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Introduction

Numerical integration is a very important part of the nurma@rianalysis. We
want to compute a definite integral by a quadrature using nigaidechniques.
Such a formula approximates the value of a definite integraihé use of known
properties about the integrand at a set of discrete points.WW evaluate the
guadrature formula based on the Chebyshev expansion andvail aerive, no-
table points of Chebyshev polynomials can be used as a sesakth points.
Such a quadrature formula is known as the Clenshaw-Curtisrgtuad because
C. W. Clenshaw and A. R. Curtis were the first to introduce this @ggr in
1960. As a bit curious fact can be considered that Hungariah@matician L.
Fejér presented two quadrature rules very similar to Clemgbartis quadrature
in 1933.

Neverthless, we shall firstly introduce Chebyshev polynésraad their proper-
ties which we need for further work. In this part of work we tseefer to [L4]
and so we do not need to prove all the theorems. Some of theimggrtant
properties are the orthogonality and the even parity, whitthbe used through
the whole work. Then we will take a short look at well known huats for nu-
merical integration - Simpson’s rule and Gauss quadratfline.observation and
comparison of these two quadratures is motivating us torel@mnother method
for numerical integration. Based on our knowledge of the Chkby expansion
we will be able to derive Clenshaw-Curtis quadrature in thdlamvay as the
founders made it in their work’]. This quadrature will play the main role in the
rest of the work.

Having a new quadrature we will firstly compare it with alrga@isting and fre-
quently used Gauss quadrature both theoreticaly and ga#lgti Surprising re-
sults arise as the new quadrature is almost as accurate as Qaadrature which
satisfies the factor-of-2 advantage in efficiency. Obsermatabout these results
were done already by C. W. Clenshaw and A. R. Curtis, but we wilk s
part of work upon the article of L. N. Trefethemd] who proved the new error
estimations of the Clenshaw-Curtis quadrature.
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In the next part of work we briefly introduce Gegenbauer poiyrals and the
Gegenbauer weight function which is also known as "ultraspal weight
function. With this function we will extend the previouslgrived Clenshaw-
Curtis method for numerical integration. Within this partwdrk a lot of re-
search was done by H. V. Smith and D. B. Hunter in their artié]e YWe shall
analyse this article and derive also method based on a nex gistcrete points.
After providing error estimations we will use these methaddsexamples. For
this purpose numerical software Matlab 7.5.0 is used.

H. V. Smith[9] has already pointed out that the "classic" numerical irgggn,
where the quadrature is applied iteratively, is not the amiton for obtaining a
satisfying result. Based no his knowledge and Theorems grioviis previous
articles [7], [8], [10] and [L1], he developed with D. B. Hunter ] a method
where the quadrature rule is applied only once. After thaoise, the exact error
term is calculated.

In the end of this work we briefly mention use of Chebyshev egjmmand there-
fore connection with Clenshaw-Curtis quadrature in the goestf simple ordi-
nary equation. Two basic methods are introduced shortly.

At the end | would like to point out a fact that Clenshaw-Curtigadratures
have been for a long time in a shadow of other methods for nicailéntegra-
tion. But recently, the team from the Oxford University undlee supervision
of L. N. Trefethen has developed "chebfun”, what is a collectd algorithms
which extends familiar powerful methods of numerical cotagpion where a big
impact is given on Cheyshev polynomials and also a ClenshawsCuiadrature.
This together with new theorems recently posted impliesriethods based on
Chebyshev polynomials are getting to the forefront.

!Corresponding Matlab source codes can be found on attackditim
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Chapter 1

Chebyshev polynomials

Chebyshev polynomials are named after Russian mathema®afanty Lvovich
Chebyshev (May 16, 1821 - December 8, 1894) who is considered ral-
ing father of Russian mathematics. As we will see, Chebyshdéynpmials
are a sequence of orthogonal polynomials which can be deiimetny ways,
for example recursively. We distinguish between four kinti€hebyshev poly-
nomials, but we shall focus on the Chebyshev polynomialsefitkt kind which
will be used in the further work. The widely used notatiGnfor these polyno-
mials becomes from the alternative transliterations ofnéu@me Chebyshev used
in French - Tchebycheff or Germany (Tschebyschow).

1.1 Chebyshev polynomials

Firstly, we shall introduce the Chebyshev differential emma
d? d
(1 o 1’2) Y Yy

2 xd—+ny—0 lz| <1, n=0,1,2,..., (1.2)
wherey = y(x). If we substituter = cos¢ we obtain
dt 1
dr ~ sint’
dy dy dt 1 dy

dz ~ dt d:E E E

ty _d d( 1Yy, 1y
dz2 ~ dtdz smt dt \sint ) dt ' sintde2 ]

cost dy d?y
sin2t \ \ sint d:E2 )




Using these identities we can simplify the original equatiothe form

d?y 2
ﬁ—f—ny:O.

General solution of this equationg$t) = A cosnt + Bsinnt. When we trans-
form back to the variable we get the form
y = Acos(narccosx) + Bsin(narccosz), |z] <1, (1.2)
or equivalently
y = AT, (x) + BU,(x), |z| <1,

whereT,,(x) andU, (x) respectively are Chebyshev polynomials of the first and
second kind of degree. The following definitions of Chebyshev polynomials
can be found in14] (Chapter 1).

Definition 1.1. (Chebyshev polynomials of the first kind.)
DenoteT,, (x) the Chebyshev polynomial of the first kind of the degredove
the interval[—1, 1] defined by the recurrence relation
To(l') = 1,
Toii1(x) = 22T, (z) — Ty—1(x).

They can be equivalently expressed by the following expbicitula
[n/2]
n (n—Fk—1)! _
T _ -1 k 20 )" 2k
o) =5 22 D G0
k=0
where|n /2] denotes the integer part of the real numbge.
It leads to (see 4], Chapter 1)
T, (z) = cos (narccos z). (1.4)

Moreover, when we substitute= cos ¢, where as the range for correspondifig
can be taker0, 7], we get the equation

T, (x) = cosnd. (1.5)

In the literature we can also find different expression TQrknown as the Ro-
drigues’ formula:

—1)(1 — 22 1/2 T dr
(=" )2V d ((1_x2>n—1/2)’

T,(z) =
@) = A Te T2 am
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wherel is the well-known Gamma function{] (Chapter 6)
['(z) :/ e 't*7dt,  R(z) > 0. (1.6)
0

The Gamma function is very important for the rest of this wolecause its
properties are well-known we will not write them again, tleay be easily found
in a numerous literature, for instance/] (Chapter 6).

Definition 1.2. (Chebyshev polynomials of the second kind.)
Denotel/, (x) the Chebyshev polynomial of the second kind of the degabeve
the interval[—1, 1] defined by the recurrence relation

Uo(l’) = 1,
Uy(z) = 2z, @.7)
Upi1(z) = 22U, (x) — Up—1(2).

Also in this case we can use the explicit formula

[n/2] B ' (a
Un(SE) _ Z (_1)kk'<(T:L _I;)kl)'<2$€)n2k _ Tn+1( )

— n+1

If we use the same substitution as above, we can obtain theviofaformula

(see [L4], Chapter 1)

sin(n + 1)6
sin 6

Rodrigues’ formula for the Chebyshev polynomial of the sédand U, (z) has

the following form

_ (=1)"(n+1)y/7 d” 2\n+1/2
Un(z) = (1= )/ T (1 1 3/2) do" (1 —2?)m+172).

Upn(cosf) = 6 € [0,n]. (1.8)

There are also Chebyshev polynomials of the third and fourtd.kThey are
sometimes called "airfoil polynomials”. We can find themin][

Definition 1.3. (Chebyshev polynomials of the third kind.)
DenoteV,(z) the Chebyshev polynomial of the third kind of the degredove
the interval[—1, 1] defined by the equation
1
5) 0
Vi(z) = M) (1.9)

[
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wherez = cos ) as above.
The recurrence definition is given by relations

Vo(z) =1,
Vi(z) =2z -1, (1.10)
Vo(z) =22V, 1 () — Voo(z).

Definition 1.4. (Chebyshev polynomials of the fourth kind.)
DenotellV, (x) the Chebyshev polynomial of the fourth kind of the degrakove
the interval[—1, 1] defined by the equation

sin (n+ 1) 6
2

wherex = cos ¢ as above.
The recurrence definition is given by relations

W()(ZE) = 1,
Wi(x) =2z + 1, (1.12)
Wi(x) = 22W,_1(z) — Wyh_a(z).

There exist numerous identities between these polynomiaish can be easily
found in many books and articles, for instance se®.[They are not stated here
because we are using only the Chebyshev polynomials of thé&ifugin the rest
of this work.

Remark.We shall use the simplified notation "Chebyshev polynomiadtead of
"Chebyshev polynomial of the first kind".

1.2 Properties of the Chebyshev polynomials
There are many interesting and important known propertiegbe Chybeshev
polynomials. We introduce some of them which will be usedraithers can be

easily found in literature, for example seel].

Chebyshev polynomials of theth kind (p = 1, 2, 3,4) are orthogonal with re-
spect to the corresponding weight as it is shownli] [Section 4.2).



Theorem 1.5. Chebyshev polynomials, are orthogonal with respect to the

weightl/+/1 — z2. Thus

[ >
————dr =0, i#j,
-1 \/1 — I2

(1.13)

=3
It is essential to know where the zeros and extrema of the Gielnpolynomial
are. These important points can be obtained from the dein(ti.5 and we can
find them together with the basic derivative relation’id][(Section 2.2).

Theorem 1.6. Roots of the Chebyshev polynoniigl(n > 0) are points

2k +1
T = cos <u) k=1.. .n (1.14)
2n
Theorem 1.7. The derivative of’,, can be expressed by the following equation
d dcosnf  nsinnd
—T(z) =¥ = = : 1.1
e () o g ° cosf (1.15)

dé
By using the properties 6fin and reccurence definitioriL(3) of the T}, we can
also obtain an interesting reccurence relation

(1 — 2T (z) = —naT,(x) + nTp_1(z), n>1. (1.16)
Theorem 1.8. Extrema of the Chebyshev polynoniigl(n > 1) are attained if
) = COS (W—k), k=1,...,n. (1.17)

n

Chebyshev polynomials also hold the discrete orthogonastis shown in 4]
(Section 4.6), over the discrete point $e}.} consisting of the zeros df, ()
and over the set consisting of the extrem& pfr). We shall introduce both these
conclusions.

Theorem 1.9. If we choose{z} to be the set of extrema @f,(x), Chebyshev
polynomials satisfy the following condition for the disererthogonality

n
1"

Y T(a)Tyw) =0, i#j<n,
o " o (1.18)
=5 0<i1=7<n,

i=7€{0,n},
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wherez,, are the extrema df,,(x) and the double dashindicates that the first
and the last term in the sum are to be halved.

In the case when we chooée, } to be the set of zeros @f,. (), the relation is
modified

n+1
D Ti(an)Ty(x) =0, i#j<n,
k=1
1 (1.19)
:”; L 0<i=j<n,

wherex, are the zeros of,, ().

Theorem 1.10.Let f(z) be a continuous function over the interyail, 1]. Then
it can be expanded as a series of the Chebyshev polynomidls §ection 5.2)

fla) = %AOTo(x) +AT(2) 4= Y ATu(2), (1.20)
n=0

where the asterisk means that the first term is to be halved.coéfficientsA,,
are given by the following formula

1
AH_Q/ de, n=0,1,2,3,.... (1.21)
™) \/1—I'2

The property which will be widely used later is the one ddsng the even parity.
It can be easily obtained from the relatidn3).

