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Abstrakt: Metoda konecrych diferenc vcasowe donen e (Finite-Di erence Time-
Domain method - FDTD) vyctaz z numericleho resen Maxw ellowch rovnic
a v dnesn dole je casto powvana k simulaci opticle ode zvy od fotonickych
struktur. Tato pace poskytuje rychiyuvod do FDTD a rek olika nejdleziegch
rozen, ktee jicin velmi univeraln. Z dvodu z skan podrobreg analzy
fotoniclych struktur, je zde tale zmrena metoda matic g enosu (transfer ma-
trix method - TMM). Kod je nejdve otestovan na jednoduch y struktuiach, kde
mee bytresen porovrano s jiymi, at ' w numerickymici analytickkmi meto-
dami. Odlacery lod je powit na vylesen fotonickych kry stal wiych pro
zysen citlivosti biosenzan zalaerych na znere index u lomu zkoumare htky.
V neposlednrack jsou zkoumany vlastnosti (citlivost a Q-faktor rezonarcnho
maxima) cerovareho vinovodu v jedno-, dvou- a t-dimenzioraln simulaci. Je
ukazno, ze i tato jednoducha struktura nee na poli bio senzow soupeit s kom-
plexnmi fotonickymi krystaly.
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Abstract: Finite-Di erence Time-Domain method (FDTD) is based onnumer-
ical solution of Maxwell's equations, nowadays widely used for simulagnopti-

cal response of photonic structures. This paper provides brieftioduction to

the FDTD method and several important extensions which make theasic code
much more versatile. In order to broaden analysis of photonic sirtures, transfer
matrix method (TMM) is also involved. The code is rstly tested using smple

model structures which optical response might be compared with €rent numer-

ical or even analytical approaches. Debugged code is used to inyerghotonic
crystals for enhanced sensitivity of biosensing devices based offagive index
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Introduction

Looking into the history, our progression is based on studying feats of new
and newer materials. Step by step, ancient people learn how to usenres, iron,
bronze and many more alloys. Extremely fast development of lastwedecades
is based on controlling electrical properties of materials and electrdoehaviour
which results in extremely powerful computational machines | compters. Using
computers we can solve unthinkable problems which requires billionsopferations
which simply cannot be solved on a paper with a common pencil. Thus, wan
design and control many sophisticated materials, robots, cars @ther gadgets
which make our living much more simple, comfortable and contribute toverall
progress.

Now, we are able to control movement of electrons and probablyegmext goal
might be guring out how to control optical properties and propagtion of light
particles | photons. As we acquire this knowledge, we will be able to egineer
materials with desired optical response which could result in perfec ection of
required range of frequencies, light propagation in certain directioor even in
all-optical computers.

These revolutionary computers would use light signals instead of dlemic.
The great di erence is that photons do not produce heat while praggating in
waveguides. Therefore we could overclock our processors to Bigfrequencies
without any fear we will burn them. Although we had already entangie Earth
by bre-optic cables which revolutionized the telecommunications ingstry, the
idea of all-optical computer is still far beyond any commercial appliti@ans. Nev-
ertheless, using sophisticated structures likphotonic crystals we are able to
design optical analogies to well known electronic diodes, transissorswitches,
etc. On the other hand, many of them uses nonlinear approachesieh require
high-power input source due to small nonlinear susceptibility coe ciet. Thus,
a lot of energy must be pumped into optical chips.

periodic in periodic in periodic in
one direction two directions three directions

Figure 1. Schematic diagrams illustrating contrast between photdn crystals

of dierent dimensions. Colours correspond to materials with varia optical

properties. Only periodicity in all three directions can support an omidirectional

photonic band gap. However, more complex topology, than showere, is needed.
Taken from [1].



Photonic crystals

Nowadays, qguantum mechanics explains strange and non-trivial ygical proper-
ties of crystals without any di culty. The periodic potential in semiconductor

crystals a ect electron motion by de ning allowed and forbidden ergy bands.
Electrons with certain energy may therefore propagate througthe crystal al-
most like free particles in a free space. Since electrons behave agewant these
energies, we may expect that the propagation of photons in pericddielectric
structures would be driven by similar rules. The periodic photonic stictures are
usually calledphotonic crystals(PhC). Figure 1 illustrates PhCs which are peri-
odical along one, two and three axes. These special structuresca propagation

of electromagnetic waves in very similar manner as semiconductoystals a ect

electron motion. Instead of valence and conduction bands here de ne here di-
electric and air bands. If we take a deeper look into the mathematictheory, we
may nd out, that Schredinger's equation describing electron mogment is very
similar to eigenvalue problem in electromagnetism, which follows from Maell's

equations. Therefore, we can nd many problems which have anatmgs solution
in quantum mechanics (QM) and electromagnetism (EM)1].

Notable di erence between QM and EM problems is that Maxwell's equains
do not have any fundamental scafé’. The crucial is just ratio of structure size
and wavelength of propagating light. This makes PhCs scalable in a wéyat
ordinary crystals are not. Hence, the simulations might be done in laitrary
units and after that scaled to particular incident wavelength or cheacteristic di-
mensions. In QM problem is scale set via Louis de Broglie's electron wavegth,
binding energy, atom size, etc.

The one-dimensional PhCs and dielectric mul-
tilayers have been studied since 1887 when Lord
Rayleigh showed that such structures has a 1D-
photonic band gap This is a range of frequencies
at which the propagation of electromagnetic waves
is not allowed. Nevertheless, the term “photonic
crystal' was rst used 100 years later in 1987 when
E. Yablonovitch and S. John published two mile-
stone papers on these periodic structureg]| [3].
Yablonovitch's main motivation was the control of
spontaneous emission, which plays a fundamental
role in the limitation of the performance of semi- Figure 2: SEM photograph of
conductor lasers or solar cells. On the other hanthotonic crystal bre. The solid
John suggested to use PhCs for localization andore of bre is 5 m. Provided by
control of photons. US Naval Research Laboratory.
After publishing these two papers, the number
of publications concerning PhCs began to grow exponentially. The st experi-
mental con rmation of photonic gap has been done in microwave riege, for which
the PhCs can be fabricated more easily than for optical regime. Thist experi-
ment at optical frequencies was demonstrated by Thomas Kraugs1996, {]. In

Lt is not valid for dispersive materials, which a ect light propagation a t various wavelengths
in di erent ways.



1998 Philip Russell et.al. developed photonic crystal bre, which ored many
degrees of freedom in its design resulting in desired optical proges Figure?2
shows photograph of photonic crystal bre from scanning elean microscope.
This bre has a totally di erent guiding mechanism than ordinary optical bres
based on photonic band gap of the cladding.

The interest in materials with photonic band gap arises from their p@antial
applications in novel optical devices, such as lters, waveguidesawties, design
of more e cient lasers, etc. One of these novel concepts might heseful for
biosensing.

Biosensing

Many experimental optical methods and approaches like ellipsomgtrinterfer-
ometry, surface plasmonic resonance and other were adapted detection of
biochemical reactions during last two decades. Biosensors are imtpot for drug
discovery, protein or disease detection, for DNA analysis. The ddal properties
are compactness, high sensitivity, simple fabrication and compatibyitwith other
optical or electronic elements.

Biosensors based on refractive index (RI) change detect optia@sponse of
nanostructures upon the presence of investigated medium. Twam approaches
are plasmonic and photonic structures. Plasmonic structures utikze ect known
as surface plasmon resonancé€SPR). In principle, they sense RI changes near a
metal surface by measuring the changes of re ectance due tcetmodi ed cou-
pling of incident light to surface plasmons. These structures arepWwever, facing
critical properties like low compactness, di cult fabrication or integration with
other optical components. The photonic structures get rid of althese imper-
fections. In fact, these issues are actually their preferenceshd®onic structures
exhibit dispersion relations which are highly sensitive on Rl changes ioiesti-
gated medium, which is applied on the surface or inside the perfordtstructure.
The method of monitoring RI changes is based on observing cut-o awelengths
(the edge of the band gap) or resonant peak positiof][

Numerical approaches

The analytical methods for the calculation of PhC's band structurge have been
reported, but does not provide us full understanding of all usdfteatures of these
exceptional materials §]. Thus, many complementary numerical approaches have
been proposed to investigate properties of photonic crystals neoprecisely. Here
we brie y introduce just few of them.

One of the most intuitive approaches adapted to compute opticaésponse of
stack of homogeneous thin Ims with di erent RI (multilayer) is Transfer matrix
method (TMM). The formalism of TMM for multilayers was rst proposed by F.
Abeks in 1950 [7]. Itis based on numerical calculation of Fresnel equations, which
describe the re ection and transmission of light from a single interta between
two media. The formalism can be derived by combining Fresnel equat® with
electromagnetic eld propagation in homogeneous layers and condity of the
tangential components of EM eld at the interfaces. The primary atput of
TMM is re ection and transmission spectrum, but dispersion relatios of in nite
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periodic structure can be obtained as well. The simplicity of TMM formigsm is
compensated by the use just for one-dimensional problems.

Thus two-dimensional numerical technique called Finite element metk (FEM)
was adapted to PhC modelling §]. The FEM nds approximate solution to
boundary value problems by dividing whole problem domain into simpler p&s
called nite elements and hence it can handle with complicated geomets with
relative ease.

The very popular method for computing the band structure of Ph€ with
arbitrary variation of Rl is Plane wave expansion (PWE) method whichs adapted
to solve eigenvalue problem formulated by Maxwell's equations. The thed can
deal with computation of eigenfrequencies and eigenmodes of lasge problems.
However, it requires computation of eigenvalues of large matricashich takes a
lot of computational resources (memory and time), and for scating analysis it
can be used just with non-trivial modi cations.

All methods mentioned above have one in common. Whether we contgu
transmission spectrum or dispersion relations, we compute it for ergiven fre-
guency | we are talking about frequency domain methods which stugl behaviour
of monochromatic wave propagation. Naturally, the opposite arame domain
methods. The most used method in this eld is Finite di erence time dorain
method (FDTD), which has been rst proposed by Kane Yee in 196®]. This
method solves Maxwell's equations in the time domain on a discrete lati¢called
Yee grid) which represents real space. Since the simulation runs iarcommon
space-time and does not use any abstract frequency domain, incarovide bet-
ter understanding of light propagation, for example via animated dput. The
frequency output is obtained via discrete Fourier transform (DFY for all desired
frequencies at once, if a broadband pulse is used as a source. Thigery useful
in applications where resonant frequencies are not exactly knownammputation
of broadband spectrum is necessary. The other advantages @D are its sim-
plicity and versatility. Basic algorithm, which uses miscellaneous extsions, can
deal with time-varying, anisotropic, lossy, dispersive and nonlineanedia [L(].

Outline of the thesis

The main aim of this work is to present complex results from 3D-FDTDiswla-
tions showing biosensing potentials of holey waveguide. To undenstiait proper-
ly, we provide here brief theoretical introduction to FDTD theory sipplemented
with model examples which inconspicuously contribute to completese of the
holey waveguide model.

In the Chap. 1, we rstly acquaint ourselves with numerical integration, which
is an essential and integral part of FDTD. Secondly, we derive Yeéarithm from
Maxwell's equations and provide short description of the most populdDTD
extensions. After that, we also provide an introduction into the TM/, which
will be further used to compare and extend results obtained fromO-TD.

Chapter 2 presents some simple structures where the results can be congpolar
with analytical solution, and thus the correctness of the simulatiomlgorithm is
con rmed. We examine re ection of an inhomogeneous dielectric gty TMM
and FDTD, than we take a look at a near- eld of Gaussian pulse scatted on
a grating. After that we use characteristic equation to describeigenmodes in

6



symmetrical plane waveguide, which will be useful when modelling plosiic struc-
tures. The functionality of the FDTD code in three-dimensions is deonstrat-
ed on diraction problem using circular aperture and comparison withFresnel
di raction.

After equipping ourselves with the appropriate theoretical toolsrad verifying
FDTD algorithm we attempt to propose novel photonic structureswith high po-
tential use as biosensors based on Rl changes. Firstly, in Chap. we enhance
hexagonal PhC for biosensing by introducing additional holes in its muiite row,
which represents a waveguide. Than we also show that crystal withroken pe-
riodicity, designed originally as an optical diode, exhibit very large ssitivity
on RI changes. Secondly, in Chap4, we subject photonic structure known as
holey waveguide to precise investigation of its parameters to shatvat even such
simple structure may compete with PhCs in the area of biosensors.

Finally, we conclude our work and results.






