
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Bc. Ján Labant

Kvadraturní formule Clenshaw-Curtisova
typu pro Gegenbauerovu váhovou funkci

Katedra numerické matematiky

Vedoucí diplomové práce: doc. RNDr. Josef Kofroň, CSc.
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že Univerzita Karlova v Praze má právo na uzavření liceňcní smlouvy o užití této
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riešenie d’alších problémov,čo zdôrazníme na numerických experimentoch.
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Introduction

Numerical integration is a very important part of the numerical analysis. We
want to compute a definite integral by a quadrature using numerical techniques.
Such a formula approximates the value of a definite integral by the use of known
properties about the integrand at a set of discrete points. We will evaluate the
quadrature formula based on the Chebyshev expansion and as wewill derive, no-
table points of Chebyshev polynomials can be used as a set of discrete points.
Such a quadrature formula is known as the Clenshaw-Curtis quadrature because
C. W. Clenshaw and A. R. Curtis were the first to introduce this approach in
1960. As a bit curious fact can be considered that Hungarian mathematician L.
Fejér presented two quadrature rules very similar to Clenshaw-Curtis quadrature
in 1933.
Neverthless, we shall firstly introduce Chebyshev polynomials and their proper-
ties which we need for further work. In this part of work we useto refer to [14]
and so we do not need to prove all the theorems. Some of the veryimportant
properties are the orthogonality and the even parity, whichwill be used through
the whole work. Then we will take a short look at well known methods for nu-
merical integration - Simpson’s rule and Gauss quadrature.The observation and
comparison of these two quadratures is motivating us to derive another method
for numerical integration. Based on our knowledge of the Chebyshev expansion
we will be able to derive Clenshaw-Curtis quadrature in the similar way as the
founders made it in their work [2]. This quadrature will play the main role in the
rest of the work.
Having a new quadrature we will firstly compare it with already existing and fre-
quently used Gauss quadrature both theoreticaly and practically. Surprising re-
sults arise as the new quadrature is almost as accurate as Gauss quadrature which
satisfies the factor-of-2 advantage in efficiency. Observations about these results
were done already by C. W. Clenshaw and A. R. Curtis, but we will built this
part of work upon the article of L. N. Trefethen [16] who proved the new error
estimations of the Clenshaw-Curtis quadrature.
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In the next part of work we briefly introduce Gegenbauer polynomials and the
Gegenbauer weight function which is also known as "ultraspherical" weight
function. With this function we will extend the previously derived Clenshaw-
Curtis method for numerical integration. Within this part ofwork a lot of re-
search was done by H. V. Smith and D. B. Hunter in their article [4]. We shall
analyse this article and derive also method based on a new setof discrete points.
After providing error estimations we will use these methods1 in examples. For
this purpose numerical software Matlab 7.5.0 is used.
H. V. Smith[9] has already pointed out that the "classic" numerical integration,
where the quadrature is applied iteratively, is not the onlyoption for obtaining a
satisfying result. Based no his knowledge and Theorems proved in his previous
articles [7], [8], [10] and [11], he developed with D. B. Hunter [12] a method
where the quadrature rule is applied only once. After this isdone, the exact error
term is calculated.
In the end of this work we briefly mention use of Chebyshev expansion and there-
fore connection with Clenshaw-Curtis quadrature in the question of simple ordi-
nary equation. Two basic methods are introduced shortly.
At the end I would like to point out a fact that Clenshaw-Curtis quadratures
have been for a long time in a shadow of other methods for numerical integra-
tion. But recently, the team from the Oxford University underthe supervision
of L. N. Trefethen has developed "chebfun", what is a collection of algorithms
which extends familiar powerful methods of numerical computation where a big
impact is given on Cheyshev polynomials and also a Clenshaw-Curtis quadrature.
This together with new theorems recently posted implies that methods based on
Chebyshev polynomials are getting to the forefront.

1Corresponding Matlab source codes can be found on attached medium

4



Chapter 1

Chebyshev polynomials

Chebyshev polynomials are named after Russian mathematicianPafnuty Lvovich
Chebyshev (May 16, 1821 - December 8, 1894) who is considered afound-
ing father of Russian mathematics. As we will see, Chebyshev polynomials
are a sequence of orthogonal polynomials which can be definedin many ways,
for example recursively. We distinguish between four kindsof Chebyshev poly-
nomials, but we shall focus on the Chebyshev polynomials of the first kind which
will be used in the further work. The widely used notationTn for these polyno-
mials becomes from the alternative transliterations of thename Chebyshev used
in French - Tchebycheff or Germany (Tschebyschow).

1.1 Chebyshev polynomials

Firstly, we shall introduce the Chebyshev differential equation

(1 − x2)
d2y

dx2
− x

dy

dx
+ n2y = 0, |x| < 1, n = 0, 1, 2, . . . , (1.1)

wherey = y(x). If we substitutex = cos t we obtain

dt

dx
= − 1

sin t
,

dy

dx
=

dy

dt

dt

dx
= − 1

sin t

dy

dt
,

d2y

dx2
=

d

dt

dt

dx

(
dy

dx

)

=
1

sin t

(
d

dt

(
1

sin t

)
dy

dt
+

1

sin t

d2y

dt2

)

=

=
1

sin2 t

((

−cos t

sin t

)
dy

dt
+

d2y

dx2

)

.
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Using these identities we can simplify the original equation to the form

d2y

dt2
+ n2y = 0.

General solution of this equation isy(t) = A cosnt + B sinnt. When we trans-
form back to the variablex we get the form

y = A cos(n arccosx) +B sin(n arccosx), |x| < 1, (1.2)

or equivalently
y = ATn(x) +BUn(x), |x| < 1,

whereTn(x) andUn(x) respectively are Chebyshev polynomials of the first and
second kind of degreen. The following definitions of Chebyshev polynomials
can be found in [14] (Chapter 1).

Definition 1.1. (Chebyshev polynomials of the first kind.)
DenoteTn(x) the Chebyshev polynomial of the first kind of the degreen above
the interval[−1, 1] defined by the recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x).

(1.3)

They can be equivalently expressed by the following explicitformula

Tn(x) =
n

2

⌊n/2⌋
∑

k=0

(−1)k (n− k − 1)!

k!(n− 2k)!
(2x)n−2k,

where⌊n/2⌋ denotes the integer part of the real numbern/2.
It leads to (see [14], Chapter 1)

Tn(x) = cos (n arccos x). (1.4)

Moreover, when we substitutex = cos θ, where as the range for correspondingθ
can be taken[0, π], we get the equation

Tn(x) = cosnθ. (1.5)

In the literature we can also find different expression forTn known as the Ro-
drigues’ formula:

Tn(x) =
(−1)n(1 − x2)1/2

√
π

2n+1Γ(n+ 1/2)

dn

dxn

(
(1 − x2)n−1/2

)
,
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whereΓ is the well-known Gamma function [17] (Chapter 6)

Γ(z) =

∫ ∞

0

e−ttz−1dt, ℜ(z) > 0. (1.6)

The Gamma function is very important for the rest of this work. Because its
properties are well-known we will not write them again, theycan be easily found
in a numerous literature, for instance [17] (Chapter 6).

Definition 1.2. (Chebyshev polynomials of the second kind.)
DenoteUn(x) the Chebyshev polynomial of the second kind of the degreen above
the interval[−1, 1] defined by the recurrence relation

U0(x) = 1,

U1(x) = 2x,

Un+1(x) = 2xUn(x) − Un−1(x).

(1.7)

Also in this case we can use the explicit formula

Un(x) =

⌊n/2⌋
∑

k=0

(−1)k (n− k)!

k!(n− 2k)!
(2x)n−2k =

T ′
n+1(x)

n+ 1
.

If we use the same substitution as above, we can obtain the following formula
(see [14], Chapter 1)

Un(cos θ) =
sin(n+ 1)θ

sin θ
, θ ∈ [0, π]. (1.8)

Rodrigues’ formula for the Chebyshev polynomial of the second kindUn(x) has
the following form

Un(x) =
(−1)n(n+ 1)

√
π

(1 − x2)1/22n+1Γ(n+ 3/2)

dn

dxn

(
(1 − x2)n+1/2

)
.

There are also Chebyshev polynomials of the third and fourth kind. They are
sometimes called "airfoil polynomials". We can find them in [14].

Definition 1.3. (Chebyshev polynomials of the third kind.)
DenoteVn(x) the Chebyshev polynomial of the third kind of the degreen above
the interval[−1, 1] defined by the equation

Vn(x) =
cos
(
n+ 1

2

)
θ

cos θ
2

, (1.9)
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wherex = cos θ as above.
The recurrence definition is given by relations

V0(x) = 1,

V1(x) = 2x− 1,

Vn(x) = 2xVn−1(x) − Vn−2(x).

(1.10)

Definition 1.4. (Chebyshev polynomials of the fourth kind.)
DenoteWn(x) the Chebyshev polynomial of the fourth kind of the degreen above
the interval[−1, 1] defined by the equation

Wn(x) =
sin
(
n+ 1

2

)
θ

sin θ
2

. (1.11)

wherex = cos θ as above.
The recurrence definition is given by relations

W0(x) = 1,

W1(x) = 2x+ 1,

Wn(x) = 2xWn−1(x) −Wn−2(x).

(1.12)

There exist numerous identities between these polynomialswhich can be easily
found in many books and articles, for instance see [14]. They are not stated here
because we are using only the Chebyshev polynomials of the first kind in the rest
of this work.

Remark.We shall use the simplified notation "Chebyshev polynomial" instead of
"Chebyshev polynomial of the first kind".

1.2 Properties of the Chebyshev polynomials

There are many interesting and important known properties of the Chybeshev
polynomials. We introduce some of them which will be used later, others can be
easily found in literature, for example see [14].

Chebyshev polynomials of thep-th kind (p = 1, 2, 3, 4) are orthogonal with re-
spect to the corresponding weight as it is shown in [14] (Section 4.2).
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Theorem 1.5. Chebyshev polynomialsTn are orthogonal with respect to the
weight1/

√
1 − x2. Thus

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx = 0, i 6= j,

= π, i = j = 0,

=
π

2
, i = j 6= 0.

(1.13)

It is essential to know where the zeros and extrema of the Chebyshev polynomial
are. These important points can be obtained from the definition (1.5) and we can
find them together with the basic derivative relation in [14] (Section 2.2).

Theorem 1.6.Roots of the Chebyshev polynomialTn (n > 0) are points

xk = cos

(
π(2k + 1)

2n

)

, k = 1, . . . , n. (1.14)

Theorem 1.7.The derivative ofTn can be expressed by the following equation

d

dx
Tn(x) =

d
dθ

cosnθ
dx
dθ

=
n sinnθ

sin θ
, x = cos θ. (1.15)

By using the properties ofsin and reccurence definition (1.3) of theTn we can
also obtain an interesting reccurence relation

(1 − x2)T ′
n(x) = −nxTn(x) + nTn−1(x), n > 1. (1.16)

Theorem 1.8.Extrema of the Chebyshev polynomialTn (n > 1) are attained if

xk = cos

(
πk

n

)

, k = 1, . . . , n. (1.17)

Chebyshev polynomials also hold the discrete orthogonalityas is shown in [14]
(Section 4.6), over the discrete point set{xk} consisting of the zeros ofTn+1(x)
and over the set consisting of the extrema ofTn(x). We shall introduce both these
conclusions.

Theorem 1.9. If we choose{xk} to be the set of extrema ofTn(x), Chebyshev
polynomials satisfy the following condition for the discrete orthogonality

n
∑′′

k=0

Ti(xk)Tj(xk) = 0, i 6= j ≤ n,

=
n

2
, 0 < i = j < n,

= n, i = j ∈ {0, n} ,

(1.18)
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wherexk are the extrema ofTn(x) and the double dash
′′

indicates that the first
and the last term in the sum are to be halved.

In the case when we choose{xk} to be the set of zeros ofTn+1(x), the relation is
modified

n+1∑

k=1

Ti(xk)Tj(xk) = 0, i 6= j ≤ n,

=
n+ 1

2
, 0 < i = j ≤ n,

= n+ 1, i = j = 0,

(1.19)

wherexk are the zeros ofTn+1(x).

Theorem 1.10.Letf(x) be a continuous function over the interval[−1, 1]. Then
it can be expanded as a series of the Chebyshev polynomials ([14], Section 5.2)

f(x) =
1

2
A0T0(x) + A1T1(x) + · · · =

∞
∑∗

n=0

AnTn(x), (1.20)

where the asterisk means that the first term is to be halved. ThecoefficientsAn

are given by the following formula

An =
2

π

∫ 1

−1

f(x)Tn(x)√
1 − x2

dx, n = 0, 1, 2, 3, . . . . (1.21)

The property which will be widely used later is the one describing the even parity.
It can be easily obtained from the relation (1.3).

Theorem 1.11.Whether Chebyshev polynomial is an even or odd function de-
pends on its degreen ∈ N0. Chebyshev polynomials satisfy the following rela-
tionship

Tn(−x) = (−1)nTn(x). (1.22)

Thus ifn is evenTn(x) is even as well; otherwiseTn(x) is odd.