Theorem 1.11. Whether Chebyshev polynomial is an even or odd function de-
pends on its degree € Ny. Chebyshev polynomials satisfy the following rela-
tionship

T.(—z) = (=1)"T,(z). (1.22)

Thus ifn is evenl),(z) is even as well; otherwisg,(x) is odd.

Proof. This property deduces directly from the relatioch3) asg(x) = = is
odd function andl’}, 1 (z) = 227, (z) — T,,—1(x) (starting with7y(x) = 1 and
Ti(z) = x)is

- equal to odd function multiplied by odd function with sudatted even function,
thus it is even function,

- equal to odd function multiplied by even function with siatmted odd function,
thus it is odd function. O

10



From the reccurence definitiod.@) of 7,, we can also easily see the values of
Chebyshev polynomials in their boundaries.

Theorem 1.12.The values of Chebyshev polynomials in their boundatieare
T,1)=1 n=0,1,2,..., (1.23)

and
T,(-1)=1 n=0,24,6,...,

1.24
To(-1)=-1 n=1,357,.... (1.24)

The following property may be obtained by applying the folanior derivative
(1.15 on Chebyshev polynomials,,; and7;, ;.

Theorem 1.13.Chebyshev polynomials, satisfy the following property

To(z) = (T;”l(x) . T’;*(‘r)) . n> 1. (1.25)

2 n+1 n—1

Based on this formula we can prové {], Chapter 2.4.4) the following property
for the integration of the Chebyshev polynomial which will liged later in the
Section2.3.

Theorem 1.14.The indefinite integral of Chebyshev polynomials can be sspre
in terms of Chebyshev polynomials as follows{[ Chapter 2.4.4)

/To(gs)d:): = 2 + const,

2

/Tl(x)dx = % + const, (1.26)

1 /7T, T,
/Tn(:c)dx == nl) 1) +const, n=2,3,4,....
2\ n+1 n—1

The following two relations can be found in the artici,[(p. 126, eq. (3.1) and
(3.2)).

Theorem 1.15. Suppose\ > —% andr € Z. Then the Chebyshev polynomials
and Gamma function satisfy the following identit§]([Eq.(3.1))

/1 ()T (A+HT(A+1)y/7

(1-— x2))‘_1/2 Ty, (x)dx =

1 FA+r+1)TA—r+1) (1.27)

11



Gamma function holds also the following propert$]([Eq.(3.2))
(=1)" (T(A+1))? Hg—1+)\

1.28
FA+r+1DI'A—r+1) e J+A ( )
Based on this equation denote
T o 1 o
== ! . >0,
N J+ >\
i= (2.29)
=1, r =0,
=G_.()N), r < 0.

The previous Theorerh.15plays an important role in the process of derivation
the desired method in Chapt®érand its error estimation. We will be using the
same notatiords,. as we have just defined.

The visualisation of Chebyshev polynomidls(for n < 0 expanded symetrically)
Is very interesting even for small valuesioés we can see on the following graph.

We have introduced Chebyshev polynomials and some prope@fti€hebyshev
polynomials of the first kind. With this knowledge we can gerihe Clenshaw-
Curtis quadrature. The theory of the Chebyshev polynomiasriglarge and the
polynomials of second, third and fourth kind which have hingpact in various
theories. There are also the shifted Chebyshev polynomiah four kinds. It
is available in various literature, for exampig].

12



Chapter 2

Derivation of the Clenshaw-Curtis
guadrature

Within this chapter we derive the Clenshaw-Curtis quadratdreh was firstly
presented by C. W. Clenshaw and A. R. Curtisih [This kind of numerical
integration is based on an expansion of the integrand insefr@hebyshev poly-
nomials. We will find out that there is also a very close cotioedbetween the
Chebyshev expansion, which is used as an essential of ClerSheis quadra-
ture, and Fourier transformation.

2.1 Motivation

At the begining of this section we shall introduce two welbium methods of
numerical integration. One of them is (composite) Simpsouale which is im-

portant tool in the theory of numerical integration and caridund in every basic
handbook of numerical analysis, for examplé][(p. 365-375).

Method 2.1. (Simpson’s rule.)
Let f € C*[a,b]. The three-point Newton-Cotes formula, known as Simpson’s
rule is given by

/abf(:v)dx <0 - <f(a) +4f (b ; a) + f(b)) . (2.1)

If we split the intervalja, b] into even number of equal subintervals (= «,
x, = b) we get the following formula known as the composite Simpsaoies r

13



with equidistant nodes
/ Fla)de ~ = (F(wo) + 4F(er) + 2f (a2) + 4 (ws) +
c+4f(Tn) + f(xn))7

whereh = (b—a)/n and z; =a+ jh forj=0,1,...n — 1.
The error arising by using this method is in absolute valuerizted by the value

OOID

(2.2)

4
5ol — 9 max |9 ()] (2.3)
Method 2.2. (Guass quadrature.)

Gauss quadrature (also know as Gauss-Legendre quadraisirgiven by the
formula ([17], p.887)

/_1 f(z)dz =~ szf(xz)v (2.4)
where 9

(= a) (Py(w)?
and P, denotes the Legendre polynomial of degreand z; is thei-th zero of
P,(x).
22n+1 (n;)4
(2n+ 1)[(2n)!1)?
Using the transition fronj—1, 1] to [a, b] we get the formula

b bh— a — b—a a+b
dy ~ ; i ’
/Gf(y)y s <2x+2>

Remark.The zeros of?, (x) are not equidistant and neither are the nodes of this
method.

FeME), —1<¢<t. (2.6)

The error arising using this method is limited by

Knowing the Newton-Cottes and Gauss formulae for numeridggration the
next question can be asked. Why do we need another one?

Every method has its own pros and cons. For example, Gaussiffodoes not
have problem with rounding errors and converge for any oolotis function. It
even has a factor-of-2 advantage in efficiency. But it is nath@ppropriate to

14



indefinite integration. Also iteration with growingrequires a new set af; and
weightsw; without using previously computed values. Thus a lot of cotapon
has to be done what raises the prize of this method.

On the other hand, Simpson’s rule is relatively easy to imglet. The itera-
tion also uses previously computed values. But taking intmawt for example
highly-oscilated function, much more function values W# needed to estimate
satisfactory the integral, comparing to the previous Gapssdrature scheme.
And still we can encounter a problem with check failure. Tisblem occurs
when we are trying to establish the correctness of our résith usingn nodes)
by comparing to double amount of nodes. We can get both sesuting and
neverthless one could think that this result is correct. figber order Newton-
Cotes formulae can also have negative coefficients what eahttesignificant
rounding errors.

We will derive the Clenshaw-Curtis formula which is based antdrm by term
integration of the function expressed by a series of the Cétedwypolynomials.
As we will see, the unique advantage of such a method is thatcituracy may
be checked before the integration is completed. There sapesaime other advan-
tages such as increasing the number of the ordinates wipheubus work being
wasted (similarly to Simpson’s rule) or accuraccy whichugpsisingly compa-
rable to the Gauss formula. This phenomenom will be discliss®e precisely
in the ChapteB.

2.2 Relation with the Fourier transformation

From the first look we can suppose that there is some relagitwmden the Cheby-
shev expansion and the Fourier cosine transformation. $elakions can be
found in several publications, for exampie/] (Section 5.3).
Supposef € L£5[—1, 1] with respect to the weight functiari — xz)—%. Thus via
the usual change of variable we can define a new function éslsee used to do
it earlier withx = cos )

g(0) = f(cosB), 0 €l0,m]. (2.7)
We can extend this definition tbe R by introducing

9(0 + 2m) = g(0),

9(=0) = 9(0).
Thusg becomes arf,-integrable, ever@r-periodic function what is preferable
for developing into a Fourier series. Singes even we get the Fourier series with

15



only the cosine terms

o0

g(0) = Z* ay, cos ko, (2.8)
k=0
where the asterisk means that the first term is to be halved and
2 s
ay = —/ g(0) cos kO db. (2.9)
™ Jo

If we transform back to the variable = cos 6 we get the Chebyshev expansion
given by the equationl(20 with coefficients given byX.21). Thus, apart from
the change of variables, the Chebyshev series expansianisadl to the Fourier
cosine series and the coefficiensoccurring in these two expansions have iden-
tical values.

Thus if we choose the extrema of the Chebyshev polynomials/)(to be the
set of points we can evaluatg by the discrete cosine transformation thanks to
orthogonality (.18

2 [ g wkj
U~ <]ZO f (COSF) COST> .

2.3 Derivation of the Clenshaw-Curtis quadrature

We shall use the same approach as it was dong]irAssume the integration of
a non-singular function in a finite range.

Remark.We may observe that an infinite range may be transformed tata fin
range, or approximated by a large finite range.

Every functionf(z) which is continuous and of bounded variation (real-valued
function whose total variation is bounded) (i@ b) can be expanded as follows
([2], Chapter 5)

flx)=F(t) = %CLOTO(t> +aTi(t) +aTo(t)+---, a<x<b, (2.10)

B Qx—(b—i-a).

T.(t) = cos (rarccost), t= P (2.11)

16



Integrating over an intervad, x| we obtain

bfa /jf(r)clx = /_t1 F(t)dt,

_ / t (%GOTO@) FarTi(t) + asT(t) + - - -)dt.

-1

If we use the propeties for integratioh.26) and the known boundaries of Cheby-
shev polynomialsX.24 we obtain a formula

! o E r—1Qr—1 — Gr41 S Ap—1 — Gr41
F(tydt = (-1) S > ().

-1 r=1 r=1

If we now denote

Ap—1 — Gr41
by = ——" r=1,2,...,
o " (2.12)
by = 2by — 2by + 2b3 — - - -,
we can write
t 1
/ F(1dt = b+ BT3(0) + bTs(1) + - (2.13)
-1

The definite integral is then given by

2
b—a

b 1
1
/f(x)dx:/ F()dt = Jbo-tbytbyt o = 2y by, (2.14)
a —1

and the indefinite integral is given by the sum of seriz4y. Since Chebyshev
polynomials are orthogonal, any polynomjglr) of degreeN can be written in
the form

1 1
f(:)j) = F(t) :§a0 + alTl(t) + -+ Cln_lTN_l(t> + §aNTN(t),
N (2.15)
= a,T,(t),
r=0

where—1 < ¢t <1 and Z denotes a finite sum whose first and last terms are
to be halved.
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We can choose the extrema of the Chebyshev polynomial as thts po(see
orthogonality (.18 and Method5.1) to get a Method based on the practical
abscissae.

The coefficients:, are then given by (see also Secti@)

N
2 17
a, = N; F, cos %TS, F,=F (cos %) , (2.16)

which can be rewritten in the form

N
2 " r
ar =+ ; FTy(t,), t.=cos N (2.17)
Any function which satisfies the conditions necessary fanveogence of its
Chebyshev expansion can be approximated to any requiredsagcoy a finite
series of the formZ.15 with coefficients given by the above formula 17).

We have pointed out the relation with the Fourier transfdaioma We already
know that this kind of transformation can be achieved udiegwell-known Fast
Fourier Transformation. This connection will be mentiomedhe next chapter
where we will also point out that the Clenshaw-Curtis quadeaticomparatebly
accurate to Gauss quadrature.