1. Theoretical prelude

Since the FDTD simulation is done in the common space and time, the td&s are
very often understandable even without any detailed descriptionNevertheless,
if we want to obtain reasonable results, we should know what doesetlalgorithm
contain and what approximations have to be done before and durimgmputation.
Before we focus on the FDTD theory, let us brie y introduce the mim idea of
the algorithm which is the heart of FDTD.

1.1 Numerical integration

As a model example for solving ordinary di erential equations, we imstigate
here behaviour of a classical harmonic oscillator. The particle massnis force
constant k and time-dependant position is denoted by(t). The di erential

eguation governing oscillator's dynamics is

_ kK x(t) = v(t)
x(t) = mx(t) vty = %x(t) (1.1)
To study the system numerically, we rewrote the second-order dairential equa-
tion as two coupled rst-order equations. The velocity of the osciltar is denoted
by v(t), and v(t) = a(t) denotes the acceleration. To integrate these equations
we discretize continuous time-axis into many discrete points= tg;ty;:::, with a
constant time-step = t,+1 t,. The initial values of the oscillator are de ned
int =ty asxy and vp.

Let's rewrite the set of equations {.1) to make them understandable even for
computers in the most intuitive way

k
4 = —Xn 1.2a
An+1 m n ( )
Xn+1 = Xp + Vi, (1.2b)
Vi1t = Vot t@nsa; (1.2¢)

where the low indices stand for time steps (i.ex, = x(n ) = X(ty)). When
computer proceeds this algorithm, it will evaluatea; from the initial value xq
using (1.28), then x; from xo and vy using (1.2b), next v, from vy and a; using
(1.29, after that it will go back to the rst equation and compute the cycle
again until we will be satis ed with the results. The described procade is called
Euler's algorithm.

In general, this algorithm is not very useful in practice because therror
O( 2) cumulates in each step and solution is not stable. Figure.1 illustrates
the phase space of the oscillator wittm = 1kg, k = 1kg s 2, Xo = 1m, v, = 0.
Since the motion is periodical, the trajectory in the phase space shd be a closed
curve and not the spiral we have obtained. It shows the numericablution is not
correct.

How can we improve the algorithm to get more physical results? Weropute
the Taylor expansion ofx, 1 = X(t, t)

9
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Figure 1.1: The phase space of harmonic 1ok 1
oscillator. If the solution would be cor-
rect, we should see a closed curve and | i
not the widening spiral. This example . . . . .
clearly illustrates the Euler's method is 20 -10 0 10 20
not stable. x[m]

1 1 ...
X(tn t) = X(tn) X(t) + > tzx(tn) 6 tgx(tn) + O( ?) =
1 1
= X(tn) V(th) + > tza(tn) 6 ?Q(tn)'F O( ?):
Adding these two equations yields
Xne1 =2Xn  Xn 1+ fan+ O( {); (1.3)
which is calledVerlet algorithm. Noting the fact that x, X, 1=V, 1= and
Vns1z2  Vn 122 = i@, we get aleapfrog method which is in fact identical to
Verlet's
Vel = Vo 1t t@n; (1.4a)
Xn#1 = Xn+ (Vo 1 (1.4b)
k
1 = —Xpel. 1.4c
aAn+1 X+l ( )

The main idea of the leapfrog algorithm is that we compute the velocity
and the position x at di erent grid points. We even do not know what is the
position and the velocity of the particle at the same time. Furthermee, we have
to adjust initial condition vy to v 1-,. It seems to be unnecessarily complicated,
but the results are more than satisfying.

Figure 1.2 compares Euler and leapfrog methods showing the evolution of
oscillator's energy in time for two di erent time-steps ;. As the gure indicates,
the solution obtained by Euler method is non-physical because theailator's
energy is diverging, although no force is acting on it. If we decreatiee time
step, we will get better behaviour but only for short times. The solion would
diverge anyway if we computed simulation for longer times. Yes, wercdecrease
time step more and more but then we also have to wait longer and longeer
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Figure 1.2: Time evolution of harmonic oscillator's energy computed tyuler and
leapfrog method for dierent . While the Euler method diverges, the energy
obtained from leapfrog only oscillates. The inset illustrates zoom odfi¢ rst ten
seconds.

results, because computers are still not in nitely fast. It is clearhat this way
does not lead us to any signi cant breakthrough.

The situation seems to be much better when leapfrog algorithm is wseEn-
ergy oscillates around the correct value 0.5J but does not divergéhe smaller
¢+ we use, the smaller oscillations we get. Moreover, the leapfrog altfun is
time-reversible, i.e., we can move back and forth in time without any deease of
precision (up to numerical round-o errors). This feature can beused to check

the sensitivity of simulation to round-o errors.

1.2 Finite Di erence Time Domain

Since we are about to describe light, the electromagnetic waves, swuld be-
gin with Maxwell's equations This set of equations is named after the Scottish
physicist and mathematician James Clerk Maxwell, who formulated theearly
form of those equations about 1861L[]

r D= (Gauss's law), (1.5a)

r B=0 (Gauss's law for magnetism), (1.5b)
r E-= %t M (Faraday's law of induction), (1.5¢)
r H=j+ %t (Maxwell-Ampgere's circuital law), (1.5d)

whereE is the electric eld, D is the electric ux density, H is the magnetic eld,
B is the magnetic ux density, j is the current density,M is the magnetic current
density and denotes the charge density.
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If we consider wave propagation in linear isotropic and non-dispersimate-
rial, the constitutive relations are

D = "E; (1.6a)
B= H; (1.6b)

where" is permittivity and  permeability. In free space they are de ned as

"=""=", 8854 10 “¥F m % (1.7a)
= , o= o=4 10 7H m l; (17b)

where", and , denote relative permittivity and permeability, respectively. The
electric current densityj = ©°E and € is the electric conductivity. Similarly,
M = ™H, ™ isthe magnetic conductivity. For the simplicity, all materials will
be considered as non-magnetic, unless otherwise stated. Theref the refractive
index isn="", since , =1.

1.2.1 Yee's algorithm in 3D

As the abbreviation FDTD (Finite-Di erence Time-Domain) prompts, FDTD is
the method which solves Maxwell's equations in the time domain. The nfeid
was rst used by Kane Yee for analysis of two-dimensional scatieg problem
of magnetic pulses from rectangular cylindrical conductor®][ Although Yee
proposed the method in 1966, it did not gain popularity until mid-sevaies when
computers became fast enough to deal with large amount of opgoas which
FDTD requires. In the beginning it was used in the area of microwavend
millimetre-wave research. With faster and more powerful compute the method
was applied little by little on more complex problems.

Nowadays, the FDTD is widely used to design antennas, microwave dts,
scattering structures or even PhCs. On the other hand, FDTD isestricted to
problems, which are comparable with wavelength of propagating lightlf the
objects were too small compared to wavelength (e.g. tiny quantunots versus
visible light), it would be better to use quasistatic approximations. Ifobjects
were too large (e.g. laser beam propagating through some lensed polarisers
placed on optical table), it would be better to use approaches baken geometrical
optics. Otherwise, we would probably require extremely large comational grid
and integration over so many time steps, that we would wait years dnyears for
results.

Since the FDTD is time domain simulation, we do not have to work with
such abstract terms like Brillouin zone, dispersion relations or eigerssent®),
although we will talk about periodic structures like PhCs. Instead othat, we
discretize the real continuous space-time into discrete countemps. Then, ge-
ometry of the investigated problem might be easily stored into largeriays or
matrices in computer's memory. After that, we de ne matrices oflte same sizes

LComputation of dispersion relations with FDTD is possible, but similar to cracking a nut
with a sledgehammer.
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for electromagnetic eld, which are updated in time-marching loop uisg Yee's
leapfrog algorithm step by step.

Instead of writing down, or even deriving, all equations and sophisated
methods which build and improve the FDTD code, we rather refer thequisitive

reader to the literature [LO, 12, 13 14, 15 16. Here we explain only the bare
essentials.

The Yee's algorithm is as follows:

1. Replace all the derivatives in Ampere's {.5d) and Faraday's (1.59 laws with
nite di erences. Discretize space and time so the electric and magtic
elds are separated in both space and time.

2. Solve the di erence equations to obtairupdate equationghat express the
unknown future elds in term of known past elds.

3. Using the update equations enumerate future magnetic elds.
4. Using the update equations enumerate future electric elds.

5. Repeat last two steps unless you are satis ed with the results.

Let's see what is hidden behind thesapdate equationsn three dimensional
case. As the Yee's algorithm postulates, Amgere'sl(5d and Faraday's (1.59

laws are the governing equations in constructing the FDTD. Breakghdown the
curl of E and H we get

o e & &
"H ——=r E= @ @ @; (1.8a)
@t Ex E, E,
& & &
€+ E-r H-@ @ @: (1.8D)
@t He H, H,

Now we have to replace derivatives. We use the central di erencerfula with
the error O( 2)(?

df (x) f(x+ x) f(x X) .
dx 2 X '

For the discretization we use notation similar to the harmonic oscillatoin pre-
vious chapter

(1.9)

Ex(xy;z;) = Ex((m  1=2) x;(n 1) (P 1) 20 o= EJmin;pl;
Ey(xy;z;t)= Ey((m 1) x;(n 1=2) yi(p 1) 29 )= Ejm;n;p];
E:(xy;zi)= E:(m 1) xi(n 1) yi(p 12) 2iq o= Ejmin;pl;
Hy(Xy;z;t) = He((m 1) xi(m 1=2) yi(p 172) ;9 ) = Hi[m;n;p];
Hy(x;y;z;) = Hy((m  1=2) «;(m 1) yi(p 172) ;9 ()= Hym;n;p];
H.(xy;z;t) = Ho(m 1=2) o(m 1=2) ;(p 1) ;4 ) = HJmin;pl;

2More about other di erence schemes, errors and precise analysabout all this non-trivial
stu can be ndin[ 13].
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Figure 1.3: Arrangement of the eld —

components on the Yee cell indexed as :
[m; n; p]. Red arrows denote the electric |
eld, blue arrows the magnetic one. The %
relative permittivity ", is at the same / HImng
place asEy, ", at the same place a&,,

etc. This arrangement is crucial when z P ]
deriving the updating equations {.11). N
It is also useful when sub-cell averaging Ey[m—,n,g] J-/A?HIm,Rp]_ 75
is being involved into the computer COdeZTZy, [m.n,p]

(section1.2.2.

<

where indicesm; n; p are related to positions in matrices. The arrangement of
the elds illustrates Fig. 1.3

In order to save the forests, we mention only one of six update exdions.
This can be derived from {.8b) after some manipulations

2'x[m;n;pl ¢ g[min;p]
2'[m;n;pl+ ¢ g[m;n;p]
+ 2
2"«[m;n;p] + ¢+ g[m;n;p]l)
HF 2[m;n;p] HI P [min 1 p]
2
(2"x[m;n;pl+ + g[m;n;p]) .
HI 2m;n;p]  HI 2[m;nip 1]
2 Fn+1=2
2"y [m;n; p] + tE[m;n;p]JX

ESt [m;n;p] =

EJIm; n; p]

(1.11)

[m; n; pl:

The " was treated as permittivity tensor. This update equation will be simbed
signi cantly if non-conducting material ( ¢ = 0) is assumed.

This relation is very nice indeed, but what will a computer actually do if it
compiles the update equations and algorithm? Firstly, empty matriceof the
dimensions h  n p) for the elds E andH are de ned. Then, matrices of the
same dimensions for permittivity, permeability and current densitieare de ned.
In this step, particular geometry is involved to the computation. Ifwe want to
simulate free space, the matrices for permittivity and permeability W be lled
only with number one, the current density matrices will be lled with zeos. If
we want to simulate a scattering of light on a silicon ball, some values in ¢h
permittivity matrix will be equal to 3 :5?, since the refractive index of silicon is
about ng; = 3:5 for = 1550nm [L7].

The \bare-bone" code of FDTD simulation is attached in Appendix.
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1.2.2 FDTD extensions

The basic FDTD algorithm, as introduced in previous paragraphs, @&s not pro-
vide too valuable results. If we run the loop with the updating equatios on
computer, we will get just a visual output of a spherical wave cloden a metal
box, which may scatter on some badly de ned dielectric or magnetidgect.

Here we brie y describe what does the de nition of material geomet contain,
how can we simulate in nite space, plane waves, how can be frequgitiependent
spectra obtained from time-domain simulation, how can be the fareld computed
or even how can be dispersive materials simulated.

Sub-cell averaging

First of all we describe, how to build objects into the Yee grid. The kl arrange-
ment in the Yee cell as illustrated in Fig.1.3 prompts, that building objects will
probably not so easy as it might appear.