Proof. This property deduces directly from the relation (1.3) as g(x) = x is
odd function andTn+1(x) = 2xTn(x) − Tn−1(x) (starting withT0(x) = 1 and
T1(x) = x) is
- equal to odd function multiplied by odd function with subtracted even function,
thus it is even function,
- equal to odd function multiplied by even function with subtracted odd function,
thus it is odd function.
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From the reccurence definition (1.3) of Tn we can also easily see the values of
Chebyshev polynomials in their boundaries.

Theorem 1.12.The values of Chebyshev polynomials in their boundaries±1 are

Tn(1) = 1 n = 0, 1, 2, . . . , (1.23)

and
Tn(−1) = 1 n = 0, 2, 4, 6, . . . ,

Tn(−1) = −1 n = 1, 3, 5, 7, . . . .
(1.24)

The following property may be obtained by applying the formula for derivative
(1.15) on Chebyshev polynomialsTn+1 andTn−1.

Theorem 1.13.Chebyshev polynomialsTn satisfy the following property

Tn(x) =
1

2

(

T
′

n+1(x)

n+ 1
− T

′

n−1(x)

n− 1

)

, n > 1. (1.25)

Based on this formula we can prove ([14], Chapter 2.4.4) the following property
for the integration of the Chebyshev polynomial which will beused later in the
Section2.3.

Theorem 1.14.The indefinite integral of Chebyshev polynomials can be expressed
in terms of Chebyshev polynomials as follows ([14], Chapter 2.4.4)
∫

T0(x)dx = x+ const,

∫

T1(x)dx =
x2

2
+ const,

∫

Tn(x)dx =
1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)

+ const, n = 2, 3, 4, . . . .

(1.26)

The following two relations can be found in the article [3], (p. 126, eq. (3.1) and
(3.2)).

Theorem 1.15.Supposeλ > −1
2

andr ∈ Z. Then the Chebyshev polynomials
and Gamma function satisfy the following identity ([3], Eq.(3.1))

∫ 1

−1

(
1 − x2

)λ−1/2
T2r(x)dx =

(−1)rΓ
(
λ+ 1

2

)
Γ(λ+ 1)

√
π

Γ (λ+ r + 1) Γ (λ− r + 1)
. (1.27)
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Gamma function holds also the following property ([3], Eq.(3.2))

(−1)r (Γ(λ+ 1))2

Γ(λ+ r + 1)Γ(λ− r + 1)
=

r∏

j=1

j − 1 + λ

j + λ
. (1.28)

Based on this equation denote

Gr(λ) =
r∏

j=1

j − 1 − λ

j + λ
, r > 0,

= 1, r = 0,

= G−r(λ), r < 0.

(1.29)

The previous Theorem1.15plays an important role in the process of derivation
the desired method in Chapter5 and its error estimation. We will be using the
same notationGr as we have just defined.

The visualisation of Chebyshev polynomialsTn (for n < 0 expanded symetrically)
is very interesting even for small values ofn as we can see on the following graph.

We have introduced Chebyshev polynomials and some properties of Chebyshev
polynomials of the first kind. With this knowledge we can derive the Clenshaw-
Curtis quadrature. The theory of the Chebyshev polynomials isvery large and the
polynomials of second, third and fourth kind which have hugeimpact in various
theories. There are also the shifted Chebyshev polynomials of all four kinds. It
is available in various literature, for example [14].
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Chapter 2

Derivation of the Clenshaw-Curtis
quadrature

Within this chapter we derive the Clenshaw-Curtis quadraturewhich was firstly
presented by C. W. Clenshaw and A. R. Curtis in [2]. This kind of numerical
integration is based on an expansion of the integrand in terms of Chebyshev poly-
nomials. We will find out that there is also a very close connection between the
Chebyshev expansion, which is used as an essential of Clenshaw-Curtis quadra-
ture, and Fourier transformation.

2.1 Motivation

At the begining of this section we shall introduce two well known methods of
numerical integration. One of them is (composite) Simpson’s rule which is im-
portant tool in the theory of numerical integration and can be found in every basic
handbook of numerical analysis, for example [15] (p. 365-375).

Method 2.1. (Simpson’s rule.)
Let f ∈ C4[a, b]. The three-point Newton-Cotes formula, known as Simpson’s
rule is given by

∫ b

a

f(x)dx ≈ b− a

6

(

f(a) + 4f

(
b+ a

2

)

+ f(b)

)

. (2.1)

If we split the interval[a, b] into even number of equal subintervals (x0 = a,
xn = b) we get the following formula known as the composite Simpson’s rule

13



with equidistant nodes

∫ b

a

f(x)dx ≈ h

3

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

· · · + 4f(xn−1) + f(xn)
)
,

(2.2)

whereh = (b− a)/n and xj = a+ jh for j = 0, 1, . . . n− 1.
The error arising by using this method is in absolute value bounded by the value

h4

180
(b− a) max

x∈[a,b]

∣
∣f (4)(x)

∣
∣ . (2.3)

Method 2.2. (Guass quadrature.)
Gauss quadrature (also know as Gauss-Legendre quadrature)is given by the
formula ([17], p.887)

∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi), (2.4)

where

wi =
2

(1 − x2
i ) (P ′

n(xi))
2 . (2.5)

andPn denotes the Legendre polynomial of degreen andxi is the i-th zero of
Pn(x).

22n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), −1 ≤ ξ ≤ 1. (2.6)

Using the transition from[−1, 1] to [a, b] we get the formula

∫ b

a

f(y)dy ≈ b− a

2

n∑

i=1

wif

(
b− a

2
xi +

a+ b

2

)

,

Remark.The zeros ofPn(x) are not equidistant and neither are the nodes of this
method.

The error arising using this method is limited by
Knowing the Newton-Cottes and Gauss formulae for numerical integration the
next question can be asked. Why do we need another one?
Every method has its own pros and cons. For example, Gauss formula does not
have problem with rounding errors and converge for any continuous function. It
even has a factor-of-2 advantage in efficiency. But it is rather inappropriate to
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indefinite integration. Also iteration with growingn requires a new set ofxi and
weightswi without using previously computed values. Thus a lot of computation
has to be done what raises the prize of this method.
On the other hand, Simpson’s rule is relatively easy to implement. The itera-
tion also uses previously computed values. But taking into account for example
highly-oscilated function, much more function values willbe needed to estimate
satisfactory the integral, comparing to the previous Gaussquadrature scheme.
And still we can encounter a problem with check failure. Thisproblem occurs
when we are trying to establish the correctness of our result(with usingn nodes)
by comparing to double amount of nodes. We can get both results wrong and
neverthless one could think that this result is correct. Thehigher order Newton-
Cotes formulae can also have negative coefficients what can lead to significant
rounding errors.
We will derive the Clenshaw-Curtis formula which is based on the term by term
integration of the function expressed by a series of the Chebyshev polynomials.
As we will see, the unique advantage of such a method is that its accuracy may
be checked before the integration is completed. There are also some other advan-
tages such as increasing the number of the ordinates withoutprevious work being
wasted (similarly to Simpson’s rule) or accuraccy which is surprisingly compa-
rable to the Gauss formula. This phenomenom will be discussed more precisely
in the Chapter3.

2.2 Relation with the Fourier transformation

From the first look we can suppose that there is some relation between the Cheby-
shev expansion and the Fourier cosine transformation. Suchrelations can be
found in several publications, for example [14] (Section 5.3).
Supposef ∈ L2[−1, 1] with respect to the weight function(1 − x2)−

1

2 . Thus via
the usual change of variable we can define a new function (alsoas we used to do
it earlier withx = cos θ)

g(θ) = f(cos θ), θ ∈ [0, π]. (2.7)

We can extend this definition toθ ∈ R by introducing

g(θ + 2π) = g(θ),

g(−θ) = g(θ).

Thusg becomes anL2-integrable, even,2π-periodic function what is preferable
for developing into a Fourier series. Sinceg is even we get the Fourier series with
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only the cosine terms

g(θ) =

∞
∑∗

k=0

ak cos kθ, (2.8)

where the asterisk means that the first term is to be halved and

ak =
2

π

∫ π

0

g(θ) cos kθ dθ. (2.9)

If we transform back to the variablex = cos θ we get the Chebyshev expansion
given by the equation (1.20) with coefficients given by (1.21). Thus, apart from
the change of variables, the Chebyshev series expansion is identical to the Fourier
cosine series and the coefficientsak occurring in these two expansions have iden-
tical values.
Thus if we choose the extrema of the Chebyshev polynomials (1.17) to be the
set of points we can evaluateak by the discrete cosine transformation thanks to
orthogonality (1.18)

ak ≈ 2

n

( n
∑′′

j=0

f

(

cos
πj

n

)

cos
πkj

n

)

.

2.3 Derivation of the Clenshaw-Curtis quadrature

We shall use the same approach as it was done in [2]. Assume the integration of
a non-singular function in a finite range.

Remark.We may observe that an infinite range may be transformed to a finite
range, or approximated by a large finite range.

Every functionf(x) which is continuous and of bounded variation (real-valued
function whose total variation is bounded) in(a, b) can be expanded as follows
([2], Chapter 5)

f(x) = F (t) =
1

2
a0T0(t) + a1T1(t) + a2T2(t) + · · · , a ≤ x ≤ b, (2.10)

where

Tr(t) = cos (r arccos t), t =
2x− (b+ a)

b− a
. (2.11)
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Integrating over an interval[a, x] we obtain

2

b− a

∫ x

a

f(x)dx =

∫ t

−1

F (t)dt,

=

∫ t

−1

(
1

2
a0T0(t) + a1T1(t) + a2T2(t) + · · ·

)

dt.

If we use the propeties for integration (1.26) and the known boundaries of Cheby-
shev polynomials (1.24) we obtain a formula

∫ t

−1

F (t)dt =
∞∑

r=1

(−1)r−1ar−1 − ar+1

2r
+

∞∑

r=1

ar−1 − ar+1

2r
Tr(t).

If we now denote
br =

ar−1 − ar+1

2r
, r = 1, 2, . . . ,

b0 = 2b1 − 2b2 + 2b3 − · · · ,
(2.12)

we can write
∫ t

−1

F (t)dt =
1

2
b0 + b1T1(t) + b2T2(t) + · · · . (2.13)

The definite integral is then given by

2

b− a

∫ b

a

f(x)dx =

∫ 1

−1

F (t)dt =
1

2
b0+b1+b2+· · · = 2(b1+b3+· · · ), (2.14)

and the indefinite integral is given by the sum of series (2.13). Since Chebyshev
polynomials are orthogonal, any polynomialf(x) of degreeN can be written in
the form

f(x) = F (t) =
1

2
a0 + a1T1(t) + · · · + an−1TN−1(t) +

1

2
aNTN(t),

=

N
∑′′

r=0

arTr(t),

(2.15)

where−1 ≤ t ≤ 1 and
∑′′

denotes a finite sum whose first and last terms are
to be halved.
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We can choose the extrema of the Chebyshev polynomial as the points ts (see
orthogonality (1.18) and Method5.1) to get a Method based on the practical
abscissae.
The coefficientsar are then given by (see also Section2.2)

ar =
2

N

N
∑′′

s=0

Fs cos
πrs

N
, Fs = F

(

cos
πs

N

)

, (2.16)

which can be rewritten in the form

ar =
2

N

N
∑′′

s=0

FsTs(tr), tr = cos
πr

N
. (2.17)

Any function which satisfies the conditions necessary for convergence of its
Chebyshev expansion can be approximated to any required accuracy by a finite
series of the form (2.15) with coefficients given by the above formula (2.17).

We have pointed out the relation with the Fourier transformation. We already
know that this kind of transformation can be achieved using the well-known Fast
Fourier Transformation. This connection will be mentionedin the next chapter
where we will also point out that the Clenshaw-Curtis quadrature is comparatebly
accurate to Gauss quadrature.
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Chapter 3

Comparison with the Gauss
quadrature

One of the goals of this work is to compare general Clenshaw-Curtis quadrature
with Gauss quadrature. As we know, the Guass quadrature has the advantage of
the factor-of-2 in efficiency. On the other hand, Clenshaw-Curtis is much easier
to implement but from the first look is half as efficient. However the numerical
results are very surprising as was reported already by C. W. Clenshaw and A. R.
Curtis ([2], 1960). Observations made by H. O’Hara and F. J. Smith ([6], 1968)
indicates that both formulas are about equally accurate. Since then also other
mathematicians made the same observation but L. N. Trefethen ([16], 2008) is
the one who took a step further. He pointed out that for most ofthe integrands
both quadratures reach very similar accuracy. And by using the FFT, Clenshaw-
Curtis can be implemented inO(n log n) operations which is much better than
solve the tridiagonal eigenvalue problem which arises in the implementation of
Gauss quadrature.