18



Chapter 3

Comparison with the Gauss
guadrature

One of the goals of this work is to compare general ClenshawisCywadrature
with Gauss quadrature. As we know, the Guass quadraturdnbagivantage of
the factor-of-2 in efficiency. On the other hand, Clenshawti€is much easier
to implement but from the first look is half as efficient. Howe¥he numerical
results are very surprising as was reported already by C. isGév and A. R.
Curtis ([2], 1960). Observations made by H. O’Hara and F. J. Smii)y ([968)
indicates that both formulas are about equally accurataceSihen also other
mathematicians made the same observation but L. N. Trefdfhé], 2008) is
the one who took a step further. He pointed out that for moshefintegrands
both quadratures reach very similar accuracy. And by usied=FT, Clenshaw-
Curtis can be implemented if(n log n) operations which is much better than
solve the tridiagonal eigenvalue problem which arises eithplementation of
Gauss quadrature.

Assume that we have given a continuous functfoan [—1, 1] and we wish to
approximate the integrdl = I(f) = [, f(z)dz by sum

L= L(f) = ) wif(ay),

where the nodes, depend om but not onf, for variousn. Due to the fact that
I,, is desired to be an interpolary quadrature, the weightare given uniquely.
Thus/, integrates exactly polynomials of degree at masfs we already know

19



from (1.20, the Chebyshev series fgre C[—1, 1] is defined by

f(z) = Z* apTp(z), with ap = %/1 %\/ig)dx,

k=0
where the asterisk indicates that the first tekm=(0) is to be halved.
The Chebyshev polynomialg, are orthogonall.13 with respect to the weight

function1/+/1 — z2. Thus we can define the Chebyshev weighted norm as it was
donein [LE] (p. 75, Eq. (4.5)).

Definition 3.1. The Chebyshev-weighted 1-nojirij is defined by

u' ()
Vi-a?

wherew is of bounded variation (real-valued function whose totaliaion is
finite).

Y

1

lullr = H

Several inequalities concerning this norm are provedLii) (Chapter 4). They
set bounds for the coefficienis,| and lead to the following theorem which holds
for the Gauss quadrature as well as for the Clenshaw-Curttrgtuse.

Theorem 3.2.Let Gauss or Clenshaw-Curtis quadrature be applied to a functio
fecl-1,11.1f f,f,..., f*V are absolutely continuous on the interyall, 1]
and|| f® ||z =V < oo for somek > 1, then

u_[n’ < 52V

= 157k(2n + 1 — k)*’ 3.1)

e forn > g for the Gauss quadrature.

e for n > n, wheren, depends o for the Clenshaw-Curtis quadrature.

Proof. We can find the proof in thelf] (p. 79-80). The main fact is that of
"aliasing". On the grid iff0, 27| of 2n equally spaced point;

2
0= = 0<k<2m—1,
n

the following functions

cos (n + p)mby, cos(n — p)mly,

20



are indistinguishable for any € Z. We use to say that the numbérs— p)r6;
and(n + p)m0, are "aliases" of one another on this grid. Based on this prppert
one can see (transplanting= cos 6) that

Tn+p(xk> = Tn—p(xk)a 0<k<n, (3.2)

on the grid of extreme points of Chebyshev polynomigls= cos %’f (method
based on the practical abscissae, see Mefhd. Thus

L(Thip) = I(T_p) = I(T_,) = 0, n+p isodd
2 (3.3)

= m, ’I’L:l:p |S even

and the error in integrating is given by

I(Tpsp) — In(Thyy) =0, n+p isodd
8pn .
= + IS even.
w2+ D2+ (12 P
(3.4)

Remark.Here we can already see why is the Clenshaw-Curtis quadraiwae-s
curate. Ifn is even then the first few terms in the Chebyshev expansigitioat
contribute to the errof (f) — 1,,(f) area, o112, anialnia, - ...

Now we can estimate

I(f) = L(f) = > ar (I(Tk) = L(Ti)) < S+ S+ S5 + Si,

k=0

1Because of aliasing we have to evaluate only the coefficignip tok = n/2. If x; = cos %
thenT,, (x;) = T;(xy).
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where asterisk means that the first term of sum is to be halved a
S1="> lax| [I(T}) = L(T})l,
k=0

2n— {n%J
Sp= Y lal[I(T}) = L(Ty)].
k=n-+1
2n+1

Se= Y lal [I(T) = L(Ty)],
k=2n+1— Ln%J

Sy= Y lal [I(T}) = L(Ty)].

k=2n+2

The termS; = 0 because the quadrature formula is interpolatory. The oéners
are estimated via inequalities proved irt] and thanks to aliasing. In the case of
Gauss quadrature the terifisandS; are equal t@) as well. Consider Clenshaw-
Curtis quadrature.

The estimation of the terifi; is based on a relatio3(4). Because of that relation
we can write that the factorg(7},) — 1,(Z})| are of order at worst—3 and by
inequality ([L6], p. 75)

2V

|an‘§7m(n—1)--~(n—k)

, foreachn > k +1,

the coefficients:; are of orde/n=*~1. ThusS, consists ofO(n) terms of size
O(Vn~*=%) which means a total magnitudE(Vn—’“‘g).

In the same way the ters; consists oD (n%> terms of sizeD (Vn—’“—l) which

2

means a total magnitude (Vn*kfg

The termS, is still remaining for both quadratures. We know about thenev
parity of T,, (1.22) which means thaf; is odd whenevey is odd. Thus from the
relation 3.3) for j > 4 (j is from2n + 2)

[[(T},) — In(T})| < % if & is even
<0, ifkisodd

In particular, the statement in the Theorem for the Clens@aniis method allows
us to increase a little further. Thus we can ensuke> 6 (n > 2 is enough for
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such case) and the constghtcan be improved ta + 52 = 22 which gives the
result

2V 32V

<O(Vn*3 ‘
St St St S < OV o o ¥ T— ) ~ Sonk(@n + 1 —k)F

[]

As we can see, the factdr* in the error bound from the previous relatidhi) is
common for both quadratures. Yet the Clenshaw-Curtis forrhataessentially
the same performance for most integrands as Gauss formul&l. Trefethen
shown also another explanation of this, mostly unexpegkdnomenom based
on the rational approximation as can be foundlif] [Section 6).

We have already pointed out the relation with the Fouriermsfransformation

in the Section2.2 Thus we know that the Chebyshev coefficieatscan be
expressed as thmsinetransformation. And such a formula is mostly calculated
by the Fast Fourier Transformation algorithFHT). C. W. Clenshaw and A. R.
Curtis published their work in 1960 while the FFT was introgldien 1965. The
connection with the FFT was pointed out by W. M. Gentlemiamp{ementing
Clenshaw-Curtis quadraturd,972). The Clenshaw-Curtis method based on the
extrema of Chebyshev polynomial can be implemented in Matteironment as

it was done in 16].

function | = clenshaw curtis(f,n) //(n+l)-pt C -C quad. of f

X = cos(pi*(0:n)"/n); //extrema of Chebyshev pol ynom al s

fx = feval (f,x); //f evaluated at these points

real (fft(fx([1:n+l n:-1:2])/(2+n))); //Fast Fourier Transform
[9(1); g(2:n)+g(2*n:-1:n+2); g(n+l1)]; //Chebyshev coeffs
Oxra’; w(1l:2:end) = 2./(1-(0:2:n)."2); //weight factor

w<a; /[/the integral

—swoa@

The following function shows one of the possible ways howniplement the
Gauss formula in the Matlab enviroment as it was doné i [

function | = gauss(f,n) //(n+l)-pt Gauss quadrature of f

beta = .5./sqrt(1-(2+«(1:n))."(-2)); //3-termrecurrence coeffs
T = di ag(beta, 1) +di ag(beta,-1); //Jacobi matrix

[V,D] = eig(T); //eigenval ue deconposition

x = diag(D); [x,i] = sort(x); //nodes (= Legendre points)
w=2+V(1,i).72; I/weights

| =w«feval (f,x); //the integral
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The main difference between these two codes is that the Glen€hurtis repre-
sentation is more efficient than the Gauss representati@nemie have to face
the eigenvalue problem. In the case of Clenshaw-Curtis fanvelcan also store
all previously calculated values of the function and usetlagain whenever we
decide to use more pointa{ > n). Therefore Clenshaw-Curtis does not require
many more evaluations of function to converge to a desiredracy.

For ilustration we can provide the distribution of Chebyslt&auss and Newton-
Cotes (equidistant) points far= 42.
Quadrature nodes in [-1,1]

Gauss points

© oom

Chebyshev points

ooooooooooooooooooooooooooooooooooooooooooo

Newton—Cotes points

Figure 3.1: Distribution of Chebyshev, Gauss and Newton-pténts.

Remark.This figure was obtained by Matlab functidisplaypoints.mwhich can
be found on attached DVD.

We shall provide some simple examples to compare these twoookepractically.
Within these examples we provide rounded results of bothhaoust as we are
more interested in absolute erité( f)—I,,(f)| which we display also graphically.
The absolute error is on the axis y; on the axis x are the nusmbas we use
(n + 1)-pt. quadrature.
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Example 3.3. We can integrate exactly the polynomial

1
I= / r?dz = 2/13=0.153846153846154.
—1

The table of values provided by method of Gauss and Clenshatis@urchosen
n follows.

Clenshaw-Curtis abs. error Gauss abs. error
n=4 0.15000 3.846 x 1073 | 0.14585 | 7.994 x 103
n==~06 0.14777 6.078 x 1073 | 0.15385 | 1.110 x 10~1¢
n=12 0.15385 5.551 x 10717 | 0.15385 | 2.776 x 10~1°

Remark.The absolute error is calculated by the differente- I,,| wherel, is
the result obtained by chosén + 1)-pt. quadrature.

0.07 o

0.06 *  Gauss

O Clenshaw-Curtis

0.05

0.04

0.03

0.021

0.01-

Figure 3.2: The absolute error.

Remark.lIt is no surprise that we have achieved these results foryapoiial of
degreel2. Gauss quadrature integrates exactly polynomials of éegre- 1 and
thus we have the error comparable to thachine epsilohsincen = 6. On the
other hand, Clenshaw-Curtis quadrature integrates exaaljypmials of degree
n.

2We are using double precision by default, which meansrtizthine epsiloa1.11 x 10~16
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Example 3.4. The exact value of the integral of the exponential functson i

1

1
/ e’dr=2.350402387287603.

We shall provide similar table as in the example above.

Clenshaw-Curtis abs. error | Gauss| abs. error
n = 2.3621 1.165 x 1072 | 2.3503 | 6.546 x 107°
n = 2.3505 2.059 x 1078 | 2.3504 | 3.109 x 10~
n=12 2.3504 0 2.3504 | 1.332 x 1071

0.01

0.009 - x  Gauss

0.008- O  Clenshaw—-Curtis

0.007 -

0.006

0.005

0.004 -

0.003 o

0.002 -

0.001

T S A

Figure 3.3: The absolute error.

The exponential function is entire and therefore it is atiaffhrough the complex
plane. As we can see, Gauss quadrature significantly outpesf@lenshaw-
Curtis quadrature for smalh as both quadratures converge very fast.