The simplest improvement is sub-cell averaging. After creating matial ge-
ometry by changing ones ta’, in case of permittivity, we check and rede ne
values at boundaries. For instance, the material componeh{[m; n; p] is located
in between four Yee cells. If we consider that the material in each tiem is
di erent, we will rather use the average value for this cell

Aminipl+ " [m  Linipl+ ", [min Lpl+ " [m Lin Lp
4

"z[m;n;p] = :
(1.12)

The advantage of this method is that objects are modelled with bedt resolution
without increasing size of the Yee grid and memory requirements atieerefore
preserved.

We will obtain even better resolution if we involve the particular shapef
modelled objects. For example, if boundary of a dielectric ball'(y) in free
space went through a Yee cell, the relative permittivity of this Yee dlewould be

- Voal "batl ¥ (Vo Vban) .
Vo '

(1.13)

where Vg and V; is the volume of the part of the ball in particular cell and
volume of the Yee cell, respectively.

Boundary conditions

A signi cant problem of updating equation as stated in Eq. {.11]) is to enumerate
future value EZ* [m; n; p] we need to know the value oH ™" ?[m;n;p 1] and
others. The problem will occur, if we want to enumerat&3** [m; n; 1]®, since the
value Hy* [m; n; 0] does not exist. Therefore we do not update gt [m; n; 1]
and it remains zero. Electric eld is always zero in perfect electric cdactor
(PEC, © +1). Thatis why the edges of the Yee grid totally re ect all light
which impact them. This is a serious problem when simulation in free spac
should be done.

3Notation is related to matlab, where rst element of array has index 1.
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To simulate free space, absorbing boundary conditions (ABC) mubke de ned.
The most used method iperfectly matched layerfPML), which was introduced
by Jean-Pierre Berenger in 19941f. The idea of original PML is to de ne a
non-physical material at the edges which attenuates incoming wes. To model
in nite dielectrics, dispersive, nonlinear and all other materials, scalled complex
frequency-shifted PML, known asonvolutional perfectly matched laye(CPML),
was developed.

Other method which can be used at edges of computational areageriodical
boundary conditions, which are widely used for periodical structes such as
crystals.

Total-Field/Scattered-Field (TFSF)

Objects consist of materials have been located in the grid, boungactonditions
de ned, and now we would like to introduce light source and light propgation.

A simple point source, which produces a spherical waves, can be mesd by

a strict condition E9m;n;p] = f(q) placed between fourth and fth step in
Yee's algorithm, wheref () is an arbitrary time-dependent function, e.g.f (g) =
sin(!lg). Nevertheless, in many cases we would like to simulate an impact of
plane wave. One can say, it's not a problem since we know the wavei of
spherical wave are nearly planar when investigated far from thelsae. It is true,

of course, but we do not want to allocate so large arrays in compuatenemory
and even not to wait for wave propagation.

Instead of that, we can use method known as Total-Field/Scatted-Field and
excite the plane wave directly into the Yee grid]2, Chap. 3.10]. Using TFSF
we excite many nodes of the grid and correct elds at many other® tensure the
wave does not propagate outside the TFSF region.

Discrete Fourier transform (DFT)

Simulation in time-domain is nice, intuitive, and might help to understandwave
propagation better. Nevertheless, results in the time domain areohvery use-
ful, since the real detectors are not so fast to be able even compdhe theory
with experiment. Fortunately, Fourier transform which relates time-domain with
frequency-domain and vice versa exists. Because we use comguadhich operate
in the discrete world, we de ne discrete Fourier transform (DFT)

h\
F(r; ) f(r;n Je 't « (1.14)

n=1

whereF (r; ) is the Fourier transform of functionf (r;t) = f (r;n ). The smaller
integration step ; we use, the more accurate solution the transform produces.

When applied to FDTD, we useE(r;t) and H(r;t) as f (r;t) to calculate
E(r; )and H(r; ). In post-process we use these values to compute frequency-
dependant Poynting vectorS(r; )

S )= 3E(G ) H () (115)
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from which the power ow Pge( ) through some detector could be obtained easily

(o )

Poet( ) = < (S(r; ) n) x (1.16)

det.

where unit vectorn is normal to the detector.
For instance, transmission spectrum of a three-dimensional waxede in di-
rection of z-axis might be obtained as

T( )= Eig ;; (1.17)
(g ) |
Pi()=< S:(%Y:z5 ) y x j=1;2 (1.18)

X=Xmin Y= Ymin

where Xmin, Xmax, Ymin» Ymax are edges of the waveguide and indices 1 and 2
correspond to two detectors atz-positions z; and z,. Incident and transmitted
power ows (P, P,) are computed there.

Near-Field to Far-Field transformation (NTFF)

FDTD is method which computes the near- eld, i.e., the eld in the vicinity of
scattering objects. But there are many situations (such as amiea radiation,
grating di raction, etc.) where we would like to know, how does the sttered
eld appears far away from the sources | in the far- eld. One possble way is to
de ne very large computational domain and wait years for resultsinstead, the
electromagnetic eld far away from modelled objects is usually comprd using
the near- eld to far- eld transformation technique.

We enclose the antenna or any other scattering object into an imiagry
surface and compute equivalent surface currenisand M, which are determined
by E and H computed inside the enclosed area. From the surface currents we
compute electromagnetic eld far away from the sources for all gtes and selected
number of frequencies1[3.

Dispersive media in FDTD

As mentioned several times above, the FDTD method is not restrietl only to
linear and isotropic media.

The electromagnetic properties of materials depend more or lessoagthe fre-
guency. Since the FDTD is time-domain method, it is evident that somadvanced
algorithms must be used to obtain more realistic optical response wifaterials.
There are several analytical models which describe frequency degence of ma-
terials. Two most common are Lorentz model for dielectrics and Dde model
for metals. The leading approach used to model dispersive materigdknown as
auxiliary di erential equation (ADE) method.

As the abbreviation prompts, the FDTD algorithm employs one additioal
di erential equation. That consists of calculation of a polarization arrent, which
is used to update the electric eld with a slightly modi ed update equaibns.
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1.2.3 Advanced meshes

The FDTD method as proposed above, provides e cient numerical lgorithms
for design and analysis of many structures. The main limitation of FDD is its
restriction to orthogonal grids, which means, the computationadlomain typically
consists of a union of cubes. This causes many problems leading toaken
accuracy when curved surfaces or tiny structures are modelle8uch situations
are common when quantum dots, small apertures or thin metal Imbave to be
de ned in the grid. The maximum improvement is possible when both spa and
time grid re nements are used. Many techniques have been progasto extend
basic Yee algorithm with ine cient staircase orthogonal meshes.

The simplest method uses more overlapping orthogonal grids with dirent
space steps. For example, the space step around the nanoscalgige is small
enough to describe its shape, whereas the space step in homogesepace is
bigger to obtain results in real time. These grids overlap typically aha three
cells [L9).

How to solve Maxwell's equations in generalize nonorthogonal coordias
was rst described by R. Holland in 198373(0. This approach was further de-
veloped up to current methods, which often uses combination ofveeal schemes
to achieve desired results?[l]. The strength limitation of the methods is, that
computational requirements grow a lot if algorithms are applied thnaghout the
whole computational domain. Therefore, algorithms using nonordgonal cells
are preferred to be used only around the curved boundaries. Figul.4 compares
several grids, which represent di erent approaches of grid reement to particular
geometry.

To ensure stability of FDTD algorithm, so-called Courant-Friedrichs-Lewy
(CFL) condition must be ful lled. In general form for non-orthogamal meshes it
states P2

jsjo% general non-orthogonal grid
iij 1

t tma = (1.19)
4 1 3D orthogonal grid

W JAV Y eo]

1 1 1
c + +
(02 (2 (22

whereg; are the local matrix coe cients describing the nonorthogonality ofthe
mesh. The condition simpli es a lot when the orthogonal mesh is used.

(a) Orthogonal, (b) Orthogonal, (c) Nonorthogonal  (d) Nonorthogonal,
staircase triangular triangular

Figure 1.4: Dierent grid re nements. The simplest case (a) was usein our
FDTD algorithm. Pictures taken from [22].
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The CFL condition provide us that the simulation is stable. Unfortunaely,
it does not mean no that no errors can occur. We used the centrdi erence
formula (1.9) with the error O( 2) to replace derivatives with nite di erences.
Due to this approximation, the numerical dispersion occurs. This isne of the
main sources of inaccuracy. As non-orthogonal meshes are begngployed into
the algorithm, the numerical dispersion arise<2f.

However, simulation in one dimension has a very nice feature known as
magic time-step When we dene = ,=c¢ all the errors will cancel and we
will get exact numerical solution up to round-o errors. This is inded very
nice but unfortunately not too useful. The condition for magic timestep can be
ful lled only in free space, since the speed of light is dependent on theaterial. As
Fig. 1.5illustrates, numerical dispersion will occur if light propagates in dielégc
material.

The numerical dispersion will be suppressed when better resolutiused.
Here we deneN = = , which is the number of points per wavelength. The
more precise our resolution is, the bigged is, and the smaller error caused by
numerical dispersion occurs. In generdN should be greater then 20 if we don't
want to obtain any nonsense and greater than 50 to get more reasble results.

The most simple case of non-uniform grid can be modelled in one dimensio
Comparison with constant spatial step is shown in Figl.5 where a simple in-
terface between free space and dielectric material € 3) is modelled. In the
case of non-uniform grid we de ne di erent spatial step for eachade. Therefore,

1 F T T T T T T : T T T ]
S 05 | t=60Dt — n,=1 | n,=3 -
S |
w 05 E 1 1 1 1 1 1 i 1 1 1 -
_ 1 T T T T T T : T T T
S 05 t=140Dt n=1 | n,=3 .
S 0 : S
w -05 1 1 1 1 1 i 1 1 1 ]
T T T T T T T T T T 7]

3 %[ t=s00mt n=1{ n,=3
R | N\/\/—
W05 1 1 1 1 1 1 I 1 1 1 n
— 05 F T T T T T T T T T T 7]
3 | t=140Dt NCSS n;=11{ ny=3 A —_—
©, 0 \/ 1
N -— |
W .05 1 1 1 1 1 1 H 1 1 1 n

0 20 40 60 80 100 120 140 160 180 200

x-axis [Dx]

Figure 1.5: This set of gures compare numerical dispersion in one demsion.
The Ricker pulse (second derivative of Gaussian) impacts the intade between
free space on the left and dielectric on the right. In the rst casegrid with
constant spatial step x and N = 30 is used. In the second case, the adap-
tive spatial step 4("(x)) is tested for N = 1. Using the DFT we compute
transmission coe cients which are compared in Figl.6.
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Figure 1.6: Comparison of transmission spectra for simple and adajat spatial
step . Impact of numerical dispersion is clearly visible here. N = 30, non-
physical results might be obtained. Nevertheless, in 1D might be tr@ndition
for the magic time-step ful lled even in dielectrics. The transmissionkjue) is
not exactly 0.75 because of numerical errors of DFT.

the condition for the magic time-step (x) = «,=Nn(x) is preserved even in di-
electrics. Then(x) is spatially dependant refractive index. As Figl.5illustrates,
no numerical dispersion occurs althougN = 1!

The great force of magic time-step conservation shows Fif).6, where the
transmission spectrum of modelled interface is illustrated. Using thEresnel
equations we know, the transmission should be 0.75. We subtrdct ) 0:75 to
get curves shown in Figl.6. Please note di erenty-axis scales. The transmission
when non-constant spatial step is applied is non-zero only becausfenumerical
errors of the DFT.

Unfortunately, the weakness of discussed method appears wheumerous
materials of particular thicknesses and refractive indices must betsinto the
grid.

Let's consider set several layers with thicknessels and refractive indicesn;
into the grid. The number of nodes in the grid, which represents thi' layer, is
d—'.; where | = < ¢ (1.20)

Xi - | N;
X |

is the real distance of two points in the™ layer. The relationship which de nes
\ ensures the existence of the magic time-step. Putting}, to the rst equation

yields

nid

c .

The fraction X;=X; therefore equals;d;=n;d,. We can reformulate it into math-

ematical statement:

X; = (1.21)

Find 0 so the expressiom;d; =n;d; is the fraction of two integers
for all i;j . Then X; = n;d; is also integer and 1D-FDTD provides exact
numerical solution.

We will discuss this issue in Chap2.1
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1.3 Transfer Matrix Method

As mentioned in the introduction, FDTD is not the only one approach \ich can
be used to solve electromagnetic problems. In some cases it is tobust and
clumsy. Similar, or even better, results might be obtained in shortesomputa-
tional time when di erent approach is used.