Assume that we have given a continuous functionf on [−1, 1] and we wish to
approximate the integralI = I(f) =

∫ 1

−1
f(x)dx by sum

In = In(f) =
n∑

k=0

wkf(xk),

where the nodesxk depend onn but not onf , for variousn. Due to the fact that
In is desired to be an interpolary quadrature, the weightswk are given uniquely.
ThusIn integrates exactly polynomials of degree at mostn. As we already know
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from (1.20), the Chebyshev series forf ∈ C[−1, 1] is defined by

f(x) =

∞
∑∗

k=0

akTk(x), with ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx,

where the asterisk indicates that the first term (k = 0) is to be halved.

The Chebyshev polynomialsTn are orthogonal (1.13) with respect to the weight
function1/

√
1 − x2. Thus we can define the Chebyshev weighted norm as it was

done in [16] (p. 75, Eq. (4.5)).

Definition 3.1. The Chebyshev-weighted 1-norm‖.‖T is defined by

‖u‖T =

∥
∥
∥
∥

u′(x)√
1 − x2

∥
∥
∥
∥

1

,

whereu is of bounded variation (real-valued function whose total variation is
finite).

Several inequalities concerning this norm are proved in [16] (Chapter 4). They
set bounds for the coefficients|ak| and lead to the following theorem which holds
for the Gauss quadrature as well as for the Clenshaw-Curtis quadrature.

Theorem 3.2.Let Gauss or Clenshaw-Curtis quadrature be applied to a function
f ∈ C[−1, 1]. If f, f ′, . . . , f (k−1) are absolutely continuous on the interval[−1, 1]
and‖f (k)‖T = V <∞ for somek ≥ 1, then

|I − In| ≤
32V

15πk(2n+ 1 − k)k
, (3.1)

• for n ≥ k
2

for the Gauss quadrature.

• for n ≥ nk wherenk depends onk for the Clenshaw-Curtis quadrature.

Proof. We can find the proof in the [16] (p. 79-80). The main fact is that of
"aliasing". On the grid in[0, 2π] of 2n equally spaced pointsθk

θk =
πk

n
, 0 ≤ k ≤ 2n− 1,

the following functions

cos (n+ p)πθk, cos (n− p)πθk,
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are indistinguishable for anyp ∈ Z. We use to say that the numbers(n − p)πθk

and(n + p)πθk are "aliases" of one another on this grid. Based on this property
one can see (transplantingx = cos θ) that

Tn+p(xk) = Tn−p(xk), 0 ≤ k ≤ n, (3.2)

on the grid of extreme points of Chebyshev polynomialsxk = cos πk
n

(method
based on the practical abscissae, see Method5.1)1. Thus

In(Tn+p) = In(Tn−p) = I(Tn−p) = 0, n± p is odd,

=
2

1 − (n− p)2
, n± p is even,

(3.3)

and the error in integrating is given by

I(Tn+p) − In(Tn+p) = 0, n± p is odd,

=
8pn

n4 − 2(p2 + 1)n2 + (p2 − 1)2
, n± p is even.

(3.4)

Remark.Here we can already see why is the Clenshaw-Curtis quadrature so ac-
curate. Ifn is even then the first few terms in the Chebyshev expansion off that
contribute to the errorI(f) − In(f) arean+2Tn+2, an+4Tn+4, . . . .

Now we can estimate

I(f) − In(f) =

∞
∑∗

k=0

ak (I(Tk) − In(Tk)) ≤ S1 + S2 + S3 + S4,

1Because of aliasing we have to evaluate only the coefficientsak up tok = n/2. If xi = cos πi

n

thenTn(xi) = Ti(xn).
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where asterisk means that the first term of sum is to be halved and

S1 =

n
∑∗

k=0

|ak| |I(Tk) − In(Tk)|,

S2 =

2n−
⌊

n
1
3

⌋

∑

k=n+1

|ak| |I(Tk) − In(Tk)|,

S3 =
2n+1∑

k=2n+1−
⌊

n
1
3

⌋

|ak| |I(Tk) − In(Tk)|,

S4 =
∞∑

k=2n+2

|ak| |I(Tk) − In(Tk)|.

The termS1 = 0 because the quadrature formula is interpolatory. The otherterms
are estimated via inequalities proved in [16] and thanks to aliasing. In the case of
Gauss quadrature the termsS2 andS3 are equal to0 as well. Consider Clenshaw-
Curtis quadrature.
The estimation of the termS2 is based on a relation (3.4). Because of that relation
we can write that the factors|I(Tk) − In(Tk)| are of order at worstn− 2

3 and by
inequality ([16], p. 75)

|an| ≤
2V

πn(n− 1) · · · (n− k)
, for eachn ≥ k + 1,

the coefficientsaj are of orderV n−k−1. ThusS2 consists ofO(n) terms of size

O(V n−k− 5

3 ) which means a total magnitudeO
(

V n−k− 2

3

)

.

In the same way the termS3 consists ofO
(

n
1

3

)

terms of sizeO
(
V n−k−1

)
which

means a total magnitudeO
(

V n−k− 2

3

)

.

The termS4 is still remaining for both quadratures. We know about the even
parity ofTn (1.22) which means thatTj is odd wheneverj is odd. Thus from the
relation (3.3) for j ≥ 4 (j is from2n+ 2)

|I(Tk) − In(Tk)| ≤
32

15
, if k is even,

≤ 0, if k is odd.

In particular, the statement in the Theorem for the Clenshaw-Curtis method allows
us to increasen a little further. Thus we can ensurek ≥ 6 (n > 2 is enough for
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such case) and the constant32
15

can be improved to2 + 2
62−1

= 72
35

which gives the
result

S1 +S2 +S3 +S4 ≤ O(V n−k− 2

3 )+
72V

35πk(2n+ 1 − k)k
<

32V

35πk(2n+ 1 − k)k
.

As we can see, the factor2−k in the error bound from the previous relation (3.1) is
common for both quadratures. Yet the Clenshaw-Curtis formulahas essentially
the same performance for most integrands as Gauss formula. L. N. Trefethen
shown also another explanation of this, mostly unexpected,phenomenom based
on the rational approximation as can be found in [16] (Section 6).
We have already pointed out the relation with the Fourier cosine transformation
in the Section2.2. Thus we know that the Chebyshev coefficientsak can be
expressed as thecosinetransformation. And such a formula is mostly calculated
by the Fast Fourier Transformation algorithm (FFT). C. W. Clenshaw and A. R.
Curtis published their work in 1960 while the FFT was introduced in 1965. The
connection with the FFT was pointed out by W. M. Gentleman (Implementing
Clenshaw-Curtis quadrature,1972). The Clenshaw-Curtis method based on the
extrema of Chebyshev polynomial can be implemented in Matlabenvironment as
it was done in [16].

function I = clenshaw_curtis(f,n) //(n+1)-pt C.-C. quad. of f
x = cos(pi*(0:n)’/n); //extrema of Chebyshev polynomials
fx = feval(f,x); //f evaluated at these points
g = real(fft(fx([1:n+1 n:-1:2])/(2*n))); //Fast Fourier Transform
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; //Chebyshev coeffs
w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).^2); //weight factor
I = w*a; //the integral

The following function shows one of the possible ways how to implement the
Gauss formula in the Matlab enviroment as it was done in [16].

function I = gauss(f,n) //(n+1)-pt Gauss quadrature of f
beta = .5./sqrt(1-(2*(1:n)).^(-2)); //3-term recurrence coeffs
T = diag(beta,1)+diag(beta,-1); //Jacobi matrix
[V,D] = eig(T); //eigenvalue decomposition
x = diag(D); [x,i] = sort(x); //nodes (= Legendre points)
w=2*V(1,i).^2; //weights
I=w*feval(f,x); //the integral
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The main difference between these two codes is that the Clenshaw-Curtis repre-
sentation is more efficient than the Gauss representation where we have to face
the eigenvalue problem. In the case of Clenshaw-Curtis formula we can also store
all previously calculated values of the function and use them again whenever we
decide to use more points (n2 > n). Therefore Clenshaw-Curtis does not require
many more evaluations of function to converge to a desired accuracy.

For ilustration we can provide the distribution of Chebyshev, Gauss and Newton-
Cotes (equidistant) points forn = 42.

Quadrature nodes in [−1,1]

Chebyshev points

Gauss points

Newton−Cotes points
 

 

Figure 3.1: Distribution of Chebyshev, Gauss and Newton-Cotes points.

Remark.This figure was obtained by Matlab functiondisplaypoints.mwhich can
be found on attached DVD.

We shall provide some simple examples to compare these two methods practically.
Within these examples we provide rounded results of both methods as we are
more interested in absolute error|I(f)−In(f)|which we display also graphically.
The absolute error is on the axis y; on the axis x are the numbers n as we use
(n+ 1)-pt. quadrature.
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Example 3.3.We can integrate exactly the polynomial

I =

∫ 1

−1

x12dx = 2/13=̇0.153846153846154.

The table of values provided by method of Gauss and Clenshaw-Curtis for chosen
n follows.

Clenshaw-Curtis abs. error Gauss abs. error
n = 4 0.15000 3.846 × 10−3 0.14585 7.994 × 10−3

n = 6 0.14777 6.078 × 10−3 0.15385 1.110 × 10−16

n = 12 0.15385 5.551 × 10−17 0.15385 2.776 × 10−15

Remark.The absolute error is calculated by the difference|I − In| whereIn is
the result obtained by chosen(n+ 1)-pt. quadrature.

2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

Gauss

Clenshaw−Curtis

Figure 3.2: The absolute error.

Remark.It is no surprise that we have achieved these results for a polynomial of
degree12. Gauss quadrature integrates exactly polynomials of degree2n+1 and
thus we have the error comparable to themachine epsilon2 sincen = 6. On the
other hand, Clenshaw-Curtis quadrature integrates exactly polynomials of degree
n.

2We are using double precision by default, which means thatmachine epsiloṅ=1.11 × 10−16
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Example 3.4.The exact value of the integral of the exponential function is
∫ 1

−1

exdx=̇2.350402387287603.

We shall provide similar table as in the example above.

Clenshaw-Curtis abs. error Gauss abs. error
n = 2 2.3621 1.165 × 10−2 2.3503 6.546 × 10−5

n = 6 2.3505 2.059 × 10−8 2.3504 3.109 × 10−15

n = 12 2.3504 0 2.3504 1.332 × 10−15
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0.001
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0.007

0.008

0.009

0.01

 

 

Gauss
Clenshaw−Curtis

Figure 3.3: The absolute error.

The exponential function is entire and therefore it is analytic through the complex
plane. As we can see, Gauss quadrature significantly outperforms Clenshaw-
Curtis quadrature for smalln as both quadratures converge very fast.

Remark. Within the next examples we shall take as the exact solution of the
following integrals the result obtained by the functionquad(f(x),a,b, tol)which
is built in the environment Matlab 7.5.0. This method approximates the integral
of function over the integral[a, b] via recursive adaptive Simpson quadrature. Its
basic tolerance is set to10−6, but we shall use10−10 instead.
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Example 3.5.We can write the exact (seeRemarkabove) result

∫ 1

−1

1

1 + 8x4
dx=̇0.870419751312476.

We shall provide table with rounded values of the selected methods.

Clenshaw-Curtis abs. error Gauss abs. error
n = 10 0.8725 2.098 × 10−3 0.8719 7.617 × 10−4

n = 20 0.8704 2.407 × 10−6 0.8704 7.462 × 10−7

n = 30 0.8704 5.537 × 10−10 0.8704 7.842 × 10−10
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Figure 3.4: The absolute error.

This function is analytic in a neighborhood of[−1, 1] but not through the complex
plane. We can see that Gauss quadrature again outperforms Clenshaw-Curtis
quadrature but this time not as significantly as in the previous examples.
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Example 3.6.We shall investigate the frequently presented example

∫ 1

−1

e−x−2

dx=̇0.178147711893461.

We shall provide table with rounded values of the selected methods.

Clenshaw-Curtis abs. error Gauss abs. error
n = 10 0.1787 5.441 × 10−4 0.1781 1.866 × 10−5

n = 18 0.1782 1.373 × 10−5 0.1782 4.302 × 10−6

n = 35 0.1781 2.465 × 10−8 0.1781 4.221 × 10−9
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Figure 3.5: The absolute error.

This integrated function is fromC∞(R) and we can see that there is not such a
big difference in the results provided by these two quadratures as in the previous
example.
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Example 3.7. In this example we integrate a function which is not smooth

∫ 1

−1

√

|2x+ 1|dx=̇2.065384140890834.

We shall provide table with rounded values of the selected methods.

Clenshaw-Curtis abs. error Gauss abs. error
n = 151 2.0635 1.866 × 10−3 2.0656 1.875 × 10−4

n = 576 2.0654 4.306 × 10−5 2.0654 5.546 × 10−5

n = 1001 2.0654 1.759 × 10−5 2.0654 2.269 × 10−5
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Figure 3.6: The absolute error.