Remark. Within the next examples we shall take as the exact solutfaie
following integrals the result obtained by the functigmad(f (x),a,b, tol)which

is built in the environment Matlab 7.5.0. This method apjprates the integral
of function over the integrdh, b] via recursive adaptive Simpson quadrature. Its
basic tolerance is set ¢, but we shall use0~'° instead.
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Example 3.5. We can write the exact (s&emarkabove) result

1

1

/—dx£0.870419751312476.
-1 1 + 8:64

We shall provide table with rounded values of the selectetiodst

Clenshaw-Curtis abs. error | Gauss abs. error
n =10 0.8725 2.098 x 1073 | 0.8719 | 7.617 x 10~*
n = 20 0.8704 2.407 x 107° | 0.8704 | 7.462 x 10~
n = 30 0.8704 5.537 x 10719 | 0.8704 | 7.842 x 10710
0.01
x  Gauss
0.009 ¢ © O Clenshaw—Curtis

0.008 -

0.007 -

0.006 -

0.005

0.004 |-

0.003

0.002 o
X
0.001 o
X
« (@]
0 xQ9 g S Py ®
5 10 15 20 25 30

Figure 3.4: The absolute error.
This function is analytic in a neighborhood|ef1, 1] but not through the complex

plane. We can see that Gauss quadrature again outperformssidev-Curtis
guadrature but this time not as significantly as in the pragiexamples.
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Example 3.6. We shall investigate the frequently presented example

1

1
/ e dr=0.178147711893461.

We shall provide table with rounded values of the selectetioadst

Figure 3.5: The absolute error.

Clenshaw-Curtis abs. error | Gauss| abs. error
n =10 0.1787 5.441 x 10~* | 0.1781 | 1.866 x 10~°
n =18 0.1782 1.373 x 107° | 0.1782 | 4.302 x 107°
n =235 0.1781 2.465 x 1078 | 0.1781 | 4.221 x 1079

0.01r

0,009} x  Gauss

O  Clenshaw—Curtis
0.008 o
0.007 -
(@]

0.006

0.005

0.004 -

0.003 o

0.002 -

O
0.001 0
O O
0 e X L RRQom > @ @ @ @
5 10 15 20 25 30 35 40

This integrated function is fror@>(R) and we can see that there is not such a
big difference in the results provided by these two quadest@as in the previous

example.
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Example 3.7.In this example we integrate a function which is not smooth

1
/ V22 4+ 1]dx=2.065384140890834.
-1

We shall provide table with rounded values of the selectetiodst

Clenshaw-Curtis abs. error | Gauss| abs. error
n =151 2.0635 1.866 x 1072 | 2.0656 | 1.875 x 10~*
n = 576 2.0654 4.306 x 107° | 2.0654 | 5.546 x 10~°
n = 1001 2.0654 1.759 x 107° | 2.0654 | 2.269 x 10~°
0.01
0,009 Gauss
O Clenshaw-Curtis
0.008 |
0.007f °
0.006 |
0.005 |-
0.004 -©
0.003F
0.002 o
0.001F &
XOéXé@?@ ° Ommoam.memm 2000000 Qa®
100 200 300 400 500 600 700 800 900 1000

Figure 3.6: The absolute error.

In this case both methods converge very slowly but both aghiewy similar
accuracy. The visible difference is again only fosmall enough where are both
quadratures very inaccurate.
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From the previous examples we can see that Gauss quadrgifecantly out-
performs Clenshaw-Curtis quadrature for functions analytia sizable neigh-
borhood of[—1,1]. But as we have also found out, for such functions both
quadratures converge very fast and therefore there is goiregl many more
function evaluations for Clenshaw-Curtis quadrature. Mweegofor functions
that are not analytic in a sizable neighborhood|ef, 1], this quadrature is
achieving comparable accuracy as Gauss quadrature. Trhizecseen from the
condition in the Theorer.2where the error estimation for Clenshaw-Curtis for-
mula holds fom > ny.
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Chapter 4

Gegenbauer weight function

Within this chapter we introduce the Gegenbauer weighttfanclt is a weight
function of the Gegenbauer polynomials which are a type thfagonal polyno-
mials. We shall shortly desribe these polynomials as thegggize Chebyshev
polynomials. Firstly, define this weight function.

Definition 4.1. (Gegenbauer weight function.)
The Gegenbauer weight function is defined by the followingutam

w(z) = (1 - x2)/\_% , A> —%. (4.1)

Gegenbauer weight function is used in the theory of Gegesrb@u ultraspher-

ical) ponnomiaIsCéA)(a:). Those are orthogonal on the interyall, 1] with re-
spect to this weight function {[/], p. 773-785).

Definition 4.2. (Gegenbauer polynomials.)
Gegenbauer polynomials; of degreen are defined by the recurrence relation

Colw) =1,
CMNx) = % (2z(n+ A =1)Cp_1(z) — (n+2X\ — 2)C)_y(x)) -

They are orthogonal on the intervé1, 1] with respect to the weight function
given by 4.1).
The equivalent Rodrigues’ formula follows.{{], p. 785)

(“2P T+ )T +2)) | gioa &7 N
Cale) = A T(\) T(2n + 2)) (1-47) @«1_” )( |
4.3
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Gegenbauer polynomials are particular solutions of thee@leguer differential
equation

(1—2%)y — 2\ + Dy’ +n(n+2)\)y = 0, wherey = y(z), (4.4)

and they generalize other well known polynomials such as#gendre polyno-
mials or the Chebyshev polynomials. Xf= % the equation4.4) reduces to the
following equation which is called the Legendre equation

(1=2)y" =22y +n(n+1)y =0,

and the corresponding Gegenbauer polynomials are knovredsgendre poly-
nomialsP,, see [L7] (p. 779).

If A = 0 the equation4.4) reduces to the Chebyshev equation presented also in
this work in the Chapter 11(1).

Authors D. B. Hunter and H. V. Smith used Gegenbauer weigldtfon as some
"generalization" of the Clenshaw-Curtis quadrature in therkn4], [12] and
we are looking for the integral of functiom which can be written ag(x) =
(1— xQ)A_l/z f(x). That means we are looking for the approximation of the in-
tegral
1
_ 1
IV(f) = / (1= f@)dz, A > —5 (4.5)
-1
by using the Chebyshev expansion of the functign). In the next Chapter we
will introduce methods based on the term-by-term integredif the approximate
Chebyshev series to achieve this objective.
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Chapter 5

A quadrature formula of the
Clenshaw-Curtis type for the
Gegenbauer weight function

In this chapter we finally investigate a desired method wisih be regarded as
a generalization of the Clenshaw-Curtis quadrature by imnglthe Gegenbauer
weight function. We will derive a method where we have to fwe question

- How shall we obtain the coefficients, , from the Chebyshev expansion? We
have already suggested a choice of the extrema of the Chebgshaomials
which is also one of the methods we will present more in detaihother method
will be based on the zeros of these polynomials. We will alsduate the method
based on a different choice of nodes. The description is taegbwith the error
estimates caused by these methods. At the end of this weowklat a method
based on different approach, which H. V. Smith introducdd [

5.1 Description of the method

Suppose a functioifi is analytic over some region of the complex plane contain-
ing the interval—1, 1] in its interior. Then we can denote BY"( f) the integral

IV(f) = /_l (1= f@)dz, A > —%. (5.1)

1
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We can approximate the functigiix) by a finite Chebyshev expansion

flz) ~ an T (), (5.2)

where the double dash indicates sum whose first and last terto be halved.
There are several details depending on the parity. e shall set

n=2s+ o, (5.3)

wheres is an integer and is equal ta) or 1.
Now we would like to approximaté™)( f). Because of the symmetry of Cheby-
shev polynomial1.22 we can see that

1 1 " " -1 o
/ (1- xQ)()‘_f) Z an T (z)da = / (1-2° A-3) Z 27 Top (2
-1 r=0 1
— Z**an%"/ ( 2)T ( )d

where the double asterigk indicates that the first term is to be halved and also
last term forn even. We receive this expression

Z** Qp, 27« T27‘) . (54)

This can be simplified using equations previously introducer heorenl.15to
the form

a' (A 1 ° ok
UN(f) = %Z 2y Gr(\). (5.5)
r=0

Remark.
J—1-=A
) > 07
H J+A

7=1
=1, r =0,
=G_.(N), r < 0.
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If we write in details terms of this sum

s

anv'/\ — 5 Un n n
; an2rGr(N) 2a,0+a721+/\+a,41+)\2+)\+
A 1—-)A2-)\
+a

"1 A24A3 -
—A s—1—XAo+1
- Ap2s e )
TI4A s+ A 2
we can see that this sum can be calculated by following recoer

+ ..

oc+1
Us = Ap 25,
9 2
r—A
Uy Zmurﬂ%—angr, r=s—1,s—2,...,1, (5.6)
A N 1
Uy = — U —Qp.0-
0 /\+1 1 9 ,0
Then using all the previous identities, we obtain
I ()\ + l)
Py = u ) 5.7
D= (5.7)

Here appears the question - how shall we obtain the coeffsien.? There
are two common methods, one is based on evaluating on thécga@s in the
extrema of7,, ("practical abscissae") and the other one based on the zetios of
T,+1 ("classical abscissae"). We can find these methodg]irvjle will also try
another way by using points
(6k —2)m
=cos——, k=1,2,... 1. 5.8

T, = COS S El ,2,...n+ (5.8)
Method 5.1. (Practical abscissae.)
According to (.17 the extreme points df,, can be easily found. As we have
already shown .17) and Sectior2.2) with such a choice we have

n
2 " g)
Uy = ; f(z)T;(x,), wherex; = cos -

which can be evaluated as

py = % <@ + if (cos %) cos % + (_21)Tf(—1)> ) (5.9




If we denote

. 27re
ndg — [(/\) T T
W, ; (T3,) cos —
and because of the symetry shown by ® we can rearrange the equatiob.d)
to the form

v () =S w,, . 1
D=3 s ( ’ (5.10)
Method 5.2. (Classical abscissae.)

The zeros of, are given by 1.14). If we choose the zeros 6}, ; for the points
x; from the previous method, then the approximati6r®)(of the functionf (z)
can be replaced by following suni{[ p.236-237)

~ Z* b, T (), (5.11)
r=0

where the asterisk indicates that the first term is to be haaret]

bp, = n+1fo] z;), r=0,1...,n. (5.12)
Zeros ofT;, ., occur ifx; = cos 223112 Thus
2j+ D)m (25 + D)rm

n'r: YT —— |> = ,1,..., .
| n+1zf( ( +1>)>COS(2(n+1) re b
(5.13)

Now denote the approximation 6fV(f) by @™ (f) (instead of" which we
used in previous case). Then

T (A+1
oV (f an?r (T, _\/—A+1 me G.(\). (5.14)

Method 5.3. (The new ascissae.)
We derive a new method based on the points given by equat®)n (
Firstly, we shall deduce the orthogonality of the Chebyshédynmmnials on this
set of points.
Consider a sum
n+1 1
Zcos (k——)0—00839+00839+ +COS(7L+§9). (5.15)
k=1
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We can immediately see that
1
sp(0) =n+1, s,(27) = —§(n+1). (5.16)

Now consider a sum of the geometric progression

Wl

B (142t 4+ =2

(5.17)

2" —1
z—1"
. _ ,
If we now substitute ¥ we can use the Euler’s formula
e = cosf +isin#,

to rewrite the sum%.16) in the form
2 .2 . .

(cos §9+zs1n§9) (1+cosf +isinf + -+ cosnb +isinnd).
The real part of the sum above consists of the following terms
1
5 (cos ((k+2/3)0) + cos ((k—2/3)0)),

2 1
i* sin 59 sin k6 = —3 (cos((k —2/3)0) — cos((k+2/3)8)),

2
CoS §9 cos kf =

which means that the real part of this progression is the sasiha series pre-
sented in§.15).