Transfer matrix method (TMM) is designed to calculate transmissioor re ec-
tion coe cients (and also eld distribution) of layered structures. Such structures
are usually anti-re ective coatings and dielectric mirrors (one-dimesional PhCs).
To explain how is the TMM working and what can we get from its formalism
we rst take a look at the dielectric mirrors. Secondly, we compare NIM with
1D-FDTD simulation of an inhomogeneous dielectric slab. Finally, in Chap4,
we investigate layered structure, which is similar to the holey wavegle, obtain-
ing very good agreement although the structures and computatial methods are
di erent.

The idea of TMM is as follows: Denote the tangential components olieetro-
magnetic eld by Eq;, Ho; for the incident wave propagating in medium O close
to the interface 0-1. Similarly,E,,, Hi, denote components of the eld close to
the interface 1-2, propagating in medium 1. After the calculation, tich is very
similar to the derivation of Fresnel equations, we obtain following refi@n

i sin
Boo _  cos: = En o, (1.22)
oHo1 i 18in 1 €oS; oH12

The matrix M for j™ layer of thicknessd, characterized by indexn; is therefore
de ned as

!
1sin

M= M M2 _ COS; o (1.23)
Mz My i jsinj cos;
where
In ;d;
| = (’: L cos | (1.24)
and
COS | o
| = Tj for s-polarization (1.25a)
1
i for p-polarization; 1.25b
% s Z p-p (1.25b)

Z; is the impedance and ; is the angle of refraction (can be computed using
the Snell's law).

For a structure composed ol layers, where each layer is described by its
own matrix M;, we get the following relation

21



EOl

= MM, ::: My Enne (1.26)
oHo1

OHN;N +1

Finally, if we compute transfer matrix M = Mi;M,:::My, we can easily
obtain re ection and transmission coe cients

oM+ o Mz My tMoo

r = : (2.27)
oMi1+ o tMp+ My + My
2
t, = 0 : (1.28)
oM+ o tMp+ My + My
Z, 2

tx

(1.29)

Zo oMip+ o tMiz+ My + My

1.3.1 Bragg mirror

In the previous sub-section we have de ned all necessary theagd now we can
calculate optical response of the dielectric mirror, also know as tiBragg mirror.
The typical Bragg mirror consists of a stack of thin dielectric layersf alter-
nating refractive indices. The refractive index pro le is illustrated inFig. 1.7a
Incidence half-space is air. Alternating layers of Si¥O(n. = 1:46) and TiO,
(ny = 2:4) are deposited on the glass substrate, which lIs half-space ofatrs-
mittance. In order to produce constructive interference in the ligt re ected from
the interfaces and destructive interference in the correspondjriransmitted light,

Figure 1.7: The Bragg mirror
composed of bilayers made of n A

SiO, (ng. = 1:46) and TiO, 2.4 ---- S i
(ny = 2:4) deposited on the
ng=1.52

glass substrate s = 1:52).
(a) illustrates the refractive | | | |
index prole and (b) com- 1 i i i 5 -
pares the re ectance spectra :) 1'51 3'03 4'54 6;)6 2[nm]
for 4 and 10 bilayers comput-

ed using TMM formalism. As

1.46 ----t--

(a) Refractive index pro le

gure (b) indicates, for more T T T T T T r
bilayers we obtain broader re- iy 4 bilayers —

gion whereR 1. What will % 0.8 10 bilayers —

happen with spectrum when £ 06

non-zero angle of incidence is & ¢4

considered, depicts Fig.1.8. 2 02

If we assumed theoretical mir- '

ror composed of in nite num- OF | . . . . . .
ber of bi|ayers’ we would get 100 200 300 400 500 600 700
transmittance and re ectance wavelength [nm]

spectra as Fig.1.9 shows. (b) Re ectance spectra



the optical thicknesses of layers are chosen ag4. Wavelength of interest is cho-
sen as o = 550nm. The re ectance spectra for 4 and 10 bilayers are comat
in Fig. 1.7b. The angle of incidence = 0.

As Fig. 1.7b indicates, the more bilayers we deposit on the glass substrate,
the broader region wherd 1 we obtain. Coatings of current mirrors are often
composed of several tens, or even hundreds of layers to ach@e®ired behaviour.
Nevertheless, the optical sensitivity increases with the number tyers and even
small manufacturing perturbations may completely destroy the mior features
[24].

When using mirrors in experiments, we may often require high re eahce for
whole range of incident angles. Look at the Fid..8to see, what happens with the
spectrum when non-zero angle of incidenceis present. High re ectance regions
shift, and some wavelengths which were totally re ected for = 0 might pass
trough without any losses ( = 650nm, 335°). When designing dielectric
mirror, we are probably most interested in regions wher®@ 1 for all incident
angles .

Figure 1.8: The dependence of the re ectance spectrum of thed®yg mirror with
ten bilayers (see Figl.7b) on the angle of incidence . For 90°we getR =1
for all wavelengths. Please note, that for all wavelengths betwee (480{590)nm
the mirror perfectly re ects at all angles of incidence. This is very seful when
designing a mirrors. The s-polarized light was assumed when calculgtithis
gure.

1.3.2 In nite Bragg mirror

We restrict ourselves to a theoretical considerations for a whilend investigate
what happens when the mirror is composed of in nite number of laysr

For the sake of simplicity, we assign alpha to zero. Since the optichitknesses
n;d;, of both layers are (=4, the ; = =2. Therefore, according to 1.23, the
transfer matrix of bilayer is
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o0 i o i _ mog
Ma= 0, 0 i, 0 - o0 m (1.30)

np

where indicesL and H stands for low and high refractive index. For a mirror
composed ofN bilayers we have to calculate theN™ power of the matrix Mp,.
Since the matrix is diagonal, the exponentiation is very easy

( ne=ny)" 0

e 0 (ny =nL)N (1-31)

n N n N
LI ns IH
— NH no .
r= N N N N (1.32)
ﬁ + Ns 3n|_
1 n 2N 1 2
ns n
S LRI E— (1.33)
1 n +1
Ns Ny

It is obvious, that R ™ 1. Nevertheless, it is important to notice that the
result was calculated just for wavelength o = 550nm. Our goal is to computeR
for all wavelengths.

For 6 o the condition j = =2 is not longer valid. Thus also the matrix
My is not diagonal. It leads us to linear algebra and eigensystem. Usingeth
eigenvalues and eigenvectors we nd the basis in whitWy, is diagonal. Then,
the powerM|) can be done easily. Unfortunately, the resullsI 'lang:( ) diverge

in many cases and therefore we cannot evaluate We can deal with this problem
as follows:

P ()= Jim v Myi() (1.34)

To summarize, rstly we nd eigensystem ofMy,, secondly we power the matrix
to a general powemN , then we compute re ection coe cient r, which depends on
N, from elements of matrixM )} and nally we compute the limit (1.34. Since
the in nity is not computer-size number for most programs, we useMathematica
software tool which can deal with it. The limit (1.34) does not converge for every
wavelength. It may also oscillate or even diverge in some special casehe result
of our e ort is demonstrated in Fig. 1.9.

As can be seen, the limit oscillates quite often. Therefore, we plottenaxima
and minima and coloured the area between. This area correspondsall possible
solutions. The regions wher&®k < 0 (or T > 1) are non-physical. In these cases
the formalism of TMM fails, since it is not design for in nite space as wekls not
for very thick layers. To ensure the result is correct, we can seeetregions where
R =1 correspond to Fig.1.7b nicely.
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Figure 1.9: Thought experiment where in nite number of bilayers is a&smed.
The limit ( 1.34) converges only for wavelengths in bang gaps. We plot maximum
and minimum of R (T) and colour the area between for all wavelengths where
the limit oscillates. It means, the solution can lie anywhere in lled area.

1.3.3 Dispersion relations

The photonic crystals do not have to be some extra special struces. As
shown above, even the Bragg mirror composed of many layers extsibsuch a
phenomenon as band gaps. It is simply one-dimensional PhC. We kn&rCs
have band structure and band gaps. To show it analytically we canast with
Maxwell's equations, construct operators, and similarly as in quanta mechanics
compute dispersion relations which appears due to periodical pertivity (see
[1] for more details). Instead of this long procedure we show herepvih can be
dispersion relations obtained from introduced transfer matrix fanalism.

We consider a medium with permittivity, which is homogeneous iry-planes
and periodical inz direction. The periodis = d;+ d,, whered,., are thicknesses
of two alternating layers with refractive indicesn;.,. The permittivity is therefore
de ned as

"t for n <z<n + d;

(@)= ", for n+ di<z< (n+1) "(2)="@+) (1.35)

When calculating dispersions relations in crystals, we describe a pake prop-
agating through a periodical potential by a periodical wave functio using the
Bloch theoremi®. This theorem is applicable also in electromagnetic theory. It
states, the electromagnetic eld is periodical due to periodical pemittivity [ 25

Ex (X;y;2) = Ex (2)e %% e '(kaxrkyy), (1.36)

4The theorem was postulated independently several times and is alsknown as Floquet's
theorem.
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whereEg (z) = Ex(z + ) is periodical function and K is known as the Bloch
wave number. Using the notation we de ned in the beginning of TMM, & can
state (do not confuse quantum numbeK with interface index N)

EN;N +1 (Z) = EN LN (Z+ )= e K EN LN (Z): (137)

We used the periodicity of electric eld rst, and then Bloch's theoren. When
applying Bloch's theorem also on magnetic intensity, usingl(26, and moving
imaginary exponential to the other side in .37, we can write

M1y Mi2 Enn+1(2) - En 1n(2) = K Enn+1(2) . (1.38)
My My Hyw+1(2) Hy 1n(2) Han+1(2) '

First and third part of the relation give us an eigenproblem. ThedX is the
eigenvalue of the transfer matrixM . Solving this problem we have to deal with
guadratic equation. According to the de nition of M (1.23 we know mj;mj;;
ml2m,; = 1 and %(mll + m22)2 1. This gives us nally the dispersion relations

cosK )= %(m11+ myy): (2.39)

The dispersion relations {.39 are shown in Fig.1.10for the same parame-
ters as used to describe Bragg mirror. Wide photonic band gap agye between
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Figure 1.10: Dispersion relations1(.39 computed for parameters of the Bragg
mirror as illustrated in Fig. 1.7a Band gaps are compared here with re ectance
spectrum of Bragg mirror with 10 bilayers. Band gaps, which apped&ere, are in
absolute agreement with band gaps which can be read from Fiy9.
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470{650nm and many others are visible at lower wavelengths. Bandpgs shown
in Fig. 1.9 and Fig. 1.10are in absolute agreement.

For this simple one-dimensional case the derivation of dispersion radas
was not too hard. If we would like to investigate optical properties fomore
complicated structures like three dimensional PhC made of spherese would
need to satisfy ourself only with a numerical solution. Neverthelgssven some
special 3D cases can be partially solved analyticall@d].
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2. Veri cation of the FDTD code

In previous chapter we introduced FDTD algorithm, described its achntages and
weaknesses and formulated TMM. To be sure our code does proglueasonable
results, we are going to test it on various simple structures wheréd analytical
solution exists or where it can be compared with other numerical apgaches.

For illustrative purposes, we start with the simplest case | one dimeional
problem.

2.1 Inhomogeneous dielectric step

In this section we compare FDTD with TMM. Since we use grid with nonanstant
spatial step, we can expect the results should be very similar.

We consider an inhomogeneous dielectric step which illustrates FRj1 The
half-space of incidence is lled with air fi; = 1) and the half-space of transmit-
tance is lled with material of refractive index n, = 4. The interface between
free space and material is not a step but refractive index varies liawdy from n;
to n, at distancelL.

If L is zero, we will use Fresnel equations and evaluate re ection coeent
asR =0:36. But sinceL 0, the situation is not so clear.

0 A Figure 2.1: Refractive index pro-
AL le of inhomogeneous dielectric slab.
] i The continuous function (red line)

| is approximated by staircase pro le

| (dashed black line). For better read-

i ability, the number of layers N illus-

i trated here is only 10. In simulations

i we useN = 100. The incident light
>  propagates in free space and then im-
z . .

pacts the inhomogeneity.

[y
.

S —
‘R

We use staircase approximation for refractive index pro le to modehis con-
tinuous structure. In TMM language it means, we de neN = 100 layers of
uniform thicknessesd = L=N with varying refractive indices and stack them one
on the other. This is denoted in Fig2.1 by dashed lines. In FDTD, the numbers
in permittivity array change analogically.

