Advanced simulations of photonic structures by FDTD method
Pokročilé simulace fotonických struktur metodou FDTD
rigorous thesis (RECOGNIZED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/31285Identifiers
Study Information System: 188976
Collections
- Kvalifikační práce [11325]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Optics and Optoelectronics
Department
Institute of Physics of Charles University
Date of defense
15. 3. 2017
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Recognized
Keywords (Czech)
FDTD, TMM, fotonické struktury, biosensoryKeywords (English)
FDTD, TMM, photonic structures, biosensorsMetoda konečných diferencí v časové doméně (Finite-Difference Time-Domain method - FDTD) vychází z numerického řešení Maxwellových rovnic a v dnešní době je často používána k simulaci optické odezvy od fotonických struktur. Tato práce poskytuje rychlý úvod do FDTD a několika nejdůležitějších rozšíření, které ji činí velmi univerzální. Z důvodu získání podrobnější analýzy fotonických struktur, je zde také zmíněna metoda matic přenosu (transfer matrix method - TMM). Kód je nejdříve otestován na jednoduchý strukturách, kde může být řešení porovnáno s jinými, ať už numerickými či analytickými metodami. Odladěný kód je použit na vylepšení fotonických krystalů užitých pro zvýšení citlivosti biosenzorů založených na změně indexu lomu zkoumané látky. V neposlední řadě jsou zkoumány vlastnosti (citlivost a Q-faktor rezonančního maxima) děrovaného vlnovodu v jedno-, dvou- a tří-dimenzionální simulaci. Je ukázáno, že i tato jednoduchá struktura může na poli biosenzorů soupeřit s komplexními fotonickými krystaly. Powered by TCPDF (www.tcpdf.org)
Finite-Difference Time-Domain method (FDTD) is based on numerical solution of Maxwell's equations, nowadays widely used for simulating optical response of photonic structures. This paper provides brief introduction to the FDTD method and several important extensions which make the basic code much more versatile. In order to broaden analysis of photonic structures, transfer matrix method (TMM) is also involved. The code is firstly tested using simple model structures which optical response might be compared with different numerical or even analytical approaches. Debugged code is used to improve photonic crystals for enhanced sensitivity of biosensing devices based on refractive index changes of sensed medium. Last but not the least, properties (sensitivity and Q-factor of resonant peak) of holey waveguide are investigated in one-, two- and three-dimensional simulation. It is shown here, that even this simple structure may compete with complex photonic crystals in the field of biosensors. Powered by TCPDF (www.tcpdf.org)