To evaluate the serie5(17), we shall begin with the denominator which we have
to multiply by the complex conjugate term. Thus we get therdevator

(6% 1) (7 1)) = 2~ 2co86 = dsin® |

The nominator is equal to

o2i0/3 (eme B 1) (efiG 1) = e0(n=1/3) _ (ib(n+2/3) _ (i6(=1/3) | 62z‘(9/37

whose real part can be evaluated in the form

cos (n —1/3)0 — cos (n +2/3)0 — cos(0/3) + cos(260/3),

i 9 g 1 in 2 qin 2
2sin 5 sin (n-l—g)e 2sin g sin G
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which means that,, given by formula%.15 can be calculated in the form

né

smt1) nf
6 2 (5.18)

0 cos

9
2

B sin(

Sn .
Sin

We can see that if-(is integer)

rm,  0<r <3n, (5.19)

thens, (0) = 0.
Now consider a set of points given B8, namely

6(k — 3
= cosf O = —3—.
T = €O T 3n+1
Then we can write for integeys ¢, such ad) < p, g < n that

n+1 n+1

1
Cpg Z cos pby, cos qb), = 5 Z (cos(p + q)0y + cos(p — q)0) ,
k=1 k=1

1 6 —
_ 1, (Setory (O —a)n |
2 3n+1 3n—+1
and from evaluated values gf above we can see that
Cpqg = 07 b 7é q < n,
1
:§(n+1), 0<p=gqg<n,
=n+1, p=q=0.

This means that we have just proved the orthogonality of Clnelyysolynomials
on the set of z;.} given by 6.9

> Tiw)Ty(e) = 0, p#q<n,

1
=5+, 0<p=qg<n,

=n+1, p=q=0.
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We can write thex-th degree polynomiab, (z) interpolating f(z) in the points
given by b.8) as a sum of Chebyshev polynomials

n

pa(z) = Y a)Ty(2),

j=0
where the asterisk means that the first term is to be halved.
Settingf (xx) = pn(z) follows that

n

flay) = Z a; T (@)

J=0

We can multiply this equation by T} () (i < n) and sum fork = 1ton + 1.
Then, because of orthogonality, we receive the followindiata

n+1 n et
n —2F 1 ;f(xk)ﬂ(xk) - Z @ (n i 1 ZE@HE(%)) = a;.

J=0

To use the same notation as we used before we shall shift the inge that
x,4+1 = x; What means that the set of points is given by

xr:cos—+, r=0,1,2,...n. (5.20)

Then the approximating formula is

fla) = Y an, (),
r=0

where

Qpr = : Z f('rk>Tr(xk)
k=0

n+ 1<

The approximations ™ ( f) of IV ( f) is then given by

PO (f) = % S 020G (M),
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5.2 Error estimation

Within this section we will provide error analysis of metlsogresented above.
This analysis is based on the fact which can be found’iiy (Section 3.6) for
functions which are analytic within and on some contour amnng points{xy }.
The errorf(z) — p,(z) (Wherep, is the interpolating polynomial of degreg
can be written as a contour integral given by the equato2?.

Let us denote the error in approximatidn4) by

EN(f) = IV(f) = v (f). (5.21)

n

Now we will distinguish between the cases of chosen abseigsssented above.

5.2.1 Practical abscissae

Suppose thaf is analytic within and on some contodr in the complex plane
containing the interval—1, 1] in its interior. As we know from aliasing3(2),
zeros of7,,,1(x) — T,,—1(z) are pointsz,; = cos % wherei = 0,1,...,n,
which is equal to the points whefe, (x) reaches its extrema. Then based on the
relation presented ir2[] (Theorem 3.6.1) the error of the interpolation fz)

is given by the contour integral

L G TV
en(z) = 57 /C =) (Tonr(e) - Tn,l(z))d : € [-1,1]. (5.22)

The error of the Clenshaw-Curtis quadrature is then given byuita

1 (’\)1 z) — 51’\21 z z
EWU%:[f“wmﬁﬁile?iia?nigj(h& (5.23)

1 11— 2T ()
N() == - -1,1]. 24
e =g [ T sg 629
Authors (P1,[12],[19], [19]) choose the contout’ to be an ellipse. We shall do
so as well because of its simplicity.
Let us define the ellips&, with foci at+1 by the following equation

1

E,= 5 (pe” +p ey 0<0<2m, p>1 (5.25)
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In practise we will work in terms of variable = pe, which is related ta: so
thatz = 1(£+ &) and|¢| > 1.

We can develop the functio@(f)(z) by an expansion. To do so, we can use the
following theorem found in4].

Theorem 5.4. Letn be given by $%.39). Settingz = (¢ + 1) where|¢] > 1,
%A)(z) can be expanded as follows

T(A+ 3

)
@ 2T (A + 1)

Zfl 7 Zk Zk-‘rs-‘ra()‘) + Zk:—s()‘)) . (526)
Here

:_Zl—r()\)a T‘S 1.

:H%> TEL
L+ (5.27)

Proof. Proof can be found] (p. 392). Itis based on the following idea. Setting
= 3 (£ +¢71) andz = cosd in the equation.24) gives

O (2) / sin**0 cos nf ”
§—2cosf+ &1

Since we know, that ([g], p. 653)

sin 6 smr@
£—2cosf+ &1 Z

we have

QY (2) =

S—

T o = sinrd
sin“" 6 cos n# Zl £rsin 6d9,
= (5.28)

Z / sin®*71 0 (sin (r + n)6 + sin (r — n)0) dé.
From the equations in.f] (p. 397) we know that fok € N

/ sin?* 1 @ sin 2k6d6 = 0,
0

™ ' —1)F1rD(2))
/0 sin sin ( ) 22PN+ BTN =k + 1)
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and by using the Duplication formula ] (p. 256)

[(2)) = (27) 222 2T(\)T (/\ + %) :

with some further manipulations (required properties ofm@ea function can be
found in [17](Section 6.1)) we obtain

m LA+ v
in?! fsin (2k — 1)0d0 = ———2—Zi(\).
/o sin sin ( ) IOt 1) k(N)
By settingr = 2k — 1 + o in (5.28 we get the desired result. [

The following theorem is shown irl] (p. 393).

Theorem 5.5.The errorE,(LA)(f) satisfies the following estimation

AL (A + 1) V7p" M(p)
A+1D)(p2=1)(p" —p)’

BV (] < 5 (5.29)
where
M(p) = max| £(2)]. (5.30)

2€E,

and the ellipse, is defined by equatiorb(29 andn = 2s + o.

Proof. Proof can be found in/] (p.393). We shall present its idea. Choosing the
ellipe E, as the contou€’, so thatt = pe'd in the identity 6.23, we obtain the
following estimation

EAE

[f(2)[ |dz] .

L Q=) - Q)
E

7 Jg, TTuni(2) — Toa(2)]

We can find the connection betwegngiven by 6.27) andG, given by (.29

GV = 3 (ZeaV) — Z,(N)).

Thus, based on the relatiob.26 we can write the difference in the form

™) W o PA+1/2)/7
QnJrl(Z) - QnJrl(Z) - F()\ I 1)

S (GranN) — Gra ().
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and denotind/,,(\) as an upper bound fo6, s(A) — Gi—s—_-(\)| we receive an
estimation

C(A+1/2)
Q) — QM ()] < +A+/1\/_ZU g2t _

LA+ 1/2)v/70, (\)p”
FA+1)(p* = 1)
We can set/,,(A) = 2 asGy(A\) = 1 and forr # 0 and\ > —1 is |G, (\)| < 1.
The remaining term to estimate js—— ‘dnzll(z)”f(z)‘ which we can find in ]
(p. 655)
dz gl de
Toi1(2) = Toa(2)] — plpm —p)  p—p"
If we take all these relations into account we have the esitoma
2
|E7({\)}§l/ (A +1/2)y/7U (N M ()de
mJo TAA+1D(*=1)(p" —p™)
which is by integrating and settifg,(\) = 2, as is shown above, equal to

) AD(A +1/2)y/TM(p)
S O - 0 e

]

The Theorenb.5is very rough and can be improved in some ways depending on
A. We can from the proof that for differentthe behaviour of the terms in this
estimation vary. Again, we can find the following theorie$4h(p. 394-396).

Theorem 5.6. The errorET(f)(f) satisfies the following estimation

\ 20 (A + 3) Vrp" M(p)(1 — G (A 1
|EV ()] < (F(;)l;f;f_ 1§f;§_p_n)< ) —S <A<l (63D

where all variables are defined as above.

Proof. Proof is shown in{] (p. 394). The idea is to set more accurate estimation
for the termU,,(\) from previous proof. It is shown in the reffered article that
by choosing\ € (—%, 1) we obtain a relation for the upper bound of the term

|Girs(A) = Gros—o ()]
Un(N) = (1= Ga(N),

and hence based on the previous proof we get the desiredaéistim [
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As a corollary of this theorem we obtain (s€€], p. 655) that for\ = %
| 16n2p” M (p)
T =1 =D —p)

From the definition of the terr&,. given by (L.29 one can see that more simpli-
fications can occur if is an integer and < s + o.

B, (f)

Remark.n = 2s + o, whereo is equal ta) or 1.
Then we can simplify the expansion @@ ) to the form

QWM (z) = (—D)r2 g€ — ¢ HH, (5.32)

asis shownin{] (p. 396 - 397). Based on this relation we can write the follayvi
theorem, which can be again found i [p. 397).

Theorem 5.7.If X is an integer and\ < s + ¢ then

m(p+p ) M(p) (5.33)

|EX(f)] < )

where all variables are defined as above.

Proof. Proof can be found in4]. It is similar to the one of the Theore®5.
Thus we are again looking for estimation of the difference

A (A
Qﬁwzl - Qn )1
using the previous relatiorb(32) for z € £,. We have

(—1))‘+17T(§ _ 172.71)2)‘
22/\£n ’

A (A
Qiﬂll Qn )1 -

which means that we have the following estimation

) ) m(p+p )
Q1(1+1 - < B
The rest of this proof is the same as the proof of the Thedr&m [
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5.2.2 Classical abscissae

Suppose thaf is analytic within and on some contodr in the complex plane
containing interval—1, 1] in its interior. The error caused by the method based
on the classical abscissae is then given by the equatiéh ({.653)

EM(f) =1V(f) - <1>“><f>

QnJrl
=~ / G (5.34)

wherleﬁ)(z) is defined as beforé(24).
If we choose the contout’ to be an ellipse, denoted by %.25 and taking
= (¢ + ¢71) where¢| > 1 as above, then

|dz| = ’1(1— dg‘ —(p+p")db,

and

1 _ 1, ., e
!Tn+1(2)\= §(§n+1_§n 1) Z§(P +1_p 1)‘
Similarly, like in the Theorenb.4we have

()\ +1
(A +1) + 1)

QN (2) = Zso % (Zissi1N) = Zieso(N)),

whereZ,.()\) is defined by equatior5(27). If A > 0then|Z,.(\)| has its maximum
value equal to 1 (when= 0 orr = 1). Thus we can set the following inequality
|Zk+s+1()\) - Zk—5—0'<>\)’ S 27 /\ Z 07

which leads to

F 220’2]@ )\+%>ﬁp0

)
CICIES et e

Based on these inequations we can write the following theavbkith is analogue

of Theoremb.5.

Theorem 5.8.1f A > 0, the errorE(A)(f) satisfies the bound

)| < 2T (A + 3) Vmp"M(p) (p+ p ")
T LA+ D = D(pntt —pt)”

where all variables are defined as before.

|EX(f) (5.35)
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The theorem above can be proved in the same way as the Thé&osenThe
knowledge from the previous section, where we were lookarghe error esti-
mation for method based on the practical abscissae, metisto look for the
improvement in the case that< \ < 1. Then we can estimate

’Zk—i-s—&-l(A) - Zk:—s—o‘()\)| S 1 + Zn+2(/\)7 0 S )\ S ]-7

as Z.(A) is nonnegative for > 0 and nonpositive forr < 0. The maximum
value (equality) occurs wheln= s + o + 1. This leads us to the theorem which
is analogue of Theore®.6.