The re ectance spectra are compared Fig.2 We rst describe the pro le
of general re ectance spectrum as shown in the inset. It is intuite; that for
L , the incoming wave will feel something like a simple step rather than
continuous change and re ects like from an ordinary interface. Buf L ,
the wave will not feel any signi cant changes of the refractive indeand passes
completely through. The last region, wheré. , corresponds to Fabry{Rerot-
like interferometer. The wave partially oscillates inside the slab, whicks the
analogy of re ectance of planparallel desk.

As we mentioned above (in Secl.2.3, we can get an exact numerical solution
with one-dimensional FDTD when we use the magic time-step. That nabe
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Figure 2.2: The comparison of re ectance spectra of the inhomaw»us dielec-
tric slab obtained from TMM and FDTD. The pro le of spectrum in the inset
corresponds more or less to the intuitive idea, where very long wésegths feel
a simple step, whereas extremely short wavelengths do not feel akhany sig-
ni cant change of RI. The di erence of re ectance spectra illustates weakness of
non-constant spatial step in 1D-FDTD and not ideal approximatiorof continuous
change of RI.

achieved even in dielectric materials if non-constant spatial step ised. The
question is, why Fig.2.2 shows non-zero di erence between FDTD and TMM?
The error is not in TMM but really in FDTD.

De nition of layers in TMM is very simple since the input parameters are
only thickness and refractive index of the particular layer. In FDTDwe must be
much more careful.

At the end of Sec.1.2.3we formulated the way, in which the resolution must
be de ned to obtain exact results of multilayered models. In this cas(N = 100,
n; = 1, n, = 4) we unfortunately nd out, the inhomogeneous interface shdd
be modelled with very large number of grid points (24750). To get nal¢s in
real time, we reduce this number and get imperfect result due to ioect layer
thicknesses. Since the limitd and L should be correct even in this
approximation, we get the biggest di erence foL

The noise in the very right area of the re ectance spectrum (in Fig2.2)
corresponds to oscillations in particular layers. IN 100, the numerical noise
will disappear.

After analysing inhomogeneous dielectric slab we can shamelessly Hay
TMM is more powerful approach than FDTD in the case of one-dimeimal
structures. Nevertheless, simple TMM method, as formulated her cannot be
applied to higher dimensions. We will use TMM once again in Sed.1, where we
will investigate behaviour of resonance peak in holey waveguide-likeusture.
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2.2 Gaussian beam

The excitation of the incident light into the Yee grid can be done in manymany
ways. In the simplest case we can excite only one node (i.EJm;n] = f (q),
where f (g) is an arbitrary time-dependent excitation function), which leads @
the point source with spherical wavefronts. If we want to simulat@ropagation
of plane waves, we will have to use a little bit more complex method call&#SF
described in Secl.2.2

Besides the spherical and plane waves we can, of course, simulatg arbi-
trary pulse or whatever we want (e.g. Gaussian beam modulated in terwith a
Gaussian pulse).

The shape of Gaussian beam (spatial distribution) can be obtained Iprecise
excitation of several nodes which lie in the line, whereas the Gaussipulse is
provided by time-dependent functionf (q) as mentioned above. It is very use-
ful to demonstrate, how is the focused laser beam di racted on aajing, or to
demonstrate interaction of a pulsed Gaussian beam with a gainy medij27.

We remind parameters of Gaussian beam now. If the light propagatalong
the z-axis, the electric eld is described asZg):

W 2 I -
E(;z) = Eq—2e wi@ ¢ 7 me *F Ogt where (2.1a)
w(2)
Eo = JE(O; 0)] is the maximum amplitude
r= x2+y? is the radial distance from the axis of the beam
s_-
z °? 1
w(z)=wy 1+ - is the radius at which the amplitude drops toé;
R
wo = w(0) is the waist size
w 2 . . :
zr = —2 is the Rayleigh distance
Zg 2 . ,
R(z)=z [1+ ?R is the radius of curvature of the wavefronts
z . .
(z) = arctan — is the Gouy phase shift

ZR

If we compute E(r;z) everywhere in the two-dimensional space, we will obtain
eld distribution as shown in Fig. 2.3. The gure depicts Gaussian beam which
haswy = 1:5 , where is an arbitrary wavelength. Diagonal (source) line indi-
cates, where is the eld computed in FDTD simulation. Changing the agle we
can easily excite Gaussian beam at di erent angles using just one r@f nodes
in the Yee grid.

What happens if such beam hits a grating? It diracts, as we know. fer
some straightforward calculations we can derive so-called gratinguation, which
describes di racted angle maximaZ9:

d(sin j +sin )= m; (2.2)
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Figure 2.3: Using the equation for Gaussian bean2.0g we can easily compute
the spatial distribution of the electric eld. The waist size iswy = 1:5 . The

source line corresponds to the source line in Fig.4, where E, is calculated in

FDTD simulation.

where d is the grating period, ; is the angle of incidence, ,, are the angles
at which the diracted light will have maxima, m indicates order of particular
maximum and is wavelength of incident light.

Figure 2.4 depicts time-integrated intensity of the Gaussian beam which im-
pacts the grating. Grating period isd = 1:5 , height of pitch is 0.2 and angle
of incidence ; = 60°. Putting these parameters into the grating equation Z.2)
we obtain three diracted maxima ,, = 60° 11:5°%27.9°for m =0,1,2. These
angles are designated by broken lines. According to the results wancsay, the
two-dimensional FDTD works correctly (meaning that the propagion of elds
is reasonable). Using FDTD simulation we calculate only the near- eldNever-
theless, in experiments we are more interested in things which can bleserved
in the far- eld, i.e., far away from grating compared to light wavelenth. The
near-to-far- eld transformation can be done in FDTD using a bit moe compli-
cated analysis of di racted light. As a result we would obtain radiatedntensity
for each angle 13, Chap.9].

Using this technique we can investigate the eld decomposition nearla grat-
ing as well as di racted angle maxima when computing just one single diation.
Some di erent and more complicated grating pro les (sinus, blazedyan be as-
sumed.

To obtain results as shown in Fig2.4 we used grid of sizes 110000 nodes
and 20 points per wavelength.

If we would like to do an experimet, we could use DVD (the track pitch is
740nm) as the grating and laser with = 493nm as incident light. If we would
tilt DVD at the angle of 60°, we should see these three di erent di racted angle
maxima computed above.
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Figure 2.4: Time-integrated intensity of the Gaussian beam which is eited at

the source line (as is illustrated in Fig2.3) and at the angle of 60 impacts the

grating. The beam is focused on the grating surface where singlechés can be
seen. Grating period is 1.5, height of pitch is 0.2 . Considering grating equation
(2.2) we obtain angles -66 -11.5 and 27.9 for m=0,1,2. These three maxima
are designated by the broken lines.

2.3 Waveguide modes

As mentioned in the introduction, integrated optics and waveguideare currently
being used worldwide and provide us very fast communication. To skcdhat
behind the data transfer via waveguides is something more than lightlb ick-
ering, we examine here eigenmodes of a plane symmetrical waveguide

We consider here the symmetrical plane waveguide which is made oftenzl
parameters”;, i and thicknessd. Waveguide lies inyz-plane and is perpendic-
ular to x-axis. Surrounding of the waveguide is characterized by paramese',
and ;. In next paragraph, we look for even transverse magnetic (TM) ades
(Ex, Hy, E;), which are propagating along thez-axis.

Maxwell's equations (L.5) together with assumption that the electromagnetic
eld is harmonic inside the waveguide and exponentially attenuated ¢side lead
to following formulae B0, 31]:

EM = —Accos(x)  EP = ——Accos(d)e ¢ 9; (2.33)
LY -2

HM = Accos (x ) H{® = Accos(d)e 09 9; (2.3b)
) . i X . .

EM = i—Aesin(x) EP =i —Accos(d)e 9 (2.3c)
"y X2
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B/here Ac is an amplitude,! is an angular frequency, = P P2y, 2, =

2 12, 2and = N!E = k, is a propagation constant of the guided wave.
E ective refractive index is given by N = njsin , where is the incident angle
under which the light impacts waveguide interfaces. Furthermoref we assume
that the tangential eld components E, and H, must be continuous at the inter-
faces (i.e. HS"( d) = H{P( d) and EP( d) = EP( d)), we obtain so-called
characteristic equationfor TM modes in symmetrical waveguide

tand = —— for even modes (2.4a)

tan d

—=— for odd modes (2.4b)

These equations must be considered when waveguides are desigfathlytical
solution is not available, therefore we solve it numerically. Equation®(48 are
plotted in Fig. 2.5 for di erent wavelengths propagating in the same waveguide
of thicknessd. Intersections designated by dots mark all correct solutions. Fo

100

80
tg(kd/2) —
60

40

20

| =6.65d | =3.32d | =2.22d | =1.66d | =1.33d =1.11d

-10

0 p/2 p 3p/2 2p 5p/2 3p
kd/2

Figure 2.5: Graphical solution of characteristic equatjon for TM moek in sym-
metrical waveguide (Eq. 2.49) made of silicon fi; = © ™; = 3:47). Red (blue)
lines designate even (odd) modes. Intersections with black tangemre the so-
lutions. For 6:65d, we have one solution and the waveguide is single-mode.
For 6:6%d 3:32d, we get one even and one odd guided mode. For better
readability the negative part of the gure is stretched more than he positive
part.
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wavelengths greater than = 6:65d we have only one available solution, which
means the waveguide allows propagation of only one mode | it is single-oade
waveguide. Theoretically, the waveguide can guide light of any arbé#rily small
frequency. We say, the cut-o frequency is zero. If we decreasvavelength
(increase frequency), we will obtain more solutions and the wavade is called
multi-mode.

We choose = 3:33d. According to characteristic equation 2.48 we get one
even and one odd mode. Since we knod from numerical solution, we can
compute spatial distribution of Ex, H, and E, from Eq. (2.39"). The eld com-
ponents are depicted in Fig. 2.6).

() Ex, even mode. (b) Hy, even mode. (c) EZ, even mode.

(d) Ex, odd mode. (e) Hy, odd mode. (f) E;, odd mode.

Figure 2.6: Field distribution of even and odd eigenmodes, which carppagate in
planar symmetrical waveguide (TM polarization). The thickness oftte waveguide
is d and the wavelength of lightis = 3:33d. No other modes can propagate under
considered conditions.

Implementing eigenmodes to FDTD simulation is quite similar as exciting #
Gaussian pulse in previous case. We have to de ne thicknedswavelength ,
and using Eqg. .39 we excite the eigenmode to the Yee grid. We will discuss this
issue later in Chap 4, where we will investigate behaviour of the holey waveguide.

Similar analytical description, as partially expressed here, is also dde for
asymmetric plane waveguides (very similar), optical bres with radiasymmetry
(Bessel functions), hollow metallic waveguides, and some other sja¢ cases. In
Sec.4.3 we will design silicon rectangular waveguide on SjQvafer. Unfortu-

When solving characteristic equation @.44), we do not look for but for e ective refractive
index N. When we know N, we can express as well as very easily.
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nately, for dielectric waveguides of rectangular cross section aayact analytic
solution does not exist 2] and approximation techniques must be use®§].

2.4 3D diraction

We do not want to settle only with at two dimensional cases but also me for-
ward to the more realistic third dimension. One of the simplest threeighensional
structures is certainly light di raction on a circular aperture.

Figure 2.7: Time-integrated inten-
sity of a plane wave which prop-
agates in x-direction and diracts
on a metallic plate with the cir-
cular aperture. Diameter of the

aperture isd = 8 . Points per
wavelengthN =10, grid dimensions:
300 200 200.

We consider a plane wave which impacts metallic plate with the circular ap-
ture. Time-integrated intensity of such simulation is depicted in Fig2.7. Cross-
section of electric eld is shown in Fig.2.8.

Analytical solution which describes the near- eld could be hardly expssed.
Using some approximations, we can compute di racted angle maximarfthe far-
eld where the Airy disc could be detected. Since near-to-far- eltransformation
is no implemented, we have to use some another approach to deseribe near-
eld right behind the aperture.

The Fresnel di raction (FD) integral, which is an approximation of Kirchho -
Fresnel di raction integral and describes waves in the near eld, ide ned as [34]

200 T T T

150 |- .
Figure 2.8: E, at a distance of 12.6

behind the circular aperture com-
puted with FDTD. Diameter of the
aperture isd = 8 . Since the po-
larized light was used, slight radial
asymmetry is present. The horizon-
tal cross-sections of the electric elds
in the middle (Ey(x; 100 ;126 ,)) 0 : : :
obtained from FDTD and FD are 0 50 100 150 200
compared in Fig.2.9. X [Dx]

y [Dy]
=
8

50 F b
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A 6.0
E(x;y;z) = |£ wékr dx%dy® (2.5)

1

whereE (x%y® 0) is the aperture andr = g (x x92+(y y92+ z2. Analytical
solution of the integral (2.5 is known for few simplest geometries. Therefore, we
will use only numerical description.

