre numerickú integráciu. Tieto metódy nám umožnia riešenie d'alších problémov, čo zdôrazníme na numerických experimentoch. 1
In this thesis we study especially quadrature formulae based on the Cheby- shev expansion, known as the Clenshaw-Curtis quadrature. The first part is focused on the Chebyshev polynomials, their definitions and properties. This knowledge will be used to derivate the Clenshaw-Curtis quadrature. Consider- able part of this work is dedicated to comparison of this and the well-known Gauss quadrature both theoretically and practicaly. In the further work we will extend the Clenshaw-Curtis quadrature by the Gegenbauer weight function which gives us new methods for numerical integration. These methods allow us to find a solution of some known problems what will be pointed out also on some nu- merical experimets. 1