Theorem 5.9. The errorE,(f)(f) satisfies the following equation

(1 + Zna(W)TA +1/2)v/mM (p) (p + p7")

(M)
RS RO ey

0<A<1,
(5.36)

where variables are defined as above.

As a corollary of this theorem we receive the estimationXo& 1/2 which is
also introduced in1g] (p. 655)

A(n +2)p" M(p)(p+p")
2n+3)(p* = D) (pt! = p71)

There still remains the case wherl /2 < A < 0. From the definition ofZ,.())
we can find out that for each integeras A decreases fromi to —1/2, Z,(\)
varies monotonically fron¥,.(0) = £1to Z,.(—1/2) = 2r — 1. This leads us to
estimation

[E2(f)] <

Z. (M) < |2r—1], —1/2<A<0.
From this relation and equatiob.@6) it follows that

PO+ 1/2VT S B
QF()\ + 1) ;p (’Zk+a+1(/\)| + |Zk—s—a<>\)‘) -

::r@+4/mv%am(@s+3ml—@s+1»
F(A+1)(p* — 1) '

‘Qfmﬁl(z)‘ <

Thus we can write the following theorem.
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Theorem 5.10.The errorE,(ﬁ)(f) satisfies the following estimation

< LA+ 12)Vmp7(p+ p )M (p) (25 +3)p* — (25 + 1))
FA+1)(p* = 1)*(pnt = p77) ’

1
—— <A <0,

(5.37)

where variables are defined as above.
We have also analogue of the TheorBwhich we mention at this place.

Theorem 5.11.The errorE,SA)(f) satisfies the following estimation farinteger
such that\ < s

» (p+p~)* M(p)
‘Eﬂ)\ <f)‘ < 222-1 (:02n+2 _ 1) )

where variables are defined as before.

(5.38)

5.2.3 The new abscissae

Suppose thaf is analytic within and on some contodr in the complex plane
containing interval—1, 1] in its interior. If we choose points as we did i5.20),
namely

(6k +4)
= —— k=0,1,2,...
Tk COs 3n+1 ) s Ly 4y n,

we can show that they are the zeros of
Tansa(z) — Tau(2),
because we know that
cos (3n + 2)xy, — cos 3nxy, = —2sin (3n + 1)z sin vy,

Hence we can write similarly as in the Secti2.1that the error is given by the
equation

E0 ()= L [ Qonea(2) = Q5 (2)
! Ti Jo Tant2(z) — Tsn(2)

whereQﬁf)(z) is defined as before by equatidhZ4)

Qﬁf)(z)zl/ (1—a22)

2/, z—x

f(z)dz,

D=

Ty ()

dz, z¢[-1,1].
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If we choose the ellips&, given by equationg.25 as contouC, the main
difference to Sectiob.2.1is that we are looking for the estimations of the
differences

A A
Q0,(2) - @)

I

and
| Tan42(2) — Tsn(2)] -
As we already know, choosing ellipgg, as the contou€’' allow us to write

1 an _
T3 12(2) — Tsn(2)| = 5 (M2 + M) (1—-¢77)
and we obtain the estimation

dz] _l-gdg

Tang2(2) — Taa(z)] (€72 +€73)(1—€72) (5.39)
dgf dg

— p3n+2 _|_pf3n p3n+1 _|_p73n71'

Y

Now denote
m = 3n = 6s + 30,
and putm = 2p + ¢, whereq = 1 or 0. Thus ifn is evenp = 3s and ifn is odd
p = 3s + 1 which allow us to write thap = 3s + ¢ andq = o. Then based on
the Theorenb.4we can estimate the difference
A B T+ 1/2)VT 1o
smsa(2) = Q) = =TT 2 GraproN) = Giopra )
(5.40)
So, if U, A is an upper bound faiG 15 (A) — Gr—p—1(A)| We obtain (similarly
like in the proof of Theoren.5) that

. ) T\ +1/2) VAU, (N)p' 7
Qale) = Q)] < SR

Again, we sel,(\) = 2 and we can write a theorem similar to Theoréra

Theorem 5.12.The errorE,(LA)(f) satisfies the following estimation
AL (A +3) Vrp' " M(p)

)
OIS e e ey G4

where .
M(p) = max|f(2)] A > =5, (5.42)

and the ellipse, is defined by equatiorb(29 andn = 2s + o.
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5.3 Different approach

There are also two different views at numerical integratiddne is "classic"
where the quadrature rule is applied repeatedly and theogjppations obtained
converge to the correct value. At the same time we choosetbel®munds. We
have presented examples of such a method in the Sextion

On the other hand, H. V. Smith introduced a different appnaacthe numeri-
cal integration in his worksq], [7], [&], [10] and [L1] which he used with D.
B. Hunter in deriving the method presented irY][ Within this approach the
guadrature rule is applied only once and the error term isanigally evaluated
assuming the degree of the rule to be fixed. Consider a mettsadilua the prac-
tical abscissae described earlier in the MetBddand Sectiorb.2.1 We use the
same notation and require the same conditions as in theopiesections.

If we choose the ellipse5(29 E, as the contour’ in the equation§.23 and
assumef to be analytic in its interior. Therf can be developed into an infi-
nite Chebyshev seried .0 with coefficientsA, given by the formula X.21).
Substituting this series to the equati('mZ(@ we get the following expression

mi Jg, Tn+1(

which can be simplified to the form

EWN(f Z Aed), (5.43)

where the asterisk means that the first term is to be halved and

1 (e - o)
/E Toi1(z) = Tha(2)

k) —
en T

T.(z) dz. (5.44)

i

We shall require that is even
n = 2s,
as this choice will make some further relations more simple.
Following three lemmas are required foE E, to gain estimation foe!’). They
can be found in19] (Section 3) which authors used ihF]. It is good to remind
the definition 6.29 of the ellipseL, at this place
1

E, 2(pe +p_1_26):0§9<27r, p>1,
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and forz € E, we write z = 1 (¢4 ¢7). Then the following lemma can be
easily proved using the Euler’s formula of the cosine

L., —i
008925(60—1-6 9).

Lemmas5.13.For z € E,

1
T(z) =5 (& +¢&7). (5.45)
Lemmab.14.For z € E,
1
Tn+1(2’) - Tnfl(Z) == §£n+1 (1 - 572) (1 - 572n) . (546)
We already know from the Theoreinl5and identities$.4), (5.5 that
1
\) _ val <)‘ + 5)
[(Tr) T(A+1) Gr(A);
whereG.. is defined by the equatiol 29. If we denote
_ VAT (A+5)
B="Torn (547

then it becomes
I™N(Ty,) = BG,(\).

The following lemma (se€lf] p. 304 or [L7]) is based on the Theoref4.

Lemma5.15.For z € £, andn = 2s is

Q(2) = QY (2) =B gz;f , (5.48)
k=1
where
HY) = Grys(N) = Gres(N), (5.49)

andG,()) is defined as beforel (29.

Proof. Proof is based on the Theorés. We have the following equation
1

5 (ZrJrl()‘) - Zr<)‘)) = Gr()‘)

The desired equation is then obtained directly by exprgs@f[‘ﬁ1 andef_)1 via
their expansionss(26). [
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From the last two lemmas we can get the following equation

QM) —QVi(») 2B (1 B L)—l S Hy
Toi(2) = Tuoa(2) €41 —E€72) &2 - S

k=1
2B i Hﬁf,ﬁ) <°° 1 )
e (D) (Sa)

If we multiply these two series we obtain

QM=) - QM (2) 2B s Lo
L L = . HYY . . (5.50
Tn+1(2) _ Tn_1(2) 525—{-3(1 _ 5—2) ]Z_; prt §4JS+2k ; s,2s1+k+1 ( )
Denote .
J
TGk, s) =D HY (5.51)
=0
Substituting .50 into (5.44) we get
2B A 1
(O TNk / : T dz.
En,r i ;; (]’ ’S) 5, €4s]+2k+23+3(1 _ 5—2) T<z) “
Because of the Lemm&a13this becomes
B oo n—1 .
er=—D D IVks) [ TR (14 T,
P E,
e (5.52)
_ EZ J()‘)(], k,S) 5T—2k—4j5—25—3d€7
27 par v E,

since the terng 2" makes no contribution to the integral. We shall remind the
definition of the ellipseZ, as¢ = pe’” and

1, . .
E,= 3 (pew —i—p_le_w) 0<0<2m, p>1.
If we apply the residue theorem to the integral }15Q) (or using the direct
method for evaluating this contour integral) we obtain wiefving relation (use
the direct method).
¢ . 4
de
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and setting: = r — 2k — 455 — 2s — 3we solve the integral
o c+1; i0(c _ pt! 2mi(c+1)
/0 p+1zee(+1)d9—c+—1(e (et —1).
As e?mi(¢tD) _ 1 = (), the non-zero terms can occuk:if- 1 = 0 or equivalently if
r=2k+4js+2s+2, 5=0,1,...,00, k=0,1,...,25— 1.

Thus we can see that whenewvas odd or equal t@, 2,4, . . . 2s thene?} =0, as
the first non-zero term occur fér= 0, j = 0 andr = 2s + 2 which allow us to
rewrite the error term3.43 in the form

EN = Z ATLJrQPe’EL),\?)’L—i-Qp' (5.53)
p=1

Taking these relations into account we can write the follmviheorem (17],
p.1036).

Theorem 5.16. Assume andn = 2s to be fixed then
j
e =B H . k=01..n-1 j=0]1,..., (554)
=0

wherej is the quotient and the reminder whep — 1 is divided byn.

Proof. Proof can be found in1[?] (p. 1036). The idea is that in the equation
(5.52 we setr = 2s + 2p which gives the integral term in the form

ets(5—i-55)-1q¢.

Ep
As itis pointed out in {7] (p. 1036), this integral is non-zero for those values of
j andk such thatj is the quotient and the remainder whep — 1 is divided by
2s. The value of this integral is thehri. Because the quotieritand remainder
k are unique, the result follows fromd.61) and £.52). O

This means that when exact Chebyshev coefficients are knbevigentity 6.52
and Theorens.16allow us to evaluate the error tetf}) (/). Unfortunatelly, we
usually do not know the exact Chebyshev coefficients. But as Bmith and D.
B. Hunter [LZ] (p. 1036-1037) suggested, approximate coefficients camsbd
instead of the exact ones as well. The final method is thendb@sevaluating
\Iféi) given by the equatiorb(7) for fixedn = 2s and adding- non-zero terms of
the relation $.53.
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Chapter 6

Examples

We use previously described methods in this chapter. Alhefeéxperiments,
which we introduce, were evaluated using Matlab 7.5.0. \Weiraterested in a
comparison of presented methods with the exact result. Suebult is obtained

via the in-built functionquad(fun,a,b)which evaluates integral of functidinin
over the intervala, b| using recursive adaptive Simpson quadrature. The default
tolerance is set ta0~%, unless it is stated differently. We use the Gegenbauer
weight function, thus we shall evaluate exactly the functje" (x) given by

gV (@) = (1 -2 f(2).

Remark.We will face a problem of obtaining exact result fox 1/2 which will
be discussed already in the following example.