Using the Fresnel propagation we can calculate el&(X;y;zo), where zy =
126 is the distance from aperture to the shade or detector. Using FIIX we
compute three-dimensional eld behind the aperture. If we calcula cross-section
at some distancezy, we get two dimensional eld as Fig.2.8 illustrates. If we
select horizontal cross-section in the middle of this two-dimensidnald, we will
get one-dimensional dependence of electric eld upon theaxis. This result is
compared in the Fig.2.9 with FD.

Small di erences (max.10%) could be attributed to the small resolidn used in
FDTD (N =10). Due to such small resolution we get large numerical dispersion
which leads to inexact results. When using FDZ.5) we do not consider polarized
light, which is used in FDTD. Involving all these aspects we can say, veehieved
reasonable agreement between FDTD and FD.
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Figure 2.9: Comparison of results from FDTD simulation and Fresnel daction.
Figure compares the cross-sections of the electric eld pro les a distance of
12.6 behind the circular aperture. The inset demonstrates the resulff subtrac-
tion, i.e. FDTD-FD.
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3. Photonic crystals

With respect to the motivation of this thesis we focus on following strctures,
which might be interesting for biosensing applications. In this chapteve propose
two-dimensional photonic crystals for enhanced sensitivity of biessing devices.
In the next chapter we will continue even to three-dimensional sinfation of pho-
tonic structure known as holey waveguide.

The photonic nanostructures we propose here are designed fohanced sen-
sitivity of biosensing devices. These structures are usually made ficon on
insulator bu er (SiO ;) with refractive indices ng; = 3:47 andngjo, = 1:44. We
tune these structures at = 1550nm due to waveguide compatibility’). The
main features of investigated structures are the signi cant chayes in optical
response upon the presence of investigated medium. We can dewther the
position band of the gap edge (cut-o wavelength) or position of soe resonant
peak inside the band gap. Figure.1 shows dispersion relations of a PhC with
hexagonal lattice. As can be seen, even small variation of refrevet index sig-
ni cantly changes optical band structure. More theory about reonant peaks is
described in Sec4.1

Figure 3.1: Dispersion relations of a
two-dimensional hexagonal PhC (TE
polarization). Band gap is clearly
visible here. As refractive index of
applied medium changes, signi cant
shift of the band gap edge could be de-
tected. The bigger shift of the edge is
detected, the better sensitivity (shift
of the edge in nanometres per refrac-
tive index unit) we get. The y-axes
represents energy (i.e. frequency) and
not wavelength as in Fig.1.1Q There-
fore, the continuum of bands appears
at the top and not at the bottom. Let-
ters , K and M represent di erent
wavenumber [k] points in the rst Brillouin zone.

energy [arbitrary unit]

Two main properties we analyse here are the sensitiviy and quality Q.

The sensitivity is measured in nanometres per refractive index unib(n/RIU).
It tells us, how many nanometres will the peak position or band gap gd shift if
the refractive index of investigated medium will change by one. In th and next

11t means that edge of band gap or resonant peak is at position abdul550nm.
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chapter we compute sensitivity from two spectra when refractivindex of sensed
medium is 1.3 and 1.35.
The peak quality, or just Q-factor, represents the width of a resonant peak.
The greaterQ is, the narrower peak we detect. Th&-factor of a peak at position
o as de ned as

o .
Q= FwhM (3.1)
where FWHM is full width at half maximum An equivalent statement is that a
resonator can performQ oscillations before its energy decreases downeo?
0:2% of its original value.
Here we computeQ-factor of the resonant peak when refractive index of in-
vestigated medium is set tony, = 1:3.

In the following, we perform studies mostly on two-dimensional stoiures
which lie in xy plane. We classify here two modes, TEand TM?. Transverse
electric containsEy, Ey, H, eld components (p-polarization) and transverse
magnetic Hy, Hy and E, eld components (s-polarization). Since Maxwell's
equations are decoupled for these two polarizations, we can invgate them
independently. Please note here that modes TETM ?) de ned above in terms
of the 2D plane normal correspond to the conventional TM (TE) mdes respec-
tively. These were de ned in Sec2.3 with respect to the propagation direction
along a common waveguide.

3.1 Hexagonal photonic crystal

The rst structure is based on a hexagonal PhC waveguide wherbd middle row
of holes is omitted to create the waveguide (so called W1-type PhC)he geom-
etry is depicted in Fig. 3.2 The lattice constant isa and diameter of cylindrical
holes isd; = 0:65a. The crystal consists of 17 times 18 holes, which can be lled

Figure 3.2: Geometry of hexagonal PhC. The lattice constant & and hole di-
ameterd; = 0:65a. Additional holes shifted ofa=2 are added into the middle row
to increase the sensitivity. Diameter of these holes @& = 0:76a. The crystal

consists of 17 18 holes. The polarization of incident light is TE and pulse is ex-
cited in the waveguide. Detector which detects transmitted light is laced inside
the output waveguide.
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Figure 3.3: Transmission spectrum of hexagonal PhC with addition&bles/rings
added into the middle row to increase sensitivity. The sensitivity of aginal
structure (empty middle row) was 120nm/RIU.

with a variable medium. The basic idea and parameters were taken fno[35].
Good agreement of transmission spectra was achieved when samgctire was
simulated.

Nevertheless, to increase sensitivity we added additional holes &tdf of a=2
with diameter d, = 0:76a into the waveguide. The original sensitivity (when
no holes were in the middle row) was 120nm/RIU and here we obtai® =
400nm/RIU.

If we suppose a bit more modi ed structure with rings (inner diameteds =
0:32a) instead of holes in the middle row, we will ge§ = 445nm/RIU. But rings
with inner diameter 125nm are de nitely much more harder to fabrice than
holes.

To obtain transmission spectrum as Fig3.3 shows, TE polarization is used.
The resolution of Yee grid is high enough to obtain results with good gqlity.
The lattice constant a consists of 37 points, i.ea= 37 . The diameter of holes
is therefore represented by 24 grid points. Resolution mandy direction is the
same, x = .

The last gure here, Fig. 3.4, demonstrates the spatial electric eld intensity
decomposition for broadband incident pulse. It can be seen, thabree energy
of pulse is dissipated in the crystal (it corresponds to wavelengthehich are in
the band gap) but lot of energy is transmitted through the crysthto the output
waveguide. Figure also shows that the eld is localized in holes lled withemsed
medium, which enhances the sensitivity. When no holes were added e tmiddle
row, the light did not interact with the medium intensively and the sengivity on
RI changes decreased.

If we want to examine a resonant peak instead of the band gap edge will
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Figure 3.4: Spatial decomposition of electric eld intensity. The eld idocalized
in holes containing sensed medium and hence very high sensitivity on dhlanges
is observed.

create a resonant cavity inside the crystal. The simplest one can beeated by
removing one hole from the middle row. After that, the resonant @k should
appear inside the band gap.

3.2 Chirped photonic crystal

To create an optical analogue of the well known and widely used eletic diode,
the chirped photonic crystal was proposedf]. Here, the violation of periodicity
is used to create an asymmetrical light propagation. Due to uniqueystal geom-
etry, the intensity distribution on the output of the crystal is highly dependent
on the direction of light propagation. Such structure can be used iall-optical
computers as a diode. Furthermore, this chirped PhC also behavas biosensor
with a very good sensitivity.

The geometry of PhC with violated periodicity is depicted in Fig.3.5. As
gure shows, this is an inverted structure. Instead of holes we eglielectric rods
here. The sensed medium is applied on the chip and ows between cohsnThe
lattice constant a is preserved in direction perpendicular to light propagation but
changes in the parallel direction. Distance between rows is linearly neasing
from O:5a to 3a. The crystal consists of 11 10 columns. Since the structure is

Figure 3.5: Geometry of the inverted chirped PhC. Instead of holege use di-
electric rods here and sensed medium ows between them. The dista between
rows linearly increases from:Ba to 3a, radius of holes is constant = 0:3a.
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Figure 3.6: Transmission spectrum of chirped PhC as depicted in Fig.5. As
insets indicate, di erent peaks exhibit di erent sensitivity.

inverted, TM? polarization is used to observe band g&f. Resolution of the grid
is the same as in previous structurega = 37 .

Transmission spectrum of the inverted chirped PhC is displayed in Fi¢.6.
Due to violated periodicity, many resonant peaks appear in the bangap, which
is more or less conserved. As gure and insets indicate, di erent aks exhibit
di erent sensitivity. Really high sensitivity (S = 820nm/RIU) is achieved in the
case of one resonant peak. This high value again corresponds toy/\good light
con nement as illustrated in Fig. 3.7.

The only fault here are very smallQ-factors. Although peak position changes
rapidly when compound with di erent refractive index is applied, we willnot be
able to recognize peak position precisely since the spectral line is twoad. The
sensitivity is therefore not so high as we calculated here. Thg-factor could be
probably improved by increasing number of periods.

Instead of improving this crystal we are going to analyse much simplstruc-
ture with comparable properties in the following chapter.

Figure 3.7: Electric eld intensity in chirped PhC.
Due to very good light con nement high sensitivity
Is achieved.

2TEZ-polarized light is concentrated in low-' regions, whereas TM-polarized in high-" re-
gions. Due to low concentration factors of TE eld components in dielectric rods we observe
absence of the band gap. Sed] for further information.
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4. Holey waveguide

Complex structures like PhCs described in the previous chapter carhibit many
phenomenal properties like bandgaps, narrow resonant peaksymmetrical light
propagation or even nonlinear behaviour. These complicated sttuces are not
usually easy to fabricate | and we are even not talking about threedimensional
PhCs which, more or less, still resist to our sophisticated fabricatiomethods.

In this chapter we propose quite simple and small photonic nanostiure,
which is very easy to fabricate, very easy to implement into complexhptonic
chips, and as a biosensor exhibits comparable properties as adwthPhCs. This
structure is based on a system presented i67).

We take a simple dielectric waveguide and perforate it with periodic segnce
of holes. The index-guided modes propagate along the waveguidehwiit any
losses, but the important photonic band gap appears in the transssion spectrum
because of a defect in this periodic structure. This is done by sepang two holes
a bit more that others.

The very important thing is that we separate two holes a bit more. Irthis
way we create a defect in the periodic sequence. As we will see, thesedt will
be responsible for resonant modes with the frequency inside thenbdagap.

4.1 One-dimensional case

Before we present our results of three-dimensional model it is @ideto take look
at a structure analogical to holey waveguide in one-dimension. Altbgh we can
obtain exact solution from 1D-FDTD we solve this simple structure vidaransfer
matrix method.

The refractive index pro le (Fig. 4.1) represents the cross-section of the holey
waveguide along the propagation axisx¢axis in Fig. 4.18. Except of di erent
medium in half-space of incidence and transmittance there is one yemportant
di erence to note. In the middle, there is a defect which violate the griodici-
ty. This defect is responsible for a very important phenomenon catleesonant
modes.

Figure 4.1. Refractive index
pro le of one-dimensional ho-
a d s ley waveguide. Periodicitya,

4 defect spacingd and \hole ra-
dius" r are de ned in the g-

ure. Refractive index of inves-
0o 1 2 3 4 5 6 gza tigated medium isny, .

n A

4.1.1 Resonant modes

The periodicity of PhC induces its band structure. No modes are alled to have
their frequencies within the band gaps. But what happens when lightith band
gap frequency impacts the face of the periodic structure?
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The situation is very similar to total re ection. The light is exponentially
attenuated in the structure and is called an evanescent mode. Sinall real
wavevectors were used to construct dispersion relations, thewgaector K must
be therefore complex (seel(36) and eld is exponentially attenuated below the
surface.

But if the evanescent mode is compatible with the structure and symetry
of a given crystal defect, it will propagate throughout the struture similarly to
the electron tunnelling through potential barrier. The transmissia of such mode
can be very high, up toT = 1.

If we had an in nite PhC and we excited the resonant mode (eigenmejright
inside the defect, inside a resonant cavity, it could not propagatengwhere. We
call it as localized mode. If the crystal was really in nite and no dispasion was
present, the localized mode would stay inside the cavity forever | it vould have
an in nite lifetime and in transmission spectrum would be -function.