In this case both methods converge very slowly but both achieve very similar
accuracy. The visible difference is again only forn small enough where are both
quadratures very inaccurate.
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From the previous examples we can see that Gauss quadrature significantly out-
performs Clenshaw-Curtis quadrature for functions analyticin a sizable neigh-
borhood of[−1, 1]. But as we have also found out, for such functions both
quadratures converge very fast and therefore there is not required many more
function evaluations for Clenshaw-Curtis quadrature. Moreover, for functions
that are not analytic in a sizable neighborhood of[−1, 1], this quadrature is
achieving comparable accuracy as Gauss quadrature. This can be seen from the
condition in the Theorem3.2where the error estimation for Clenshaw-Curtis for-
mula holds forn > nk.
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Chapter 4

Gegenbauer weight function

Within this chapter we introduce the Gegenbauer weight function. It is a weight
function of the Gegenbauer polynomials which are a type of orthogonal polyno-
mials. We shall shortly desribe these polynomials as they generalize Chebyshev
polynomials. Firstly, define this weight function.

Definition 4.1. (Gegenbauer weight function.)
The Gegenbauer weight function is defined by the following formula

w(x) =
(
1 − x2

)λ− 1

2 , λ > −1

2
. (4.1)

Gegenbauer weight function is used in the theory of Gegenbauer (or ultraspher-
ical) polynomialsC(λ)

n (x). Those are orthogonal on the interval[−1, 1] with re-
spect to this weight function ([17], p. 773-785).

Definition 4.2. (Gegenbauer polynomials.)
Gegenbauer polynomialsCλ

n of degreen are defined by the recurrence relation

Cλ
0 (x) = 1,

Cλ
1 (x) = 2λx,

Cλ
n(x) =

1

n

(
2x(n+ λ− 1)Cλ

n−1(x) − (n+ 2λ− 2)Cλ
n−2(x)

)
.

(4.2)

They are orthogonal on the interval[−1, 1] with respect to the weight function
given by (4.1).
The equivalent Rodrigues’ formula follows ([17], p. 785)

Cλ
n(x) =

(−2)n Γ(n+ λ) Γ(n+ 2λ)

n! Γ(λ) Γ(2n+ 2λ)

(
1 − x2

) 1

2
−λ dn

dxn

((
1 − x2

)n+λ− 1

2

)

.

(4.3)

31



Gegenbauer polynomials are particular solutions of the Gegenbauer differential
equation

(1 − x2)y
′′ − (2λ+ 1)xy′ + n(n+ 2λ)y = 0, wherey = y(x), (4.4)

and they generalize other well known polynomials such as theLegendre polyno-
mials or the Chebyshev polynomials. Ifλ = 1

2
the equation (4.4) reduces to the

following equation which is called the Legendre equation

(1 − x2)y
′′ − 2xy′ + n(n+ 1)y = 0,

and the corresponding Gegenbauer polynomials are known as the Legendre poly-
nomialsPn, see [17] (p. 779).
If λ = 0 the equation (4.4) reduces to the Chebyshev equation presented also in
this work in the Chapter 1 (1.1).

Authors D. B. Hunter and H. V. Smith used Gegenbauer weight function as some
"generalization" of the Clenshaw-Curtis quadrature in their work [4], [12] and
we are looking for the integral of functiong which can be written asg(x) =

(1 − x2)
λ−1/2

f(x). That means we are looking for the approximation of the in-
tegral

I(λ)(f) =

∫ 1

−1

(
1 − x2

)λ−1/2
f(x)dx, λ > −1

2
, (4.5)

by using the Chebyshev expansion of the functionf(x). In the next Chapter we
will introduce methods based on the term-by-term integration of the approximate
Chebyshev series to achieve this objective.
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Chapter 5

A quadrature formula of the
Clenshaw-Curtis type for the
Gegenbauer weight function

In this chapter we finally investigate a desired method whichcan be regarded as
a generalization of the Clenshaw-Curtis quadrature by involving the Gegenbauer
weight function. We will derive a method where we have to facethe question
- How shall we obtain the coefficientsan,k from the Chebyshev expansion? We
have already suggested a choice of the extrema of the Chebyshev polynomials
which is also one of the methods we will present more in details. Another method
will be based on the zeros of these polynomials. We will also evaluate the method
based on a different choice of nodes. The description is completed with the error
estimates caused by these methods. At the end of this we will look at a method
based on different approach, which H. V. Smith introduced [9].

5.1 Description of the method

Suppose a functionf is analytic over some region of the complex plane contain-
ing the interval[−1, 1] in its interior. Then we can denote byI(λ)(f) the integral

I(λ)(f) =

∫ 1

−1

(
1 − x2

)λ−1/2
f(x)dx, λ > −1

2
. (5.1)
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We can approximate the functionf(x) by a finite Chebyshev expansion

f(x) ≈
n
∑′′

r=0

an,rTr(x), (5.2)

where the double dash indicates sum whose first and last term are to be halved.
There are several details depending on the parity ofn. We shall set

n = 2s+ σ, (5.3)

wheres is an integer andσ is equal to0 or 1.
Now we would like to approximateI(λ)(f). Because of the symmetry of Cheby-
shev polynomial (1.22) we can see that

∫ 1

−1

(
1 − x2

)(λ− 1

2
)

n
∑′′

r=0

an,rTr(x)dx =

∫ −1

1

(
1 − x2

)(λ− 1

2
)

s
∑∗∗

r=0

an,2rT2r(x)dx,

=

s
∑∗∗

r=0

an,2r

∫ 1

−1

(
1 − x2

)(λ− 1

2
)
T2r(x)dx,

where the double asterisk∗∗ indicates that the first term is to be halved and also
last term forn even. We receive this expression

Ψ(λ)
n (f) =

s
∑∗∗

r=0

an,2rI
(λ) (T2r) . (5.4)

This can be simplified using equations previously introduced in Theorem1.15to
the form

Ψ(λ)
n (f) =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)

s
∑∗∗

r=0

an,2rGr(λ). (5.5)

Remark.

Gr(λ) =
r∏

j=1

j − 1 − λ

j + λ
, r > 0,

= 1, r = 0,

= G−r(λ), r < 0.
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If we write in details terms of this sum
s
∑∗∗

r=0

an,2rGr(λ) =
1

2
an,0 + an,2

−λ
1 + λ

+ an,4
−λ

1 + λ

1 − λ

2 + λ
+

+ an,6
−λ

1 + λ

1 − λ

2 + λ

2 − λ

3 − λ
+

+ . . . an,2s
−λ

1 + λ
· · · s− 1 − λ

s+ λ

σ + 1

2
,

we can see that this sum can be calculated by following reccurence

us =
σ + 1

2
an,2s,

ur =
r − λ

r + λ+ 1
ur+1 + an,2r, r = s− 1, s− 2, . . . , 1,

u0 = − λ

λ+ 1
u1 +

1

2
an,0.

(5.6)

Then using all the previous identities, we obtain

Ψ(λ)
n (f) =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)
u0. (5.7)

Here appears the question - how shall we obtain the coefficients an,r? There
are two common methods, one is based on evaluating on the coefficients in the
extrema ofTn ("practical abscissae") and the other one based on the zeros ofthe
Tn+1 ("classical abscissae"). We can find these methods in [4]. We will also try
another way by using points

xk = cos
(6k − 2)π

3n+ 1
, k = 1, 2, . . . n+ 1. (5.8)

Method 5.1. (Practical abscissae.)
According to (1.17) the extreme points ofTn can be easily found. As we have
already shown ((2.17) and Section2.2) with such a choice we have

an,r =
2

n

n
∑′′

i=0

f(xi)Ti(xr), wherexi = cos
πi

n
,

which can be evaluated as

an,r =
2

n

(

f(1)

2
+

n−1∑

i=1

f

(

cos
iπ

n

)

cos
riπ

n
+

(−1)r

2
f(−1)

)

. (5.9)
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If we denote

wn,i =
2

n

s
∑∗

r=0

I(λ)(T2r) cos
2πri

n
,

and because of the symetry shown by (1.22) we can rearrange the equation (5.4)
to the form

Ψ(λ)
n (f) =

n
∑′′

i=0

wn,if

(

cos
iπ

n

)

. (5.10)

Method 5.2. (Classical abscissae.)
The zeros ofTn are given by (1.14). If we choose the zeros ofTn+1 for the points
xj from the previous method, then the approximation (5.2) of the functionf(x)
can be replaced by following sum ([5], p.236-237)

f(x) ≈
n
∑∗

r=0

bn,rTr(x), (5.11)

where the asterisk indicates that the first term is to be halvedand

bn,r =
2

n+ 1

n∑

j=0

f(xj)Tr(xj), r = 0, 1, . . . , n. (5.12)

Zeros ofTn+1 occur ifxj = cos (2j+1)π
2n+2

. Thus

bn,r =
2

n+ 1

n∑

j=0

f

(

cos

(
(2j + 1)π

2(n+ 1)

))

cos

(
(2j + 1)rπ

2(n+ 1)

)

, r = 0, 1, . . . , n.

(5.13)
Now denote the approximation ofI(λ)(f) by Φ(λ)(f) (instead ofΨ(λ)

n which we
used in previous case). Then

Φ(λ)
n (f) =

s
∑∗

r=0

bn,2rI
(λ) (T2r) =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)

s
∑∗

r=0

bn,2rGr(λ). (5.14)

Method 5.3. (The new ascissae.)
We derive a new method based on the points given by equation (5.8).
Firstly, we shall deduce the orthogonality of the Chebyshev polynomials on this
set of points.
Consider a sum

sn(θ) =
n+1∑

k=1

cos

(

k − 1

3

)

θ = cos
2

3
θ + cos

5

3
θ + · · · + cos (n+

1

2
θ). (5.15)
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We can immediately see that

sn(0) = n+ 1, sn(2π) = −1

2
(n+ 1). (5.16)

Now consider a sum of the geometric progression

z
2

3

(
1 + z + z2 + · · · + zn

)
= z

1

3

zn − 1

z − 1
. (5.17)

If we now substitutez = eiθ we can use the Euler’s formula

eiθ = cos θ + i sin θ,

to rewrite the sum (5.16) in the form
(

cos
2

3
θ + i sin

2

3
θ

)

(1 + cos θ + i sin θ + · · · + cosnθ + i sinnθ) .

The real part of the sum above consists of the following terms

cos
2

3
θ cos kθ =

1

2
(cos ((k + 2/3) θ) + cos ((k − 2/3) θ)) ,

i2 sin
2

3
θ sin kθ = −1

2
(cos((k − 2/3) θ) − cos((k + 2/3) θ)) ,

which means that the real part of this progression is the same as the series pre-
sented in (5.15).
To evaluate the series (5.17), we shall begin with the denominator which we have
to multiply by the complex conjugate term. Thus we get the denominator

((
eix − 1

) (
e−ix − 1

))
= 2 − 2 cos θ = 4 sin2 θ

2
.

The nominator is equal to

e2iθ/3
(
einθ − 1

)
(e−iθ − 1) = eiθ(n−1/3) − eiθ(n+2/3) − eiθ(−1/3) + e2iθ/3,

whose real part can be evaluated in the form

cos (n− 1/3)θ − cos (n+ 2/3)θ
︸ ︷︷ ︸

2 sin θ
2

sin (n+ 1

6)θ

− cos(θ/3) + cos(2θ/3)
︸ ︷︷ ︸

2 sin θ
2

sin θ
6

,
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which means thatsn given by formula (5.15) can be calculated in the form

sn =
sin
(

3n+1
6

)
θ cos nθ

2

sin θ
2

. (5.18)

We can see that if (r is integer)

θ =
6

3n+ 1
rπ, 0 < r ≤ 3n, (5.19)

thensn(θ) = 0.
Now consider a set of points given by (5.8), namely

xk = cos θk, θk =
6(k − 1

3
)π

3n+ 1
.

Then we can write for integersp, q, such as0 < p, q < n that

cpq

n+1∑

k=1

cos pθk cos qθk =
1

2

n+1∑

k=1

(cos(p+ q)θk + cos(p− q)θk) ,

=
1

2

(

sn

(
6(p+ q)π

3n+ 1

)

+ sn

(
6(p− q)π

3n+ 1

))

,

and from evaluated values ofsn above we can see that

cpq = 0, p 6= q ≤ n,

=
1

2
(n+ 1), 0 < p = q ≤ n,

= n+ 1, p = q = 0.

This means that we have just proved the orthogonality of Chebyshev polynomials
on the set of{xk} given by (5.8)

n+1∑

k=1

Ti(xk)Tj(xk) = 0, p 6= q ≤ n,

=
1

2
(n+ 1), 0 < p = q ≤ n,

= n+ 1, p = q = 0.
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We can write then-th degree polynomialpn(x) interpolatingf(x) in the points
given by (5.8) as a sum of Chebyshev polynomials

pn(x) =

n
∑∗

j=0

ajTj(x),

where the asterisk means that the first term is to be halved.
Settingf(xk) = pn(xk) follows that

f(xk) =

n
∑∗

j=0

ajTj(xk).

We can multiply this equation by2
n+1

Ti(xk) (i ≤ n) and sum fork = 1 to n+ 1.
Then, because of orthogonality, we receive the following relation

2

n+ 1

n+1∑

k=1

f(xk)Ti(xk) =

n
∑∗

j=0

aj

(

2

n+ 1

n+1∑

k=1

Tj(xk)Ti(xk)

)

= ai.