Source codes of used functions can be found in appendix andalthe attached
medium. The algorithms are based exactly on the results we r@sented in
this work.
The absolute error is calculated|ads- I,,| wherel is the exact value of the integral
and/, is the approximated value obtained by+ 1)-pt. quadrature formula.
As a relative error we denote a percentual ratio of the eritir vespect to the
exact solution
’I — In’
|lexact

We will use the following notation:

PRAE - absolute error caused by method based on practicabasheqresented
in Method5.9,

CLAE - absolute error caused by method based on classicakahs@resented
in Method5.2,

100.
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NEWAE - absolute error of invented method presented in M3,
PRRE - relative error of method based on practical abscisses i percentage,
CLRE - relative error of method based on classical abscissas oy percentage,
NEWRE - relative error of invented method, given in percentage

Example 6.1.

TN = /1 (1 — xQ)/\_l/z e’dx.

1

We have already evaluated this integral for= 1/2 in Example3.4 and thus we
shall start with this choice of variablg. The exact value is

T4/ = 2350402,

and the errors of the methods are presented by table

A=1/2 PRAE NEWAE CLAE
n=2 1.1651361e-002 2.3623730e-001 9.2965772e-002
n==_8 8.1557667e-009 1.0274792e-002 4.9532631e-009
n =32 | 8.1353027e-009 6.0246067e-004 8.1353022e-009

A=1/2 PRRE NEWRE CLRE
n=2 4.9571772e-001 1.0050930e+001 3.9553130e+000
n==~8 3.4699449e-007 4.3715033e-001 2.1074107e-007
n =32 | 3.4612382e-007 2.5632235e-002 3.4612381e-007

We will provide the same excersise for two different choices\fofrom the
interval(—3, %) and A > 1. If we choose\ < 1/2 we face the problem with
singularities in the endpoints of the integral. We will dissuhis problem after
some observation.

Usin the functiorquadgkwith received warning about singularities we obtain a
value

1YY 27 120594,

Neverthless, we shall take it as exact value and offer the ttderors.
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A=—-1/4 PRAE NEWAE CLAE
n=2 2.2172501e-002 8.5686525e-001 2.4892748e-001
n = 2.6654097e-004 2.7290964e-001 2.6645197e-004
n =32 2.6654084e-004 1.3521458e-001 2.6654084e-004

A=—1/4 PRRE NEWRE CLRE
n=2 3.1138554e-001 1.2033620e+001 3.4958807e+000
n =238 3.7432405e-003 3.8326807e+000 3.7419907e-003
n = 32 3.7432387e-003 1.8989227e+000 3.7432387e-003

We can observe rather big errors in this case. But we have tp keenind
that there are singularities in the endpoints and the "ekaetiue obtained by
guadgkis probably inaccurate. If we make an attempts with basic Metlanc-
tion quad(fun,a,bpnd compare the results obtained one the interyalg9, 99|
and[0.999999999, 0.999999999] with tolerancy set td0~'? we can observer in-
creasement fo the value of the integral. Itis easy to seethat— 1_ (z — —1,

) the functiony™ () is growing which agrees with these observations. Therefore
we shall look at values obtained by our methods/for 32 within the interval
[—1, 1] which are slightly larger than that obtained loypadgk

A=—1/4 Pract. result Classic. result New meth. result
n =32 7.1208607236626527.1208607236626546.985379606027591

Because we do not have to face the problem with singularitiésrmtitese meth-
ods, we can take into account as the exact solution the resliiated by method
based on the practical abscissae with= 1000.

The table of errors can be then modified as follows:
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I 27 120860723662654.

A=—1/4 PRAE NEWAE CLAE

n = 2.1905960e-002 8.5713179e-001 2.4919402e-001
n = 1.2685675e-010 2.7317618e-001 8.8870103e-008
n =32 1.7763568e-01% 1.3548112e-001 0
A=—-1/4 PRRE NEWRE CLRE

n=2 3.0763078e-001 1.2036913e+001 3.4994930e+000
n=3_ 1.7814805e-009 3.8362804e+000 1.2480247e-006
n = 32 2.4945816e-014 1.9025947e+000 0

From this example we can see that these methods are suitalsiedoa problems
and they elegantly avoid the problem with singularities ie #ndpoints (with
respect to the conditions presented in Mettadg).

Remark.In the next examples for-1/2 < A < 1/2 we will take the value
obtained by the method based on the practical absc&Sawth » = 1000 (see
also Theorenb.6) as the exact value of the integral.

Now we can investigate in the usual way the integral

I™® = 0.9028868.

A= PRAE NEWAE CLAE

n=2 |2.7946923e-003 2.6757724e-001 9.3254317e-002
n = 5.0175190e-007 1.3840794e-003 5.0292383e-007
n = 32 | 5.0169820e-007 5.0169820e-007 5.0169820e-007
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A=14 PRRE NEWRE CLRE
n =2 | 3.0952855e-001 2.9635747e+001 1.0328462e+001
n =38 | 55571963e-00% 1.5329490e-001 5.5701761e-005
n = 32 | 5.5566016e-00% 5.5566016e-005 5.5566016e-005

With this choice ok we get a function which is well integrable via selected meth-
ods as well and the error gets on the tolleration level very.fas

Example 6.2.
1
™ = / (1- 3:2)/\71/2 r2dz.

1

We have already evaluated this integral for= 1/2 in Example3.3and thus we
shall start with this choice of variablg. The exact value is

12 = 0.153852.

The errors of methods are given by the following table.

A=1/2 PRAE NEWAE CLAE
n=2 5.1281449e-001 1.0713415e-001 4.3901732e-002
n==~8 2.8074548e-004 6.9116673e-004 7.5162060e-004
n =32 | 6.0202006e-006 6.0202006e-006 6.0202006e-006

A=1/2 PRRE NEWRE CLRE

n =2 3.3331638e+002 6.9634475e+001 2.8535009e+001
n = 1.8247742e-001 4.4924079e-001 4.8853427e-001
n =32 | 3.9129773e-003 3.9129773e-003 3.9129773e-003
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Now we choose the = —1/4 which indicates the same problem with singulari-
ties in the endpoints as in the previous example.

T4 = 2.304050574023278.

A=—-1/4 PRAE NEWAE CLAE
n = 1.1920262e+000 1.1882678e+000 1.5781196e+000
n =38 1.6006845e-003 2.0807364e-002 2.2353702e-00Z

n =32 1.7763568e-015 2.2204460e-013 1.7763568e-015

A=—-1/4 PRRE NEWRE CLRE
n=2 5.1736111e+001 5.1572990e+001 6.8493271e+001
n =3y 6.9472628e-002 9.0307756e-001 9.7019146e-001

n =32 7.7097129e-014 9.6371411e-014 7.7097129e-014

We keep in mind that in this case the exact solution was olitdige¢he method
based on practical abscissae with significant amout of nodes {000).

Now investigate this problem with= 5/2

16/2) — 0.0048293.

A=15/2 PRAE NEWAE CLAE

n = 1.4755156e-001 8.4214510e-002 7.6532219e-002
n = 1.1983703e-00% 3.6145251e-00% 4.4383541e-00%
n =32 | 2.8425176e-006 2.8425176e-006 2.8425176e-006
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A=5/2 PRRE NEWRE CLRE

n=2 3.0552846e+003 1.7437924e+003 1.5847186e+003
n=3~8 2.4814121e-001 7.4844364e-001 5.8858748e-002
n =32 | 5.8858748e-002 5.8858748e-00Z 5.5566016e-005

With this choice ofA we have a function which is well integrable via selected
methods as well as by Gauss quadrature and the error gets doldgrance level
very fast.

Example 6.3.
1
™ = / (1- 952)A_1/2 e~ da.

1

We have already evaluated this integral foe= 1/2 in Example3.6 and thus we
can start with this choice of variable. The exact value is

I1/2) — 0.178147.

The errors of methods are given in the following table.

A=1/2 PRAE NEWAE CLAE
n=2 6.7105233e-002 9.6092258e-002 1.1473798e-001
n =238 5.5027449e-004 5.1640241e-004 9.9186341e-004
n =32 | 5.1875247e-008 4.2114768e-008 6.5777744e-008
A=1/2 PRRE NEWRE CLRE

n =

3.7668307e+00]

| 5.3939649e+001 6.4406087e+001

n =

3.0888662e-001

2.8987314e-001 5.5676456e-001

n =32

2.9119230e-005

2.3640362e-005 3.6923145e-005
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Now we seh = —1/3 which indicates problem with singularities in the endpoints
as described above. Based on this knowledge we obtain

113 = 1.911361361051442.

A=-1/3 PRAE NEWAE CLAE

n =2 9.8902586e-002 3.4878472e-001 3.1089796e-001
n = 1.1437968e-003 5.0462403e-003 4.3932375e-003
n =32 1.1609431e-007 1.9617014e-006 1.9123102e-006

A=—-1/3 PRRE NEWRE CLRE

n = 5.1744577e+000 1.8247974e+001 1.6265787e+001
n = 5.9841994e-002 2.6401289e-001 2.2984861e-001
n = 32 6.0739071e-006 1.0263373e-004 1.0004964e-004

If we set\ = 5 then
1) = 0.004561.

The table of errors can be found on next page.
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A= PRAE NEWAE CLAE
n=2 |1.9140700e-002 6.5572180e-002 7.4692437e-002
n= 9.5406117e-004 6.6494888e-006 2.6428544e-005
n =32 | 1.1829866e-006 1.1737899e-006 1.1606985e-006

A=5H PRRE NEWRE CLRE
n =2 | 4.1968406e+002 1.4377530e+003 1.6377262e+003
n=28 | 2.0918998e+001 1.4579846e-001 5.7947927e-001
n =32 | 2.5938477e-002 2.5736830e-002 2.5449783e-002

In this case we did face any new problems.

We have just presented advantages of methods we have dksribiee earlier
parts of this thesis. As we observed, these methods are widtisalso for inte-
grals with singularities in the endpoints, if the problem t& transformed to

1
_ 1
/ (1 —xz)(/\ l/z)f(x)dm, A > ~3
-1

All three methods elegantly avoid the problem with singtikes and provide ac-
curate results for-1/2 < A < 1/2. Asif A = 1/2 we receive a well-solvable
problem with analytic function, we can compare these reswith previously
calculated in Sectio®. We can see in the examples, that even when all three
methods usually provide very accurate results, the methsddon the extrema

of Chebyshev polynomials use to slightly outperform othethwods. This fact
registered already D. Elliott] (p. 243) who described this observation and sug-
gested use of the method based on "practical ascissae”. Tthatrisason of the
name of this method.
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Chapter 7

Simple Ordinary Differential
Equation and Further Extension

In this chapter we shall briefly introduce two methods basethe Chebyshev
polynomials for solving a simple linear ordinary differetequation. This is
one of the fields where this work can be extended in the futsiteere can arise
some interesting connections. For example, the trio ofastiitom the Republic
of Korea [1] is already studying application of the generalized ClemsRairtis
guadrature rule to a collocation least-squares method.

For the next sections consider the simple, one dimensidinalar, two-point
boundary-value problem on the rangel, 1]

dd—;u<x> = f(2), w(-1)=a, u(l)=0, (7.1)

where the functiory and the boundary values b are given.