However, we are still not able to fabricate any in nite structures ad disper-
sion more or less occurs everywhere due to absorption, scattgricentres and
inhomogeneities. Instead of-function we therefore detect broadened Lorentzian
peaks at . The width of peaks is represented by-factor (3.1) as de ned in
Chap. 3.

4.1.2 Transmission spectra

Due to the crystal defect we expect detec-
tion of resonant peak, which is supposed to 1
be inside the band gap. In the following, 0.8
we are going to investigate behaviour of the 0.6
1D holey waveguide | simple PhC, where 04
a is constant andd changeshy = 1. The 0.2
nal result is illustrated in Fig. 4.6. To un- R S ————
derstand it properly, we describe it step by 225335 7/4'5 555665
step. 2

We setr = 0:36a, henced > 0:72a, Figure 4.2: Transmission of 1D ho-
angle of incidence is zero. Simple transiey waveguide | PhC with defect.
mission ford = 0:76a shows Fig.4.2 Res- Defect spacingd = 0:76a, r = 0:36a.
onant peak is clearly visible in the middle
of band gap. Let's move on and investigate dependence of peakipos upon
d. Several transmission spectra for di erend are shown in Fig.4.3 As gure
shows, the peaks move to the right (lower energies) with increasidg Until peak
disappears on the right, new peak separates from the left, trdve the right and
SO on.

Full dependence of transmission spectra on defect spacidgs depicted in
Fig. 4.4. The transmission spectra are plotted horizontally, one on the o#n. If
d is small, only one resonant peak appears in the band gap. We may calbag
the rst peak. As d increases, the second peak separates from the left and so
on. The biggerd is, the steeper lines signifying resonant peaks are. For very
high d we would obtain many resonant peaks in the band gap. This example is
demonstrated in Fig.4.5, whered = 2:5a. If d = a and thus no defect is present

transmission
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in the structure, no clear resonant peak is inside the band gap. Fbermore, we
can see that the resonant peaks are the narrowest for 3:1a | somewhere
around the rst third of their travel throughout the band gap.

d=1.10a —
d=0.72a —
d=0.74a —
d=0.76a —
d=0.78a —
d=0.81la —
d=0.85a —
d=0.91la —
d=0.99a —
d=1.10a ----

0.8

0.6

transmission

0.4

0 UL

1 1 1 1 1 1 1 1 1
1.5 2 2.5 3 3.5 4 4.5 5 55 6 6.5
| /a

Figure 4.3: Several transmission spectra for di erent defect spiag d. When d
increases, the resonant peak moves to the right. Until it disappesa new peak
separates from the left and starts its travel throughout the bad gap.

Figure 4.4: Set of transmission spectra in rows for various defeqiagings d.

Travels of resonant peaks throughout the band gap can be easigad from this
gure. If dis small, just one resonant peak is inside the band gap. dfis large,
many peaks appear in the band gap. Note, that any clear resongmtak appears
in the band gap whend = a. In this situation no defect is present in the periodic
structure.
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0.8
0.6
0.4

transmission

0.2 U
Figure 4.5: Transmission spectrum 0 |- U
for d = 2:5a. Four resonant peaks > 3 4 5 6
are inside the band gap. I /a

4.1.3 Resonant modes analysis

We nally come to the desired Fig.4.6 which shows properties (sensitivity and
Q-factor) of individual peaks upon parameted. We can call it d-spectrum. In
the interval d 2 (0:72 1)a are properties of the rst peak, in intervald 2 (1;1:9)a
are properties of the second peak and so on. Since there are f@sonant peaks
in the band gap ford = 2:5 (see Fig.4.5), more blue and red lines representing
sensitivity and quality are in Fig. 4.6 for d = 2:5. The results in Fig.4.4 and
Fig. 4.6 do not correspond precisely. This is because Figs3{4.5 are calculated
for ny, =1 and Fig. 4.6for ny, = 1:3.

As the Fig. 4.6 with resonant peak properties shows, the best sensitivity is
obtained whend  0:72a, or when d is slightly bigger than a. Unfortunately,
the Q-factors of the peaks are quite small at these defect spacinggnbe the
actual sensitivity to refractive index changes is small as well. We caay, that
ford 1;2 we can get good sensitivity as well as higQ-factor.

1200 F 1000

sensitivity —

1000 | Q-factor — 800

800
600

Q-factor

600

sensitivity

400
400

200
200

d/a

Figure 4.6: Properties of several resonant peaks. In intervdl2 (0:72 1)a are
properties of the rst peak, in interval d 2 (1;1:9)a are properties of the second
peak and so on. Sensitivity is the highest when peak "appears” in theft side
of band gap, butQ-factor is the worst at the same time. Blue lines, which rep-
resent Q-factors, are a bit noisy due to resolution of corresponding tramsssion
spectrum from which theQ-factor was estimated.
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One can see that some parts @-factor curves ind-spectrum are a bit noisy.
It happens when theQ-factor is very high and not good enough resolution of
transmission spectrum is used to estimat®-factor.

4.1.4 Dierent number of holes in supercell

In previous paragraphs we assumed structure with two blocks (weaall them
supercells) separated by the defect spacing. Each supercell sisted of three
\holes". We can mark this structure as 2 3. This nomenclature is used also in
the next section, Sec4.2

The next gure here, Fig. 4.7, demonstrates how is theQ-factor of resonant
peak increasing when crystal consist of two supercells but di eremumber of
\holes". The dependence is clearly exponential.

109 T T T T T T T T E
8 4
107 F f(x) = (8.325+0.002)" I
10" F /" b
510° F +/’+ Figure 4.7: Exponential dependence
810° F 2 3 of resonant peak quality on the num-
©10' F # exponential fit --—-- 1  ber of \holes". When real structure
102 F TMM - peak quality + ] is supposed, the dependence will not
10 + T be exponential but saturates atQ,
W = s & 7 8 o (see equation 4.1)). Defect spacing is
number of holes in supercell d = 1:4a and \hole" radius r = 0:36a.

The high quality corresponds to long lifetimeQ(® of light which is trapped
inside the defect. In real structures we unfortunately do not dhin so nice expo-
nential dependence. The lifetime includes two di erent decay channels. The
light decays from the cavity into the crystal with lifetime Q.. Except of that,
it also radiates outside the crystal sample (i.e., to the surrounding edium, to
the substrate when 2D photonic crystal is assumed, outside theaveguide, etc.)
with lifetime Q,. Therefore we get 16

1 1 1

(4.1)

+
Q Q.

When Q.! +1 ,the Q saturates atQ,. Due to inhomogeneities and nite size
of samples we cannot actually achieve in nite lifetime, we cannot stoge light
in the cavity and we cannot detect -function in transmission spectrum.

The last thing we investigate here is the dependence of the transsimn spec-
trum on the refractive index ny,. We described sensitivity of several peaks in
previous paragraphs and visualized it in Figd.6. Here we investigate a behaviour
of only one peak, the second one, for= 1:4a. The result is depicted in Fig.4.8.
Transmission spectra are plotted horizontally, one on the otherjrsilarly as in

YFrom Fourier trasform it is clear that with higher Q-factor the lifetime of resonant mode is
longer. Therefore, let us mark theQ-factor and corresponding lifetime with the same letterQ.
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Fig. 4.4 If ny = 1, the peak position is about 41a. As the refractive index in
\holes" changes, the peak moves to the right. As gure shows, ¢hQ-factor of
the peak decreases for highen, . If ny, = 3:47, the transmission must be exactly
one because the crystal becomes a homogeneous medium.

To conclude our e orts so far, we will bring our focus to the regiod 2 (1; 1.6)a
when simulating higher dimensional structures, since we expect omge resonant
peak in band gap and high sensitivity. TheQ-factor might be probably increased
by adding additional holes.

Figure 4.8: Transmission spectrum as a function of the refractivedaex ny, . De-
fect spacing isd = 1:4. The behaviour of the second peak is depicted here. In
accordance with Fig.4.4, the peak position is about 4.& for ny, = 1. The trans-
mission is one for all wavelengths whem,, = 3:47, because crystal transforms to
homogeneous medium.

4.2 Two-dimensional case

We have done quite a lot of studies on one-dimensional system andwis good
time to do a step forward to the second dimension. Before we will irstegate
complex three-dimensional structure, we compute parameter§ 2D model with
the hope of determining main physical properties.

The geometry of our model is depicted in Fig4.9. Since the 2D case is
assumed, we do not model any Sgbu er and we set in nite height of waveguide,
h!1 . Incontrastto 1D system, where normal incidence was modellede Wwave
to choose particular polarization of the incident light. To observe bal gap and
resonant peaks we choose FEpolarization here Ex, Ey, H;).

The transmission spectrum of this 2D holey waveguide is very similar tans-
mission spectrum obtained from TMM, Fig.4.2 These spectra together with 3D
case are compared in detail in the next section, Set.3. We focus to enhance-
ment of parameters like sensitivity andQ-factor via geometry modi cations now.
The goal is obvious | nd d, r and number of holes which maximize botl® and
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Q. The resolution is set aa =50 .

Figure 4.9: This picture illus-
trates 3D model, where the
silicon waveguide of heighih
is placed on SiQ bu er. Here
we suppose only 2D waveg-
uide in vacuum or sensed
medium. De nition of peri-
od a, defect spacingd = 1:4a
and hole radiusr = 0:36a re-
main unchanged and width is
de ned asw = 1:2a.

4.2.1 Even and odd eigenmodes

Before we start with structure modi cations, we take a look at eigemodes prop-
agating through the waveguide. The theory of eigenmodes in planggmmetric
waveguide was brie y mentioned in Sec2.3 and hence we know how to excite
particular mode into the waveguide in FDTD. We used broadband pulsgsinus
modulated with Gaussian pro le, = 4a) to obtain wide transmission spectrum.
Since the parameters (polarization and ratio wavelength/thickna3 of waveguide
and incident light are de ned as before, we know that only two modegven
and odd) can propagate through the waveguide. See Fig.6, where the eld
distribution of these modes is depicted.

The comparison of optical response of the even and odd mode is illastd
in Fig. 4.1Q Figure 4.10adepicts magnetic light intensities integrated over very
long time (till stored energy in the defect becomes negligible= 10° ), whereas
Fig. 4.10bcompares transmission spectrayy = 1:3.

1
0.8
0.6
0.4

0.2
AN
25 3 35 4 45 5 55 6

I /a

transmission

(@) Magnetic light intensity integrated over (b) Transmission spectra of
very long time. Top: even mode, bottom: odd even and odd mode propagating
mode. through the holey waveguide.

Figure 4.10: Even mode has much of its power concentrated insidestholes but
eld of odd mode is distributed in the surrounding dielectric. This factexplains
the big di erence in the transmission spectra. The resonant peaka  4:3a
in (b) corresponds to the trapped light inside the defect which mighbe clearly
visible in (a), top.
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The spectrum obtained for even mode exhibit very nice and broad ha gap
with a resonant peak in the middle. No resonance nor the band gap isible
when odd mode propagates through the waveguide. Thereford, farther simu-
lations we excite the rst even mode to the grid.

4.2.2 Q-factor determination

Since we use time domain simulation, determination of high-quality peakmight
be not as easy as with TMM. If the resonant peak is very narrow, élight is
trapped in the cavity for a very long time and radiation to surroundimg is very
slow. To determine Q-factor of such resonant peak exactly, we would have to
integrate Maxwell's equation over very long time. Therefore, we usere slightly
di erent and more accurate way to computeQ-factor [37]:

IE 'E e ! 4.2
Q= B T dE=dt ) exp 6(t to) ; (4.2)
whereE is stored energy, is the resonant frequencyP = dE=dt is the dissi-

pated power andtp is the time when exponential decay of stored energy starts.
In FDTD it means, we compute the stored energy in every time stemd in post-
process we t the data with the exponential function. The result isshown in
Fig. 4.11 The rst part corresponds to the light pulse excitation, re ection and
dispersion. When the light is scattered and only resonant mode rema in the
defect cavity, slow exponential decay of stored energy is stagte The last part
of decay corresponds to non-physical processes | the numericarrors caused by

10000 T T T

100

energy (a.u.)
o
D

5
3 0.01 (U - SRS R SR 2NN A 2NN e .
)
E) 01 1 1 1 1
% 0.0001 6 6.02 604 6.06 6.08 6.1 T
_ N bv10*
i maxima %
1e-006 minima X N ™
energy RGN
fit maxima ~ -------
1e-008 - fitminima ~ ===s--- NN
1le-010 1 1 1 1 1 L s Ty 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 4.11: Exponential decay of energy trapped in the defect. ftAr the ex-
citation, which corresponds to the rst part, the resonant modestarts its slow
exponential decay. Last part corresponds to numerical errorsComputed Q-
factors areQmax = (131:4 0:1) and Quin, = (131:3 0:2).
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Figure 4.12: Transmission spectrum
of holey waveguide. Resonant peak in
the middle of band gap has Lorentzian
shape. Using the t we can calculate
Q-factor asQrp = (125 1).

non-zero re ectance of PML boundaries, round-of error and bérs. With respect
to the logarithmic scale, these errors might be con dently negleate

Part of transmission spectrum containing focused to resonant @ is in the
Fig. 4.12 According to the theory [1], the pro le of the peak is Lorentzian. By
tting computed data we can estimateQ-factor asQgrp = (125 1). The Q-factor
obtained from energy decay iQegp = (131:4 0:1). These two values are very
close. Sinc&gp is computed from transmission spectrum, which is obtained via
Fourier transform which requires integration over time from zerod in nity, we

may expectQgrp

Qep, Which is true. If we do the same procedure for more

narrow peaks, we will get bigger and bigger di erence.