To use the same notation as we used before we shall shift the index k so that
xr+1 = xk what means that the set of points is given by

xr = cos
(6r + 4)π

3n+ 1
, r = 0, 1, 2, . . . n. (5.20)

Then the approximating formula is

f(x) ≈
n
∑∗

r=0

an,rTr(x),

where

an,r =
2

n+ 1

n∑

k=0

f(xk)Tr(xk).

The approximationΨ(λ)(f) of I(λ)(f) is then given by

Ψ(λ)
n (f) =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)

s
∑∗

r=0

an,2rGr(λ).
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5.2 Error estimation

Within this section we will provide error analysis of methods presented above.
This analysis is based on the fact which can be found in [20] (Section 3.6) for
functions which are analytic within and on some contour containing points{xk}.
The errorf(x) − pn(x) (wherepn is the interpolating polynomial of degreen)
can be written as a contour integral given by the equation (5.22).

Let us denote the error in approximation (5.4) by

E(λ)
n (f) = I(λ)(f) − Ψ(λ)

n (f). (5.21)

Now we will distinguish between the cases of chosen abscissae presented above.

5.2.1 Practical abscissae

Suppose thatf is analytic within and on some contourC in the complex plane
containing the interval[−1, 1] in its interior. As we know from aliasing (3.2),
zeros ofTn+1(x) − Tn−1(x) are pointsxn,i = cos iπ

n
, wherei = 0, 1, . . . , n,

which is equal to the points whereTn(x) reaches its extrema. Then based on the
relation presented in [20] (Theorem 3.6.1) the error of the interpolation forf(x)
is given by the contour integral

en(x) =
1

2πi

∫

C

(Tn+1(x) − Tn−1(x)) f(z)

(z − x) (Tn+1(z) − Tn−1(z))
dz, x ∈ [−1, 1]. (5.22)

The error of the Clenshaw-Curtis quadrature is then given by formula

E(λ)
n (f) =

∫ 1

−1

en(x)dx =
1

πi

∫

C

(

Q
(λ)
n+1(z) −Q

(λ)
n−1(z)

)

f(z)

Tn+1(z) − Tn−1(z)
dz, (5.23)

where

Q(λ)
n (z) =

1

2

∫ 1

−1

(1 − x2)
λ− 1

2 Tn(x)

z − x
dx, z /∈ [−1, 1]. (5.24)

Authors ([4],[12],[18], [19]) choose the contourC to be an ellipse. We shall do
so as well because of its simplicity.
Let us define the ellipseEρ with foci at±1 by the following equation

Eρ =
1

2

(
ρeiθ + ρ−1e−iθ

)
: 0 ≤ θ < 2π, ρ > 1. (5.25)
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In practise we will work in terms of variableξ = ρeiθ, which is related toz so
thatz = 1

2
(ξ + ξ−1) and|ξ| > 1.

We can develop the functionQ(λ)
n (z) by an expansion. To do so, we can use the

following theorem found in [4].

Theorem 5.4. Let n be given by (5.3). Settingz = 1
2
(ξ + ξ−1) where|ξ| > 1,

Q
(λ)
n (z) can be expanded as follows

Q(λ)
n =

Γ(λ+ 1
2
)
√
π

2Γ(λ+ 1)

∞∑

k=1

ξ1−σ−2k (Zk+s+σ(λ) + Zk−s(λ)) . (5.26)

Here

Zr(λ) =
r−1∏

j=1

j − λ

j + λ
, r ≥ 1,

= − Z1−r(λ), r ≤ 1.

(5.27)

Proof. Proof can be found, [4] (p. 392). It is based on the following idea. Setting
z = 1

2
(ξ + ξ−1) andx = cos θ in the equation (5.24) gives

Q(λ)
n (z) =

∫ π

0

sin2λθ cosnθ

ξ − 2 cos θ + ξ−1
dθ.

Since we know, that ([18], p. 653)

sin θ

ξ − 2 cos θ + ξ−1
=

∞∑

r=1

sin rθ

ξr
,

we have

Q(λ)
n (z) =

∫ π

0

sin2λ θ cosnθ
∞∑

r=1

sin rθ

ξr sin θ
dθ,

=
1

2

∞∑

r=1

ξ−r

∫ π

0

sin2λ−1 θ (sin (r + n)θ + sin (r − n)θ) dθ.

(5.28)

From the equations in [13] (p. 397) we know that fork ∈ N

∫ π

0

sin2λ−1 θ sin 2kθdθ = 0,

∫ π

0

sin2λ−1 θ sin (2k − 1)θdθ =
(−1)k+1πΓ(2λ)

22λ−1Γ(λ+ k)Γ(λ− k + 1)
,
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and by using the Duplication formula [17] (p. 256)

Γ(2λ) = (2π)−
1

2 22λ− 1

2 Γ(λ)Γ

(

λ+
1

2

)

,

with some further manipulations (required properties of Gamma function can be
found in [17](Section 6.1)) we obtain

∫ π

0

sin2λ−1 θ sin (2k − 1)θdθ =
Γ(λ+ 1

2
)
√
π

Γ(λ+ 1)
Zk(λ).

By settingr = 2k − 1 + σ in (5.28) we get the desired result.

The following theorem is shown in [4] (p. 393).

Theorem 5.5.The errorE(λ)
n (f) satisfies the following estimation

∣
∣E(λ)

n (f)
∣
∣ ≤ 4Γ

(
λ+ 1

2

)√
πρσM(ρ)

Γ(λ+ 1)(ρ2 − 1)(ρn − ρ−n)
, (5.29)

where
M(ρ) = max

z∈Eρ

|f(z)| , (5.30)

and the ellipseEρ is defined by equation (5.25) andn = 2s+ σ.

Proof. Proof can be found in [4] (p.393). We shall present its idea. Choosing the
ellipeEρ as the contourC, so thatξ = ρeiθ in the identity (5.23), we obtain the
following estimation

∣
∣E(λ)

n

∣
∣ ≤ 1

π

∫

Eρ

∣
∣
∣Q

(λ)
n+1(z) −Q

(λ)
n−1(z)

∣
∣
∣

|Tn+1(z) − Tn−1(z)|
|f(z)| |dz| .

We can find the connection betweenZr given by (5.27) andGr given by (1.29)

Gr(λ) =
1

2
(Zr+1(λ) − Zr(λ)) .

Thus, based on the relation (5.26) we can write the difference in the form

Q
(λ)
n+1(z) −Q

(λ)
n+1(z) =

Γ(λ+ 1/2)
√
π

Γ(λ+ 1)

∞∑

k=1

ξσ−2k (Gk+s(λ) −Gk−s−σ(λ)) ,
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and denotingUn(λ) as an upper bound for|Gk+s(λ) −Gk−s−σ(λ)| we receive an
estimation

∣
∣
∣Q

(λ)
n+1(z) −Q

(λ)
n+1(z)

∣
∣
∣ ≤ Γ(λ+ 1/2)

√
π

Γ(λ+ 1)

∞∑

k=1

Un(λ)ρσ−2k =

=
Γ(λ+ 1/2)

√
πUn(λ)ρσ

Γ(λ+ 1)(ρ2 − 1)
.

We can setUn(λ) = 2 asG0(λ) = 1 and forr 6= 0 andλ > −1
2

is |Gr(λ)| < 1.

The remaining term to estimate is |dz|
|Tn+1(z)−Tn−1(z)||f(z)| which we can find in [18]

(p. 655)
|dz|

|Tn+1(z) − Tn−1(z)|
≤ |dξ|
ρ(ρn − ρ−n)

=
dθ

ρn − ρ−n
.

If we take all these relations into account we have the estimation

∣
∣E(λ)

n

∣
∣ ≤ 1

π

∫ 2π

0

Γ(λ+ 1/2)
√
πUn(λ)M(ρ)

Γ(λ+ 1)(ρ2 − 1)(ρn − ρ−n)
dθ,

which is by integrating and settingUn(λ) = 2, as is shown above, equal to

∣
∣E(λ)

n

∣
∣ ≤ 4Γ(λ+ 1/2)

√
πM(ρ)

Γ(λ+ 1)(ρ2 − 1)(ρn − ρ−n)
.

The Theorem5.5is very rough and can be improved in some ways depending on
λ. We can from the proof that for differentλ the behaviour of the terms in this
estimation vary. Again, we can find the following theories in[4] (p. 394-396).

Theorem 5.6.The errorE(λ)
n (f) satisfies the following estimation

∣
∣E(λ)

n (f)
∣
∣ ≤ 2Γ

(
λ+ 1

2

)√
πρσM(ρ)(1 −Gn(λ))

Γ(λ+ 1)(ρ2 − 1)(ρn − ρ−n)
, −1

2
< λ < 1, (5.31)

where all variables are defined as above.

Proof. Proof is shown in [4] (p. 394). The idea is to set more accurate estimation
for the termUn(λ) from previous proof. It is shown in the reffered article that
by choosingλ ∈ (−1

2
, 1) we obtain a relation for the upper bound of the term

|Gk+s(λ) −Gk−s−σ(λ)|
Un(λ) = (1 −Gn(λ)),

and hence based on the previous proof we get the desired estimation.
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As a corollary of this theorem we obtain (see [18], p. 655) that forλ = 1
2

∣
∣E1/2

n (f)
∣
∣ ≤ 16n2ρσM(ρ)

(4n2 − 1)(ρ2 − 1)(ρn − ρ−n)
.

From the definition of the termGr given by (1.29) one can see that more simpli-
fications can occur ifλ is an integer andλ < s+ σ.

Remark.n = 2s+ σ, whereσ is equal to0 or 1.

Then we can simplify the expansion ofQ(λ)
n (z) to the form

Q(λ)
n (z) = (−1)λ2−2λπξ−n(ξ − ξ−1)2k−1, (5.32)

as is shown in [4] (p. 396 - 397). Based on this relation we can write the following
theorem, which can be again found in [4] (p. 397).

Theorem 5.7. If λ is an integer andλ < s+ σ then

∣
∣E(λ)

n (f)
∣
∣ ≤ π(ρ+ ρ−1)2λM(ρ)

22λ−1(ρ2n − 1)
, (5.33)

where all variables are defined as above.

Proof. Proof can be found in [4]. It is similar to the one of the Theorem5.5.
Thus we are again looking for estimation of the difference

∣
∣
∣Q

(λ)
n+1 −Q

(λ)
n−1

∣
∣
∣ ,

using the previous relation (5.32) for z ∈ Eρ. We have

Q
(λ)
n+1 −Q

(λ)
n−1 =

(−1)λ+1π(ξ − xi−1)2λ

22λξn
,

which means that we have the following estimation

∣
∣
∣Q

(λ)
n+1 −Q

(λ)
n−1

∣
∣
∣ ≤ π(ρ+ ρ−1)2λ

22λρn
.

The rest of this proof is the same as the proof of the Theorem5.5.
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5.2.2 Classical abscissae

Suppose thatf is analytic within and on some contourC in the complex plane
containing interval[−1, 1] in its interior. The error caused by the method based
on the classical abscissae is then given by the equation ([18], p.653)

E(λ)
n (f) = I(λ)(f) − Φ(λ)

n (f),

E(λ)
n (f) =

1

πi

∫

C

Q
(λ)
n+1(z)f(z)

Tn+1(z)
dz, (5.34)

whereQ(λ)
n (z) is defined as before (5.24).

If we choose the contourC to be an ellipseEρ denoted by (5.25) and taking
z = 1

2
(ξ + ξ−1) where|ξ| > 1 as above, then

|dz| =

∣
∣
∣
∣

1

2

(
1 − ξ−2

)
dξ

∣
∣
∣
∣
≤ 1

2

(
ρ+ ρ−1

)
dθ,

and

|Tn+1(z)| =

∣
∣
∣
∣

1

2

(
ξn+1 − ξn−1

)
∣
∣
∣
∣
≥ 1

2

(
ρn+1 − ρ−n−1

)
.

Similarly, like in the Theorem5.4we have

Q
(λ)
n+1(z) =

Γ
(
λ+ 1

2

)√
π

2Γ(λ+ 1)

∞∑

k=1

ξσ−2k
(
Zk+s+1(λ) − Zk−s−σ(λ)

)
,

whereZr(λ) is defined by equation (5.27). If λ ≥ 0 then|Zr(λ)| has its maximum
value equal to 1 (whenr = 0 or r = 1). Thus we can set the following inequality

|Zk+s+1(λ) − Zk−s−σ(λ)| ≤ 2, λ ≥ 0,

which leads to
∣
∣
∣Q

(λ)
n+1(z)

∣
∣
∣ ≤

Γ
(
λ+ 1

2

)√
π

2Γ(λ+ 1)
2

∞∑

k=1

ρσ−2k =
Γ
(
λ+ 1

2

)√
πρσ

Γ(λ+ 1)(ρ2 − 1)
.

Based on these inequations we can write the following theoremwhich is analogue
of Theorem5.5.