7.1 Collocation method

Suppose that we approximatér) in the following way (see Eq.5(11) by n+ 1
terms of its Chebyshev expansion

u(z) ~ Z* cxTy(x), (7.2)
k=0

where the asterisk indicates that the first term of this suto t# halved. Now
we need the property of Chebyshev polynomial which can bedaufl4] (Eq.
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(10.5))

—T(x) = (k—r)k(k+1r)T.(x), k>2. (7.3)

=0 (k—r) even

Thus if selecth — 1 points{xi}?:‘f in the range of integration and requiig(z)
to satisfy the differential equatio7 (1) at these points, callecbllocation points
we obtain the following system of + 1 (incl. boundaries) linear equations
n k—2*
Z Z (k—nrk(k+r)aT.(z;) = f(x;), i=1,....,n—1, (7.4)
k=2 =0 (k—r) even
with boundary values (thanks to Theordm 2 given by equations
Z*(—l)kck =a, Z* cx = b. (7.5)
k=0 k=0
Now arises the question about choosing thesel points. We can choose zeros
of Tn_l({L')
—1/2
v, = cos T M2
as is show in the relatiori(14), which means that we can use the discrete orthog-
onality of Chebyshev polynomials on this set of points (se&9). We will use
this property after multiplyingd.4) by 27;(x;) (j is integer0 < j < n — 2) and
summingd_7"~". Thus from the relations

n—1

> T(x)Ty(x:) =0, 0<r#j<n-—2,

i=1

=n—1, r=75=>0,
1 .
:§(n—1), O<r=j<n-2,

we can deduce that

n n—1
. . 2 .
Z (k—j)k(k—i—j)ck:HZTj(xi)f(xi), j=0,....n—2.
k=j+2(k— ) even =1
(7.6)
If we use this equation in reverse order (start wita= n — 2)) we can deter-
mine coefficients,,, . . ., c3, c2. Using the boundary conditions we can determine

coefficientsey, cs.
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7.2 Projection method

We shall describe the method presentedlif] [Section 10.2.3). Approximate
thew, (z) in the same way as above

n

un () & Z* cxTy(x),

k=0

where the asterisk indicates that the first term of the sumbethalved.
Suppose that we select-1 independent test functiop{$/zj(:n)};.:11 and a positive
weight functionw(x) and solve the system af + 1 linear equations (including
boundary conditions)

/_l w(z) (dd_;“n(x) - f(l’)) Y;(z)dr =

1
n k-2

-/ w<x>< > <kr>k<k+r>cm<x>f<x>) d(2)de,

! k=2 r=0 (k—r) even

=0, j=1,...,n—1,

(7.7)
with boundary conditions
Z*(_l)kck =a, Z* kep =b. (7.8)
k=0 k=0

This means that the residual

d2
—tn(2) = f(2),

is orthogonal to each of the — 1 test functions with respect to the weightz).
Let us choose);(x) = Tj-i(x) andw(x) = 2~ then because of the or-

thogonality of Chebyshev polynomials presentedliri® we can represent the
residual in the form

a? N
@Un(l’) — f(z) = ZkalTk:fl(x%
k=0
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for some sequence of undetermined coefficiénts. 1 Because of the orthogo-
nality we can reduce the first— 1 equations from the systerd.{) to

- : : 2 (1 Tj(x)f(x)
(k= Pk(k+ oy = = [ DI

’f;?(kj) - J =21, V(1 -2
(7.9)

which means that we can obtain coefficient&n a similar way as in the previous
section.

de, 7=0,...,n—2,

Remark.This is no coincidence. If we apply basic Clenshaw-Curtis qaiade
(based on the zeros @f,_;) on the right-hand side of7(9) we receive the right-
hand side of7.6).

The difference between these two methodsgj(and (7.9)) is that in some con-
text we may have a better option of evaluating the integraleeraccurately.

1The method is often refered to as the tau method althougigfttisi differs from the original
Lanczos’ tau method which is based on the representatian @f) as the sum of powers af,

un () = Y p_ anat.
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7.3 Further extension

There are many posibilities to extend this work. The presitwo sections can
be extended for nonlinear equations and based on the ctilogaethod we can
also study the Eigenvalue problem as is showrlif) {Chapter 10).

There is also a method of least-square collocation whictselufor example,
in the geophysics and geodesy what can be found in a literatAuthors C.
Kim, S. D. Kim and J. Yoon in their workl] extend Clenshaw-Curtis quadra-
ture to multidimensional convex domain and apply to a caltmn least-squares
method to solve a first-order system of linear equations aitkelliptic boundary
value problem.

The Clenshaw-Curtis quadrature had not been mentioned veay fidr a long

time, but recently the team under the supervision of L. Nfétreen developed
Chebfun - collection of algorithms, and a software system bjea-oriented

MATLAB, which extends familiar powerful methods of numetdicamputation.

A big emphasis is put on the use of Chebyshev polynomials. Siftavare is still

under developement and can be found on http://www2.matte ak/chebfun/.

This together with the articles which are published in régears gives a good
presumption that methods based on the Clenshaw-Curtis queslvall become

more casual in the near future and we can also expect newetihsand maybe
also surprising results.
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Appendix

Source code of functions used for the numerical experiments

function |=sinpson(f,n) %onposite Sinpson s rule;
% denotes the nunber of
%subi nterval s (nmust be even)

a=-1; b=1; Y%over the interval [a,b]=[-1,1];

h = (b-a)/n; %tep h

S=feval (f,a); % (a)

for i=1:(n/2)
x=a+th*(2*xi-1); %odd i ndexes (x_1, x 3 ... x_{n-1})
S=S+4xfeval (f, x);

end

for i=1:(n/2-1)

Xx=a+th=*2+*i ; %ven indexes (x_ 2, x 4 ... x_{n-2})
S=S+2xfeval (f, X);

end

S=S+feval (f, b); % (b)

| =h* S/ 3; % he integral
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function [c,g,s]=points(n) % unction returns n+l points for
%Chebyshev, Gauss and Newt on- Cot es
%n [-1,1]

c = cos(pi*x(0:n)’/n); %extrema of Chebyshev

beta = .5./sqrt(1-(2+«(1:n))."(-2));
3-termrecurrence coeffs
T = diag(beta, 1) +di ag(beta, -1);
%Jacobi matrix
[V,D =eig(T); % i genval ue deconposition
g = diag(D); [g,i] = sort(g);
%Gauss nodes (= Legendre points)

h = 2/n; %tep h, interval [-1,1]
for i=0:n
s(i +1)=-1+hxi; %0Newt on- Cot es points (equidi stant)
end
s=s’; % unction returns [c,q,s];

function display_points(n) % unction displays n+l points
for Chebyshev, Gauss and Si npson
%n [-1,1]
figure(l)
[c,g,s]=points(n);

hol d on

whi tebg('white’);

title(’ Quadrature nodes in [-1,1]")
plot(c(1:n+1),0.1,  bo");

text(1.05, 0.1, ’Chebyshev points’)
plot(g(1:n+1),0.2,'r+");

text(1.05, 0.2, "Gauss points’)
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plot(s(1:n+1),0,’ bl acko’);
text(1.05, O, 'Newton-Cotes points’)
axi s tight

axis off

hol d of f

return

function | = gauss(f,n) %n+l)-pt Gauss quadrature of f

beta = .5./sqrt(1-(2*(1:n))."(-2));
98-termrecurrence coeffs

T = diag(beta, 1) +di ag(beta, -1); %Jacobi matrix

[V,D = eig(T); % i genval ue deconposition

x = diag(D); [x,i] = sort(x); %odes (= Legendre points)
w=2*V(1,i)."2; %wei ght s

| =w«f eval (f, x); % he integra

function | = clenshaw curtis(f,n)

% n+tl)-pt Censhaw Curtis quadrature of f based on
% he practical abscissae (extrema of Cheb. polyn.)

X = cos(pi*x(0:n)’"/n); %xtrema of Chebyshev pol ynom al s
fx = feval (f, x); % evaluated at these points
g =real (fft(fx([1:n+l n:-1:2])/(2*n)));

%-ast Fourier Transform

71



Q
I

[9(1); 9(2:n)+g(2*n:-1:n+2); g(n+l)];
%Chebyshev coeffs

w=20+a; W1l:2:end) = 2./(1-(0:2:n)."2);

%wei ght factor

| = wa; % he integra

function | = practical (f, n, | anbda)

% n+1l)-pt C enshaw Curtis quadrature of f based on
% he practical abscissae (extrema of Cheb. polyn.)
%M t h Gegenbauer w.f.

format | ong;
X = cos(pi*(0:n)’/n);

%extrema of Chebyshev pol ynom al s
fx = feval (f,x); % evaluated at these points
s=floor(n / 2);

Si gnma=n- 2xs;

for r=0:2:n %we are evaluating only 2r
k=r/2;
a( k+1) =0;
for j=1.(n-1)
a(k+l)=a(k+1) +f x(j +1)*cos(r*j*pi/n);
end
a(k+1) =2/ nx(a(k+1) +1/ 2xf x( 1) +f x(n+1)/2+(-1)"r);
end

B=ganma( | anbda+1/ 2) xsqrt (pi )/ gamma(| anbda+l) ;

u=(0:s);
u(s+1)=(sigma+l)/2+a(s+1); % eccur ence
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if s>1
for r=(s-1):-1:1
u(r+1)=(r-1anbda)/ (r+l anbda+1) ru(r+2) +a(r+1);
end

end

u(1) =-1anmbda/ (I anbda+1) xu(2)+a(1)/2;
| =Bxu(1);

function | = classical (f,n,|anbda)

% n+tl)-pt Censhaw Curtis quadrature of f based on
% he cl assical abscissae (zeros of Cheb. polyn.)
%M t h Gegenbauer w.f.

format | ong;
X = cos(pi*(1:2:(2«n+1))'/(2*(n+l))); %eros of Tn
fx=feval (f, x); % evaluated at this points

s=fl oor(n/2);
sigma = n-2+*s;

for r=0:2:n %eval uate just terns b_2r
k=r/2;
b(k+1) =0;
for 1=0:n

b(k+1) =b(k+1) +f x(i +1)*cos(r*(2*i +1)*pi/(2*(n+l)));
end

end

b=b*2/ (n+1);

B=gamma( | anbda+1/ 2) *sqrt (pi )/ ganma( | anbda+1) ;

u=(0:s);
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u(s+1)=(sigma+l)/2+b(s+1); % eccurence relation
if s>1
for r=(s-1):-1:1
u(r+1)=(r-1lanbda)/ (r+l anbda+1) ~u(r+2) +b(r+1);
end
end
u(1) =-1anbda/ (| anbda+1) xu(2) +b(1)/ 2;

| =Bru(1);

function I = new(f, n, | anbda)

% n+l)-pt Censhaw Curtis quadrature of f based
%on the new absci ssae

%M t h Gegenbauer w.f.

format | ong;
X = cos(pi*(4:6:(6xn+4))"/(3*x(n+l))); %points x_k
fx=feval (f, x); % evaluated at this points

s=fl oor(n/2);
sigma = n-2xs;

for r=0:2:n %val uate just terns a_2r
k=r/2;
a( k+1) =0;
for 1=0:n

a(k+1) =a(k+1) +f x(i +1) *cos(r*(6*i +4)*pi/ (3+x(n+l)));
end

end

a=ax2/ (n+l);

B=gamma( | anbda+1/ 2) *sqrt (pi )/ ganma( | anbda+1) ;
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u=(0:s);

u(s+1)=(sigm+l)/2+a(s+1); % eccurence relation
i f s>1
for r=(s-1):-1:1
u(r+1)=(r-1lanbda)/ (r+l anbda+1) u(r+2)+a(r+1);
end
end

u(1l) =-1anbda/ (I ambda+1) xu(2)+a(1l)/2;

| =Bxu(1);
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