Náhodné uzavřené množiny
Random closed sets
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/37143Identifikátory
SIS: 76381
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Rataj, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
26. 1. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Náhodné množiny, multifunkce, Aumannova střední hodnotaKlíčová slova (anglicky)
Random sets, multifunctions, Aumann expectationV této bakalářské práci se zabýváme základy teorie náhodných množin. Definujeme v ní takové pojmy, jako kapacitní fukcionál, selekce, měřitelná a integrovatelná multifunkce, Castaingova reprezentace a Auman- nova střední hodnota náhodné uzavřené množiny. Uvedeme Choquetovu větu o vztahu kapacitních funkcionálů a náhodných množin, Himmelbergovu větu o měřitelnosti, věty o vlastnostech selekcí a střední hodnoty. Teorii do- plníme příklady, které demonstrují danou problematiku. 1
In this bachelor thesis we are concerned with basic knowledge in random set theory. We define here such terms, as capacity functional, se- lection, measurable and integrable multifunction, Castaing representation and Aumann expectation of random closed set. We present Choquet theo- rem, Himmelberg measurability theorem, theorems of properties of selections and expectation. We present also several examples which illustrate the the- ory. 1