Theorem 5.8. If λ ≥ 0, the errorE(λ)
n (f) satisfies the bound

∣
∣E(λ)

n (f)
∣
∣ ≤ 2Γ

(
λ+ 1

2

)√
πρσM(ρ) (ρ+ ρ−1)

Γ(λ+ 1)(ρ2 − 1)(ρn+1 − ρ−n−1)
, (5.35)

where all variables are defined as before.
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The theorem above can be proved in the same way as the Theorem5.5. The
knowledge from the previous section, where we were looking for the error esti-
mation for method based on the practical abscissae, motivate us to look for the
improvement in the case that0 ≤ λ ≤ 1. Then we can estimate

|Zk+s+1(λ) − Zk−s−σ(λ)| ≤ 1 + Zn+2(λ), 0 ≤ λ ≤ 1,

asZr(λ) is nonnegative forr > 0 and nonpositive forr ≤ 0. The maximum
value (equality) occurs whenk = s+ σ + 1. This leads us to the theorem which
is analogue of Theorem5.6.

Theorem 5.9.The errorE(λ)
n (f) satisfies the following equation

∣
∣E(λ)

n (f)
∣
∣ ≤ (1 + Zn+2(λ))Γ(λ+ 1/2)

√
πM(ρ)(ρ+ ρ−1)

Γ(λ+ 1)(ρ2 − 1)(ρn+1 − ρ−n−1)
, 0 ≤ λ ≤ 1,

(5.36)
where variables are defined as above.

As a corollary of this theorem we receive the estimation forλ = 1/2 which is
also introduced in [18] (p. 655)

∣
∣E(1/2)

n (f)
∣
∣ ≤ 4(n+ 2)ρσM(ρ)(ρ+ ρ−1)

(2n+ 3)(ρ2 − 1)(ρn+1 − ρ−n−1)
.

There still remains the case when−1/2 < λ < 0. From the definition ofZr(λ)
we can find out that for each integerr asλ decreases from0 to −1/2, Zr(λ)
varies monotonically fromZr(0) = ±1 to Zr(−1/2) = 2r − 1. This leads us to
estimation

|Zr(λ)| ≤ |2r − 1|, −1/2 < λ < 0.

From this relation and equation (5.26) it follows that

∣
∣
∣Q

(λ)
n+1(z)

∣
∣
∣ ≤ Γ(λ+ 1/2)

√
π

2Γ(λ+ 1)

∞∑

k=1

ρσ−2k
(
|Zk+σ+1(λ)| + |Zk−s−σ(λ)|

)
=

=
Γ(λ+ 1/2)

√

(π)ρσ ((2s+ 3)ρ2 − (2s+ 1))

Γ(λ+ 1)(ρ2 − 1)2
.

Thus we can write the following theorem.
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Theorem 5.10.The errorE(λ)
n (f) satisfies the following estimation

∣
∣E(λ)

n (f)
∣
∣ ≤ 2Γ(λ+ 1/2)

√
πρσ(ρ+ ρ−1)M(ρ) ((2s+ 3)ρ2 − (2s+ 1))

Γ(λ+ 1)(ρ2 − 1)2(ρn+1 − ρ−n−1)
,

−1

2
< λ < 0,

(5.37)
where variables are defined as above.

We have also analogue of the Theorem5.7which we mention at this place.

Theorem 5.11.The errorE(λ)
n (f) satisfies the following estimation forλ integer

such thatλ ≤ s
∣
∣E(λ)

n (f)
∣
∣ ≤ π (ρ+ ρ−1)

2λ
M(ρ)

22λ−1 (ρ2n+2 − 1)
, (5.38)

where variables are defined as before.

5.2.3 The new abscissae

Suppose thatf is analytic within and on some contourC in the complex plane
containing interval[−1, 1] in its interior. If we choose points as we did in (5.20),
namely

xk = cos
(6k + 4)π

3n+ 1
, k = 0, 1, 2, . . . n,

we can show that they are the zeros of

T3n+2(x) − T3n(x),

because we know that

cos (3n+ 2)xk − cos 3nxk = −2 sin (3n+ 1)xk sin xk.

Hence we can write similarly as in the Section5.2.1that the error is given by the
equation

E(λ)
n (f) =

1

πi

∫

C

Q
(λ)
3n+2(z) −Q

(λ)
3n (z)

T3n+2(z) − T3n(z)
f(z)dz,

whereQ(λ)
n (z) is defined as before by equation (5.24)

Q(λ)
n (z) =

1

2

∫ 1

−1

(1 − x2)
λ− 1

2 Tn(x)

z − x
dx, z /∈ [−1, 1].
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If we choose the ellipseEρ given by equation (5.25) as contourC, the main
difference to Section5.2.1is that we are looking for the estimations of the
differences ∣

∣
∣Q

(λ)
3n+2(z) −Q

(λ)
3n

∣
∣
∣ ,

and
|T3n+2(z) − T3n(z)| .

As we already know, choosing ellipseEρ as the contourC allow us to write

|T3n+2(z) − T3n(z)| =
1

2

∣
∣(ξ3n+2 + ξ−3n)(1 − ξ−2)

∣
∣ ,

and we obtain the estimation
|dz|

|T3n+2(z) − T3n(z)| =
|(1 − ξ−2)dξ|

|(ξ3n+2 + ξ−3n)(1 − ξ−2)| ,

≤ |dξ|
ρ3n+2 + ρ−3n

=
dθ

ρ3n+1 + ρ−3n−1
.

(5.39)

Now denote
m = 3n = 6s+ 3σ,

and putm = 2p + q, whereq = 1 or 0. Thus ifn is evenp = 3s and ifn is odd
p = 3s + 1 which allow us to write thatp = 3s + σ andq = σ. Then based on
the Theorem5.4we can estimate the difference

Q
(λ)
3n+2(z) −Q

(λ)
3n (z) =

Γ(λ+ 1/2)
√
π

Γ(λ+ 1)

∞∑

k=1

ξ1−σ−2k(Gk+p+σ(λ) −Gk−p−1(λ)).

(5.40)
So, ifUnλ is an upper bound for|Gk+p+σ(λ) − Gk−p−1(λ)| we obtain (similarly
like in the proof of Theorem5.5) that

∣
∣
∣Q

(λ)
3n+2(z) −Q

(λ)
3n (z)

∣
∣
∣ ≤ Γ(λ+ 1/2)

√
πUn(λ)ρ1−σ

Γ(λ+ 1)(ρ2 − 1)
.

Again, we setUn(λ) = 2 and we can write a theorem similar to Theorem5.5.

Theorem 5.12.The errorE(λ)
n (f) satisfies the following estimation

∣
∣E(λ)

n (f)
∣
∣ ≤ 4Γ

(
λ+ 1

2

)√
πρ1−σM(ρ)

Γ(λ+ 1)(ρ2 − 1)(ρ3n+1 − ρ−3n−1)
, (5.41)

where

M(ρ) = max
z∈Eρ

|f(z)| , λ > −1

2
, (5.42)

and the ellipseEρ is defined by equation (5.25) andn = 2s+ σ.
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5.3 Different approach

There are also two different views at numerical integration. One is "classic"
where the quadrature rule is applied repeatedly and the approximations obtained
converge to the correct value. At the same time we choose the error bounds. We
have presented examples of such a method in the Section5.1.
On the other hand, H. V. Smith introduced a different approach to the numeri-
cal integration in his works [9], [7], [8], [10] and [11] which he used with D.
B. Hunter in deriving the method presented in [12]. Within this approach the
quadrature rule is applied only once and the error term is numerically evaluated
assuming the degree of the rule to be fixed. Consider a method based on the prac-
tical abscissae described earlier in the Method5.1and Section5.2.1. We use the
same notation and require the same conditions as in the previous sections.
If we choose the ellipse (5.25) Eρ as the contourC in the equation (5.23) and
assumef to be analytic in its interior. Thenf can be developed into an infi-
nite Chebyshev series (1.20) with coefficientsAr given by the formula (1.21).
Substituting this series to the equation (5.23) we get the following expression

Eλ
n =

1

πi

∫

Eρ

Q
(λ)
n+1(z) −Q

(λ)
n−1(z)

Tn+1(z) − Tn−1(z)

∞
∑∗

r=0

ArTr(z) dz,

which can be simplified to the form

E(λ)
n (f) =

∞
∑∗

r=0

Are
(λ)
n,r, (5.43)

where the asterisk means that the first term is to be halved and

e(k)
n,r =

1

πi

∫

Eρ

(

Q
(λ)
n+1(z) −Q

(λ)
n−1(z)

)

Tn+1(z) − Tn−1(z)
Tr(z) dz. (5.44)

We shall require thatn is even
n = 2s,

as this choice will make some further relations more simple.
Following three lemmas are required forz ∈ Eρ to gain estimation fore(k)

n,r. They
can be found in [19] (Section 3) which authors used in [12]. It is good to remind
the definition (5.25) of the ellipseEρ at this place

Eρ =
1

2

(
ρeiθ + ρ−1e−iθ

)
: 0 ≤ θ < 2π, ρ > 1,
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and forz ∈ Eρ we write z = 1
2
(ξ + ξ−1). Then the following lemma can be

easily proved using the Euler’s formula of the cosine

cos θ =
1

2

(
eiθ + e−iθ

)
.

Lemma 5.13.For z ∈ Eρ

Tr(z) =
1

2

(
ξr + ξ−r

)
. (5.45)

Lemma 5.14.For z ∈ Eρ

Tn+1(z) − Tn−1(z) =
1

2
ξn+1

(
1 − ξ−2

) (
1 − ξ−2n

)
. (5.46)

We already know from the Theorem1.15and identities (5.4), (5.5) that

I(λ)(T2r) =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)
Gr(λ),

whereGr is defined by the equation (1.29). If we denote

B =

√
π Γ

(
λ+ 1

2

)

Γ(λ+ 1)
, (5.47)

then it becomes
I(λ)(T2r) = BGr(λ).

The following lemma (see [19] p. 304 or [12]) is based on the Theorem5.4.

Lemma 5.15.For z ∈ Eρ andn = 2s is

Q
(λ)
n+1(z) −Q

(λ)
n−1(z) = B

∞∑

k=1

H
(λ)
s,k

ξ2k
, (5.48)

where
H

(λ)
s,k = Gk+s(λ) −Gk−s(λ), (5.49)

andGr(λ) is defined as before (1.29).

Proof. Proof is based on the Theorem5.4. We have the following equation

1

2
(Zr+1(λ) − Zr(λ)) = Gr(λ).

The desired equation is then obtained directly by expressingQ(λ)
n+1 andQ(λ)

n−1 via
their expansions (5.26).
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From the last two lemmas we can get the following equation

Q
(λ)
n+1(z) −Q

(λ)
n−1(z)

Tn+1(z) − Tn−1(z)
=

2B

ξn+1(1 − ξ−2)

(

1 − 1

ξ2n

)−1
( ∞∑

k=1

H
(λ)
s,k

ξ2k

)

,

=
2B

ξ2s+3(1 − ξ−2)

( ∞∑

k=1

H
(λ)
s,k

ξ2k−2

)( ∞∑

h=0

1

ξ4hs

)

.

If we multiply these two series we obtain

Q
(λ)
n+1(z) −Q

(λ)
n−1(z)

Tn+1(z) − Tn−1(z)
=

2B

ξ2s+3(1 − ξ−2)

∞∑

j=0

n−1∑

k=0

1

ξ4js+2k

j
∑

i=0

H
(λ)
s,2si+k+1. (5.50)

Denote

J (λ)(j, k, s) =

j
∑

i=0

H
(λ)
s,2si+k+1. (5.51)

Substituting (5.50) into (5.44) we get

e(λ)
n,r =

2B

πi

∞∑

j=0

n−1∑

k=0

J (λ)(j, k, s)

∫

Eρ

1

ξ4sj+2k+2s+3(1 − ξ−2)
Tr(z) dz.

Because of the Lemma5.13this becomes

e(λ)
n,r =

B

πi

∞∑

j=0

n−1∑

k=0

J (λ)(j, k, s)

∫

Eρ

ξr−2k−4js−2s−3
(
1 + ξ−2r

)
dξ,

=
B

2πi

∞∑

j=0

n−1∑

k=0

J (λ)(j, k, s)

∫

Eρ

ξr−2k−4js−2s−3dξ,

(5.52)

since the termξ−2r makes no contribution to the integral. We shall remind the
definition of the ellipseEρ asξ = ρeiθ and

Eρ =
1

2

(
ρeiθ + ρ−1e−iθ

)
: 0 ≤ θ < 2π, ρ > 1.

If we apply the residue theorem to the integral in (5.52) (or using the direct
method for evaluating this contour integral) we obtain the following relation (use
the direct method).

dξ

dθ
= ρieiθ,
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and settingc = r − 2k − 4js− 2s− 3we solve the integral
∫ 2π

0

ρc+1ieiθ(c+1)dθ =
ρc+1

c+ 1

(
e2πi(c+1) − 1

)
.

As e2πi(c+1) − 1 = 0, the non-zero terms can occur ifc+ 1 = 0 or equivalently if

r = 2k + 4js+ 2s+ 2, j = 0, 1, . . . ,∞, k = 0, 1, . . . , 2s− 1.

Thus we can see that wheneverr is odd or equal to0, 2, 4, . . . 2s thene(λ)
n,r = 0, as

the first non-zero term occur fork = 0, j = 0 andr = 2s + 2 which allow us to
rewrite the error term (5.43) in the form

E(λ)
n =

∞∑

p=1

An+2pe
(λ)
n,n+2p. (5.53)

Taking these relations into account we can write the following theorem ([12],
p.1036).

Theorem 5.16.Assumep andn = 2s to be fixed then

e
(λ)
n,n+2p = B

j
∑

i=0

H
(λ)
s,ni+k+1, k = 0, 1, . . . , n− 1, j = 0, 1, . . . , (5.54)

wherej is the quotient andk the reminder whenp− 1 is divided byn.

Proof. Proof can be found in [12] (p. 1036). The idea is that in the equation
(5.52) we setr = 2s+ 2p which gives the integral term in the form

∫

Eρ

ξ4s( p−1

2s
−j− k

2s)−1dξ.

As it is pointed out in [12] (p. 1036), this integral is non-zero for those values of
j andk such thatj is the quotient andk the remainder whenp − 1 is divided by
2s. The value of this integral is then2πi. Because the quotientj and remainder
k are unique, the result follows from (5.51) and (5.52).

This means that when exact Chebyshev coefficients are known, the identity (5.52)
and Theorem5.16allow us to evaluate the error termE(λ)

2s (f). Unfortunatelly, we
usually do not know the exact Chebyshev coefficients. But as H. V. Smith and D.
B. Hunter [12] (p. 1036-1037) suggested, approximate coefficients can beused
instead of the exact ones as well. The final method is then based on evaluating
Ψ

(λ)
2s given by the equation (5.7) for fixedn = 2s and addingr non-zero terms of

the relation (5.53).
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Chapter 6

Examples

We use previously described methods in this chapter. All of the experiments,
which we introduce, were evaluated using Matlab 7.5.0. We are interested in a
comparison of presented methods with the exact result. Sucha result is obtained
via the in-built functionquad(fun,a,b)which evaluates integral of functionfun
over the interval[a, b] using recursive adaptive Simpson quadrature. The default
tolerance is set to10−6, unless it is stated differently. We use the Gegenbauer
weight function, thus we shall evaluate exactly the function g(λ)(x) given by

g(λ)(x) =
(
1 − x2

)λ−1/2
f(x).

Remark.We will face a problem of obtaining exact result forλ < 1/2 which will
be discussed already in the following example.

Source codes of used functions can be found in appendix and also on the attached
medium. The algorithms are based exactly on the results we have presented in
this work.
The absolute error is calculated as|I−In|whereI is the exact value of the integral
andIn is the approximated value obtained by(n+ 1)-pt. quadrature formula.
As a relative error we denote a percentual ratio of the error with respect to the
exact solution

|I − In|
|exact| × 100.

We will use the following notation:
PRAE - absolute error caused by method based on practical abscissae presented
in Method5.9,
CLAE - absolute error caused by method based on classical abscissae presented
in Method5.2,
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NEWAE - absolute error of invented method presented in Method 5.3,
PRRE - relative error of method based on practical abscissae, given in percentage,
CLRE - relative error of method based on classical abscissae, given in percentage,
NEWRE - relative error of invented method, given in percentage.

Example 6.1.

I(λ) =

∫ 1

−1

(
1 − x2

)λ−1/2
exdx.

We have already evaluated this integral forλ = 1/2 in Example3.4and thus we
shall start with this choice of variableλ. The exact value is

I(1/2) = 2.350402,

and the errors of the methods are presented by table

λ = 1/2 PRAE NEWAE CLAE
n = 2 1.1651361e-002 2.3623730e-001 9.2965772e-002
n = 8 8.1557667e-009 1.0274792e-002 4.9532631e-009
n = 32 8.1353027e-009 6.0246067e-004 8.1353022e-009

λ = 1/2 PRRE NEWRE CLRE
n = 2 4.9571772e-001 1.0050930e+001 3.9553130e+000
n = 8 3.4699449e-007 4.3715033e-001 2.1074107e-007
n = 32 3.4612382e-007 2.5632235e-002 3.4612381e-007

We will provide the same excersise for two different choices for λ, from the
interval(−1

2
, 1

2
) and λ > 1

2
. If we chooseλ < 1/2 we face the problem with

singularities in the endpoints of the integral. We will discuss this problem after
some observation.
Usin the functionquadgkwith received warning about singularities we obtain a
value

I(−1/4)=̇7.120594.

Neverthless, we shall take it as exact value and offer the tableof errors.
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λ = −1/4 PRAE NEWAE CLAE
n = 2 2.2172501e-002 8.5686525e-001 2.4892748e-001
n = 8 2.6654097e-004 2.7290964e-001 2.6645197e-004
n = 32 2.6654084e-004 1.3521458e-001 2.6654084e-004

λ = −1/4 PRRE NEWRE CLRE
n = 2 3.1138554e-001 1.2033620e+001 3.4958807e+000
n = 8 3.7432405e-003 3.8326807e+000 3.7419907e-003
n = 32 3.7432387e-003 1.8989227e+000 3.7432387e-003

We can observe rather big errors in this case. But we have to keep in mind
that there are singularities in the endpoints and the "exact" value obtained by
quadgkis probably inaccurate. If we make an attempts with basic Matlab func-
tion quad(fun,a,b)and compare the results obtained one the intervals[−99, 99]
and [0.999999999, 0.999999999] with tolerancy set to10−12 we can observer in-
creasement fo the value of the integral. It is easy to see thatasx→ 1− (x→ −1+

) the functiong(λ)(x) is growing which agrees with these observations. Therefore
we shall look at values obtained by our methods forn = 32 within the interval
[−1, 1] which are slightly larger than that obtained byquadgk.

λ = −1/4 Pract. result Classic. result New meth. result
n = 32 7.1208607236626527.1208607236626546.985379606027591

Because we do not have to face the problem with singularities within these meth-
ods, we can take into account as the exact solution the result evaluated by method
based on the practical abscissae withn = 1000.

The table of errors can be then modified as follows:
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I(−1/4)=̇7.120860723662654.

λ = −1/4 PRAE NEWAE CLAE
n = 2 2.1905960e-002 8.5713179e-001 2.4919402e-001
n = 8 1.2685675e-010 2.7317618e-001 8.8870103e-008
n = 32 1.7763568e-015 1.3548112e-001 0

λ = −1/4 PRRE NEWRE CLRE
n = 2 3.0763078e-001 1.2036913e+001 3.4994930e+000
n = 8 1.7814805e-009 3.8362804e+000 1.2480247e-006
n = 32 2.4945816e-014 1.9025947e+000 0

From this example we can see that these methods are suitable for such a problems
and they elegantly avoid the problem with singularities in the endpoints (with
respect to the conditions presented in Method5.9).

Remark.In the next examples for−1/2 < λ < 1/2 we will take the value
obtained by the method based on the practical abscissae5.9with n = 1000 (see
also Theorem5.6) as the exact value of the integral.

Now we can investigate in the usual way the integral

I(4) = 0.9028868.

λ = 4 PRAE NEWAE CLAE
n = 2 2.7946923e-003 2.6757724e-001 9.3254317e-002
n = 8 5.0175190e-007 1.3840794e-003 5.0292383e-007
n = 32 5.0169820e-007 5.0169820e-007 5.0169820e-007
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λ = 4 PRRE NEWRE CLRE
n = 2 3.0952855e-001 2.9635747e+001 1.0328462e+001
n = 8 5.5571963e-005 1.5329490e-001 5.5701761e-005
n = 32 5.5566016e-005 5.5566016e-005 5.5566016e-005

With this choice ofλ we get a function which is well integrable via selected meth-
ods as well and the error gets on the tolleration level very fast.

Example 6.2.

I(λ) =

∫ 1

−1

(
1 − x2

)λ−1/2
x12dx.

We have already evaluated this integral forλ = 1/2 in Example3.3and thus we
shall start with this choice of variableλ. The exact value is

I(1/2) = 0.153852.

The errors of methods are given by the following table.

λ = 1/2 PRAE NEWAE CLAE
n = 2 5.1281449e-001 1.0713415e-001 4.3901732e-002
n = 8 2.8074548e-004 6.9116673e-004 7.5162060e-004
n = 32 6.0202006e-006 6.0202006e-006 6.0202006e-006

λ = 1/2 PRRE NEWRE CLRE
n = 2 3.3331638e+002 6.9634475e+001 2.8535009e+001
n = 8 1.8247742e-001 4.4924079e-001 4.8853427e-001
n = 32 3.9129773e-003 3.9129773e-003 3.9129773e-003
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Now we choose theλ = −1/4 which indicates the same problem with singulari-
ties in the endpoints as in the previous example.

I(−1/4) = 2.304050574023278.

λ = −1/4 PRAE NEWAE CLAE
n = 2 1.1920262e+000 1.1882678e+000 1.5781196e+000
n = 8 1.6006845e-003 2.0807364e-002 2.2353702e-002
n = 32 1.7763568e-015 2.2204460e-015 1.7763568e-015

λ = −1/4 PRRE NEWRE CLRE
n = 2 5.1736111e+001 5.1572990e+001 6.8493271e+001
n = 8 6.9472628e-002 9.0307756e-001 9.7019146e-001
n = 32 7.7097129e-014 9.6371411e-014 7.7097129e-014

We keep in mind that in this case the exact solution was obtained by the method
based on practical abscissae with significant amout of nodes (n = 1000).

Now investigate this problem withλ = 5/2

I(5/2) = 0.0048293.

λ = 5/2 PRAE NEWAE CLAE
n = 2 1.4755156e-001 8.4214510e-002 7.6532219e-002
n = 8 1.1983703e-005 3.6145251e-005 4.4383541e-005
n = 32 2.8425176e-006 2.8425176e-006 2.8425176e-006
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λ = 5/2 PRRE NEWRE CLRE
n = 2 3.0552846e+003 1.7437924e+003 1.5847186e+003
n = 8 2.4814121e-001 7.4844364e-001 5.8858748e-002
n = 32 5.8858748e-002 5.8858748e-002 5.5566016e-005

With this choice ofλ we have a function which is well integrable via selected
methods as well as by Gauss quadrature and the error gets on thetolerance level
very fast.

Example 6.3.

I(λ) =

∫ 1

−1

(
1 − x2

)λ−1/2
e−x−2

dx.

We have already evaluated this integral forλ = 1/2 in Example3.6and thus we
can start with this choice of variableλ. The exact value is

I(1/2) = 0.178147.

The errors of methods are given in the following table.

λ = 1/2 PRAE NEWAE CLAE
n = 2 6.7105233e-002 9.6092258e-002 1.1473798e-001
n = 8 5.5027449e-004 5.1640241e-004 9.9186341e-004
n = 32 5.1875247e-008 4.2114768e-008 6.5777744e-008

λ = 1/2 PRRE NEWRE CLRE
n = 2 3.7668307e+001 5.3939649e+001 6.4406087e+001
n = 8 3.0888662e-001 2.8987314e-001 5.5676456e-001
n = 32 2.9119230e-005 2.3640362e-005 3.6923145e-005
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Now we setλ = −1/3 which indicates problem with singularities in the endpoints
as described above. Based on this knowledge we obtain

I(−1/3) = 1.911361361051442.

λ = −1/3 PRAE NEWAE CLAE
n = 2 9.8902586e-002 3.4878472e-001 3.1089796e-001
n = 8 1.1437968e-003 5.0462403e-003 4.3932375e-003
n = 32 1.1609431e-007 1.9617014e-006 1.9123102e-006

λ = −1/3 PRRE NEWRE CLRE
n = 2 5.1744577e+000 1.8247974e+001 1.6265787e+001
n = 8 5.9841994e-002 2.6401289e-001 2.2984861e-001
n = 32 6.0739071e-006 1.0263373e-004 1.0004964e-004

If we setλ = 5 then
I(5) = 0.004561.

The table of errors can be found on next page.
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λ = 5 PRAE NEWAE CLAE
n = 2 1.9140700e-002 6.5572180e-002 7.4692437e-002
n = 8 9.5406117e-004 6.6494888e-006 2.6428544e-005
n = 32 1.1829866e-006 1.1737899e-006 1.1606985e-006

λ = 5 PRRE NEWRE CLRE
n = 2 4.1968406e+002 1.4377530e+003 1.6377262e+003
n = 8 2.0918998e+001 1.4579846e-001 5.7947927e-001
n = 32 2.5938477e-002 2.5736830e-002 2.5449783e-002

In this case we did face any new problems.

We have just presented advantages of methods we have desribed in the earlier
parts of this thesis. As we observed, these methods are well suited also for inte-
grals with singularities in the endpoints, if the problem can be transformed to

∫ 1

−1

(
1 − x2

)(λ−1/2)
f(x)dx, λ > −1

2
.

All three methods elegantly avoid the problem with singularities and provide ac-
curate results for−1/2 < λ < 1/2. As if λ = 1/2 we receive a well-solvable
problem with analytic function, we can compare these results with previously
calculated in Section3. We can see in the examples, that even when all three
methods usually provide very accurate results, the method based on the extrema
of Chebyshev polynomials use to slightly outperform other methods. This fact
registered already D. Elliott [5] (p. 243) who described this observation and sug-
gested use of the method based on "practical ascissae". That isthe reason of the
name of this method.
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Chapter 7

Simple Ordinary Differential
Equation and Further Extension

In this chapter we shall briefly introduce two methods based on the Chebyshev
polynomials for solving a simple linear ordinary differential equation. This is
one of the fields where this work can be extended in the future as there can arise
some interesting connections. For example, the trio of authors from the Republic
of Korea [1] is already studying application of the generalized Clenshaw-Curtis
quadrature rule to a collocation least-squares method.
For the next sections consider the simple, one dimensional,linear, two-point
boundary-value problem on the range[−1, 1]

d2

dx2
u(x) = f(x), u(−1) = a, u(1) = b, (7.1)

where the functionf and the boundary valuesa, b are given.

7.1 Collocation method

Suppose that we approximateu(x) in the following way (see Eq. (5.11)) byn+1
terms of its Chebyshev expansion

u(x) ≈
n
∑∗

k=0

ckTk(x), (7.2)

where the asterisk indicates that the first term of this sum isto be halved. Now
we need the property of Chebyshev polynomial which can be found in [14] (Eq.
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(10.5))

d2

dx2
Tk(x) =

k−2
∑∗

r=0 (k−r) even

(k − r)k(k + r)Tr(x), k ≥ 2. (7.3)

Thus if selectn− 1 points{xi}n−1
i=1 in the range of integration and requireun(x)

to satisfy the differential equation (7.1) at these points, calledcollocation points,
we obtain the following system ofn+ 1 (incl. boundaries) linear equations

n∑

k=2

k−2
∑∗

r=0 (k−r) even

(k − r)k(k + r)ckTr(xi) = f(xi), i = 1, . . . , n− 1, (7.4)

with boundary values (thanks to Theorem1.12) given by equations
n
∑∗

k=0

(−1)kck = a,

n
∑∗

k=0

ck = b. (7.5)

Now arises the question about choosing thesen− 1 points. We can choose zeros
of Tn−1(x)

xr = cos
(r − 1/2)π

n− 1
,

as is show in the relation (1.14), which means that we can use the discrete orthog-
onality of Chebyshev polynomials on this set of points (see (1.19)). We will use
this property after multiplying (7.4) by 2Tj(xi) (j is integer,0 ≤ j ≤ n− 2) and
summing

∑n−1
i=1 . Thus from the relations

n−1∑

i=1

Tr(xi)Tj(xi) = 0, 0 ≤ r 6= j ≤ n− 2,

= n− 1, r = j = 0,

=
1

2
(n− 1), 0 < r = j ≤ n− 2,

we can deduce that
n∑

k=j+2(k−j) even

(k − j)k(k + j)ck =
2

n− 1

n−1∑

i=1

Tj(xi)f(xi), j = 0, . . . , n− 2.

(7.6)
If we use this equation in reverse order (start withj = n − 2)) we can deter-
mine coefficientscn, . . . , c3, c2. Using the boundary conditions we can determine
coefficientsc1, c2.
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7.2 Projection method

We shall describe the method presented in [14] (Section 10.2.3). Approximate
theun(x) in the same way as above

un(x) ≈
n
∑∗

k=0

ckTk(x),

where the asterisk indicates that the first term of the sum is to be halved.
Suppose that we selectn−1 independent test functions{ψj(x)}n−1

j=1 and a positive
weight functionw(x) and solve the system ofn + 1 linear equations (including
boundary conditions)

∫ 1

−1

w(x)

(
d2

dx2
un(x) − f(x)

)

ψj(x)dx =

=

∫ 1

−1

w(x)





n∑

k=2

k−2
∑∗

r=0 (k−r) even

(k − r)k(k + r)ckTr(x) − f(x)



ψj(x)dx,

= 0, j = 1, . . . , n− 1,
(7.7)

with boundary conditions

n
∑∗

k=0

(−1)kck = a,

n
∑∗

k=0

kck = b. (7.8)

This means that the residual

d2

dx2
un(x) − f(x),

is orthogonal to each of then− 1 test functions with respect to the weightw(x).
Let us chooseψj(x) = Tj−1(x) andw(x) = 2

π
1√

1−x2
then because of the or-

thogonality of Chebyshev polynomials presented in (1.13) we can represent the
residual in the form

d2

dx2
un(x) − f(x) =

∞∑

k=0

τk−1Tk−1(x),
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for some sequence of undetermined coefficients(τk). 1 Because of the orthogo-
nality we can reduce the firstn− 1 equations from the system (7.7) to

n∑

k=j+2(k−j) (even)

(k − j)k(k + j)ck =
2

π

∫ 1

−1

Tj(x)f(x)
√

(1 − x2)
dx, j = 0, . . . , n− 2,

(7.9)
which means that we can obtain coefficientsck in a similar way as in the previous
section.

Remark.This is no coincidence. If we apply basic Clenshaw-Curtis quadrature
(based on the zeros ofTn−1) on the right-hand side of (7.9) we receive the right-
hand side of (7.6).

The difference between these two methods ((7.6) and (7.9)) is that in some con-
text we may have a better option of evaluating the integrals more accurately.

1The method is often refered to as the tau method although it slightly differs from the original
Lanczos’ tau method which is based on the representation ofun(x) as the sum of powers ofx,
un(x) =

∑
n

k=0
akxk.
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7.3 Further extension

There are many posibilities to extend this work. The previous two sections can
be extended for nonlinear equations and based on the collocation method we can
also study the Eigenvalue problem as is shown in [14] (Chapter 10).
There is also a method of least-square collocation which is used, for example,
in the geophysics and geodesy what can be found in a literature. Authors C.
Kim, S. D. Kim and J. Yoon in their work [1] extend Clenshaw-Curtis quadra-
ture to multidimensional convex domain and apply to a collocation least-squares
method to solve a first-order system of linear equations withan elliptic boundary
value problem.

The Clenshaw-Curtis quadrature had not been mentioned very often for a long
time, but recently the team under the supervision of L. N. Trefethen developed
Chebfun - collection of algorithms, and a software system in object-oriented
MATLAB, which extends familiar powerful methods of numerical computation.
A big emphasis is put on the use of Chebyshev polynomials. Thissoftware is still
under developement and can be found on http://www2.maths.ox.ac.uk/chebfun/.
This together with the articles which are published in recent years gives a good
presumption that methods based on the Clenshaw-Curtis quadrature will become
more casual in the near future and we can also expect new theorems and maybe
also surprising results.
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Appendix

Source code of functions used for the numerical experiments.

function I=simpson(f,n) %composite Simpson’s rule;
%n denotes the number of
%subintervals (must be even)

a=-1; b=1; %over the interval [a,b]=[-1,1];
h = (b-a)/n; %step h

S=feval(f,a); %f(a)

for i=1:(n/2)
x=a+h*(2*i-1); %odd indexes (x_1, x_3 ... x_{n-1})
S=S+4*feval(f,x);

end

for i=1:(n/2-1)
x=a+h*2*i; %even indexes (x_2, x_4 ... x_{n-2})
S=S+2*feval(f,x);

end

S=S+feval(f,b); %f(b)

I=h*S/3; %the integral
}

======================================================
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function [c,g,s]=points(n) %function returns n+1 points for
%Chebyshev, Gauss and Newton-Cotes
%in [-1,1]

c = cos(pi*(0:n)’/n); %extrema of Chebyshev

beta = .5./sqrt(1-(2*(1:n)).^(-2));
%3-term recurrence coeffs

T = diag(beta,1)+diag(beta,-1);
%Jacobi matrix

[V,D] = eig(T); %eigenvalue decomposition
g = diag(D); [g,i] = sort(g);

%Gauss nodes (= Legendre points)

h = 2/n; %step h, interval [-1,1]
for i=0:n

s(i+1)=-1+h*i; %Newton-Cotes points (equidistant)
end
s=s’; %function returns [c,g,s];

======================================================

function display_points(n) %function displays n+1 points
for Chebyshev, Gauss and Simpson

%in [-1,1]
figure(1)
[c,g,s]=points(n);

hold on
whitebg(’white’);
title(’Quadrature nodes in [-1,1]’)
plot(c(1:n+1),0.1,’bo’);
text(1.05, 0.1, ’Chebyshev points’)
plot(g(1:n+1),0.2,’r+’);
text(1.05, 0.2, ’Gauss points’)
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plot(s(1:n+1),0,’blacko’);
text(1.05, 0, ’Newton-Cotes points’)
axis tight
axis off
hold off
return

======================================================

function I = gauss(f,n) %(n+1)-pt Gauss quadrature of f

beta = .5./sqrt(1-(2*(1:n)).^(-2));
%3-term recurrence coeffs

T = diag(beta,1)+diag(beta,-1); %Jacobi matrix
[V,D] = eig(T); %eigenvalue decomposition
x = diag(D); [x,i] = sort(x);%nodes (= Legendre points)
w=2*V(1,i).^2; %weights

I=w*feval(f,x); %the integral

======================================================

function I = clenshaw_curtis(f,n)
%(n+1)-pt Clenshaw-Curtis quadrature of f based on
%the practical abscissae (extrema of Cheb.polyn.)

x = cos(pi*(0:n)’/n); %extrema of Chebyshev polynomials
fx = feval(f,x); %f evaluated at these points
g = real(fft(fx([1:n+1 n:-1:2])/(2*n)));

%Fast Fourier Transform
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a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)];
%Chebyshev coeffs

w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).^2);
%weight factor

I = w*a; %the integral

======================================================

function I = practical(f,n,lambda)
%(n+1)-pt Clenshaw-Curtis quadrature of f based on
%the practical abscissae (extrema of Cheb.polyn.)
%with Gegenbauer w.f.

format long;
x = cos(pi*(0:n)’/n);

%extrema of Chebyshev polynomials
fx = feval(f,x); %f evaluated at these points
s=floor(n / 2);
sigma=n-2*s;

for r=0:2:n %we are evaluating only 2r
k=r/2;
a(k+1)=0;
for j=1:(n-1)

a(k+1)=a(k+1)+fx(j+1)*cos(r*j*pi/n);
end
a(k+1)=2/n*(a(k+1)+1/2*fx(1)+fx(n+1)/2*(-1)^r);

end

B=gamma(lambda+1/2)*sqrt(pi)/gamma(lambda+1);

u=(0:s);
u(s+1)=(sigma+1)/2*a(s+1); %reccurence
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if s>1
for r=(s-1):-1:1

u(r+1)=(r-lambda)/(r+lambda+1)*u(r+2)+a(r+1);
end

end
u(1)=-lambda/(lambda+1)*u(2)+a(1)/2;
I=B*u(1);

======================================================

function I = classical(f,n,lambda)
%(n+1)-pt Clenshaw-Curtis quadrature of f based on
%the classical abscissae (zeros of Cheb.polyn.)
%with Gegenbauer w.f.

format long;
x = cos(pi*(1:2:(2*n+1))’/(2*(n+1))); %zeros of Tn
fx=feval(f,x); %f evaluated at this points

s=floor(n/2);
sigma = n-2*s;

for r=0:2:n %evaluate just terms b_2r
k=r/2;
b(k+1)=0;
for i=0:n

b(k+1)=b(k+1)+fx(i+1)*cos(r*(2*i+1)*pi/(2*(n+1)));
end

end
b=b*2/(n+1);

B=gamma(lambda+1/2)*sqrt(pi)/gamma(lambda+1);

u=(0:s);
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u(s+1)=(sigma+1)/2*b(s+1); %reccurence relation
if s>1

for r=(s-1):-1:1
u(r+1)=(r-lambda)/(r+lambda+1)*u(r+2)+b(r+1);

end
end
u(1)=-lambda/(lambda+1)*u(2)+b(1)/2;

I=B*u(1);

======================================================

function I = new(f,n,lambda)
%(n+1)-pt Clenshaw-Curtis quadrature of f based
%on the new abscissae
%with Gegenbauer w.f.

format long;
x = cos(pi*(4:6:(6*n+4))’/(3*(n+1)));%points x_k
fx=feval(f,x); %f evaluated at this points

s=floor(n/2);
sigma = n-2*s;

for r=0:2:n %evaluate just terms a_2r
k=r/2;
a(k+1)=0;
for i=0:n

a(k+1)=a(k+1)+fx(i+1)*cos(r*(6*i+4)*pi/(3*(n+1)));
end

end
a=a*2/(n+1);
B=gamma(lambda+1/2)*sqrt(pi)/gamma(lambda+1);
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u=(0:s);

u(s+1)=(sigma+1)/2*a(s+1); %reccurence relation
if s>1

for r=(s-1):-1:1
u(r+1)=(r-lambda)/(r+lambda+1)*u(r+2)+a(r+1);

end
end

u(1)=-lambda/(lambda+1)*u(2)+a(1)/2;

I=B*u(1);
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