The observation the process of energy decay as shown in Hgllis useful
even for other purposes than estimation a-factor. If we zoom to short time
period, we will see oscillations of the energy stored in the defect (e inset in

Fig. 4.11shows). The period of oscillations is 152. Using the relation

cT

we get the wavelength of oscillating mode = 4:31a, which exactly corresponds
to the position of resonant peak in transmission spectrum, Figt.10bh Why is
it useful? If there are more resonant modes, we will apply Fourieransform to
oscillations in energy decay and calculate wavelengths of oscillating des even
without calculating transmission spectrum! This might be very usefwhen high-
Q mode with unknown resonant frequency is present. The determiian of the
position of such highQ peak using only transmission spectrum might be very
di cult and tedious.

We use the de nition of Q-factor (4.2) to determine exponential dependence
as investigated before (Fig4.7). Parameters liked or r remain unchanged but
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Q-factor

T 1 T
-X- Q-factor

,
/
/

2 3 4 5 6 7 8
number of holes in supercell
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Figure 4.13: Dependence dp-factor
upon the number of holes in one of
two supercells. Exponential growth is
visible only for small number of holes,
then Q-factor saturates at value about
1100.



number of holes in each of two supercells is changed. The clear exgial func-
tion is not present here. Instead, as can be seen in Fig13 the formula (4.1)
describes this behaviour better. Th&-factor saturates around valueQ, 1150
due to the leakage of radiation to surrounding medium. Therefor€)-factor can-
not be increased by adding more and more holes keeping only two sueés.

4.2.3 Geometry modi cations

In the following, we considerd = 1:1a, r = 0:36a and three supercells each of
three holes, 3 3 | unless otherwise stated.

First of all, we estimate what happens withs and Q when the spacing between
holesa and radiusr are changetf). The changes are illustrated in Figs4.14
As Fig. 4.14ashows, even higher sensitivity than 600nm/RIU might be obtained.
Unfortunately, the Q-factor as well as clearance of the resonant peak rather de-
creases with growing . Considering these two gures (Figs.4.14g 4.14bH we
decided to keepa = ag and r = 0:36ay.

250 T T 1 T 1

r=0.30a, r=0.30a,

5 600 1 r=0.34a r=0.34a,
x T 200 4 T
€ 500 4 r=0.36a, 5 r=0.36a,
S r=0.38a, g 150 ] r=0.38a,
= 400 1 r=0.404, o r=0.40a,
2 100 -
g 300 .

1 1 1 1 1 50 1 1 1 1 1

08 09 1 1.1 1.2 08 09 1 1.1 1.2

alay ala,

(a) Sensitivity (b) Q-factor

Figure 4.14: Dependences of the sensitivity an@-factor on perioda and hole
radius r are changed. Even higher sensitivity than 600nm/RIU can be achies
unless we are not too interested in higlp-factor. Note that each point in (a) was
obtained by running two simulations (two di erent RIs).

The next step is to observe what happens if the spacing betweemstcells,
i.e. defect spacingd, varies. Comparison ofS, Q and transmission spectra is
illustrated in Fig. 4.15 Here it is worth to compare the properties of the second
peak in Fig.4.6with properties shown in Fig.4.15a Although the geometries vary
quite a lot and totally di erent approaches were used to obtain this bhaviour,
the dependences 06 and Q upon d are very similar. Here we decided to set
defect spacing asl = 1:1a.

The very useful feature for biosensor is linear dependence ofarent peak
position upon the refractive index of sensed medium, (that also means constant
sensitivity). Many peaks for varying Rl are shown in Fig4.16h Obviously, the
peak is being wider and wider when RI increases since there is lower tast

2In this part we denote ag as the main, unchanged parameter (i.e.d = 1:1ag, w = 1:2ay,
r =0:36ap) and a as the spacing between holes in supercell.
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(a) Sensitivity and Q-factor.
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(b) Transmission spectra for di erent defect
spacing.

Figure 4.15: Pro les of sensitivity andQ-factor in (a) are nearly the same as in
one-dimensional case (see Fig.6). The resonant peak pro les are compared in
(b). Two resonant peaks appear for highed. Considering these both gures we
chosed = 1:1a for further simulations.

between refractive index of silicon and sensed medium. Almost petfdinear
function is displayed in Fig.4.16a

The last parameters we change here, in two dimensional holey wawielg,
are the number of supercells and number of holes in each of them. eTresults
are shown in Figs.4.17 It is obvious that Q-factor grows when more holes are
perforated into the waveguide. The other notable thing is that sesitivity is not
growing with more holes, but saturates about 500nm/RIU. Therefre, adding
more holes is useful only if higheQ-factor has to be obtained.

Nevertheless, with increasing number of supercells the number @sonant
peaks in the band gap increases as well. This fact is also demonstdateTab. 4.1,
where columns indicate number of supercells and rows number of Isoie each
supercell. For simplest determination of the peak position is the besnhly one
resonant peak.

1 n 128 T T T T T T
”M;1:42 a4 L linear fit ------ P
. 0.8 | ny=1.56 —— 7 ) EDTD = ,r"'
i} c 39} ',I
g2 061 1 2 -
I 8 38} -
2 04} ' - e ™
© = a
= © -
” WY o
o éf“““Aééé‘Alk | 3.6 "J}(x) (1.211+0.007)x+(2.07+0.01)
= . nad =(d1. xU. . xU.
0 4“\\‘\\\‘L e 1 1 1 1 1 1
36 37 38 39 4 125 1.3 135 1.4 145 15 155 1.6

I /a refractive index

(a) Resonant peaks for dierent ny . (b) Peak position as a function ofny, .

Figure 4.16: These gures demonstrate linearity of resonant pegosition up-
on the refractive index of sensed mediumy, . This feature is very useful for
biosensing.
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Figure 4.17: Dependence db and Q upon the number of holes. As can be
seen,Q-factor increases with number of holes, whereas sensitivity sadies at

500nm/RIU. Figure on the right compares transmission spectra afaveguide
with ten supercells with three holes for two di erent refractive indies. Five
resonant peaks are present. Th@-factor was computed from the narrowest peak
using de nition (3.1).

HnS|2 3 4 5 6 7 8 9 10 12 15 17 20
2111 1 12 2 253 3 4 5 6 8
3 /1115 2 3 3 4 4 5 6 8 9 11
4 (11 2 3 44 4 5 5 6
5 |1

Table 4.1: Number of resonant peaks in the band gap for di erent maber of

supercells and holes. Columns indicate number of supercells and rawsnber

of holes in each supercell. For instance, eleven peaks will be in the thayap, if

twenty supercells of 3 holes (together 20 3 = 60 holes) are in the waveguide.
The non-integer numbers indicate, there is one additional peak wittertain ra-

tio. The empty cell means that no simulation was done for these pareters or

transmittance was too small.
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4.3 Three-dimensional case

In this section we compare results of ati-dimensional casesn=1,2,3) and inves-
tigate behaviour of 3D silicon holey waveguide situated in the air and ca SiO,
buer. At the end we simulate how fabrication deviations can a ect fysical
properties of the modelled structure.

Analogically as before, we set widtlw = 1:2a, height h = w, defect spacing
d = 1:4a, hole radiusr = 0:36a, refractive index of silicon waveguidens; = 3:47
and SiO, bu er nsjo, = 1:44. The even TE mode is excited in theyz-plane for
x =8 4 and the transmitted light is detected in the middle point in the end of
the waveguidé®.

Figure 4.18: The gure shows
relative permittivity of silicon
holey waveguide situated on
the SiO, buer. The reso-
lution of Yee grid is set to
a=19 , and holes are there-
fore represented by 14 cells.
Note that edges have di erent
colour due to sub-cell averag-

ing.

4.3.1 Comparison of 1D, 2D and 3D results

Since the calculation of the band gap and peak position were actuallprk, we
may start with the transmission spectrum. The four spectra areanpared in
Fig. 4.19 The rst one is obtained from the TMM where normal incidence on
the layered structure (Fig.4.1) is assumed. The second spectrum is assigned to
2D-FDTD and the third and fourth to 3D-FDTD where the waveguideis situated

in the air (or sensed medium) and on the Si©bu er, respectively.

The spectra are more or less very similar. As might be expected, thand gap
is the narrowest for 3D case and the widest for 1D case since theipdicity is the
most ideal in 1D structure. Due to the same reason, evép-factor of resonant
peak decreases with complexity of the geometry. Since the positiofithe peak is
highly sensitive on defect spacing, we attribute varying position ohe resonant
peak mainly to the not ideal resolution of the grid in FDTD.

Figure 4.20 compares transmission spectra of 3D holey waveguide on $iO
bu er for several di erent heights. Position of resonant peak sligtly varies, but
main physical properties of the structure remain more or less urmhged. Peaks
are not very high because simulations were not computed for su amly long
time and lots of energy remained trapped in the defect.

3The light was also detected in the whole waveguide cross-section angery similar results
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Figure 4.19: Comparison of transmission spectra of one-, two- arlree-
dimensional holey waveguide. Di erent positions of resonant peakeapartially
attributed to small resolution of Yee cell. The waveguide is surrourd by air
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Figure 4.20: Comparison of transmission spectra of 3D holey wavetgion SiQ
bu er for di erent heights h whenny = 1. The peak position varies, but other
properties like sensitivity andQ-factor remain unchanged. In our simulations we
seth = w.

With respect to results from lower-dimensional simulations we try tdecrease
defect spacing to achieve higher sensitivity. Unfortunately, th@-factor of reso-
nant peak decreases very fast until it completely disappears. Tliependence of
S and Q is illustrated in Fig. 4.21, where is the d-spectrum compared with TMM
and 2D-FDTD. Very similar behaviour of the physical properties is okerved.

Now we compareQ-factor dependence on number of holes in one supercell for
all n-dimensional casesn(= 1; 2; 3). The comparison is showed in Fig}.22 Very
fast exponential growth can be seen in one-dimensional case. There complex
structure is considered, the smalle@Q-factor of resonant peak is observed.

were obtained. To decrease large computational time we detectelifjht just in one point.
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Figure 4.21: Comparison of d-spectra of 1D, 2D and 3D holey wavédg!
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Figure 4.22: Comparison of
Q-factor dependence upon
number of holes in one su-
percell for all n-dimensional

cases. The refractive in-
dex of investigated medium
is supposed to ben 1:3.

These results are also par-
tially showed in Fig. 4.7 and

Fig. 4.13



4.3.2 Fabrication deviation

Although nanotechnology industry is growing in tremendous rate ahuses high-
ly sophisticated methods like lithography, 3D printing, ion or electronbeams
and many others, certain deviations from the desired accuraterstture are still
present. Therefore, we examine properties of our model with senparticular
deviations.

Conical and cylindrical holes

First of all, we compute sensitivity andQ-factor when conical instead of cylindri-
cal holes are perforated into the waveguide. The conical shapehafies is often
investigated since it is common shape of fabricated holes and it mighatis to
decrease or failure of desired physical propertieZd].

Here we denotey = 0:36a as the top radius andr, as the bottom radius of
the cone. The sensitivity andQ-factor are in the Fig. 4.233 the transmission
spectra in the Fig.4.23h As gures show, the smallerr, is (the more conical
holes are), the smaller values & and Q we obtain and the band gap is more and
more violated. Therefore, the fabrication process should be detely focused on
ideal cylindrical hole perforation.
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(a) Sensitivity and Q-factor. (b) Transmission spectra.

Figure 4.23: The (a) shows sensitivity andQ-factor when conical holes are
present. Hereyg is the top radius andr is radius at the bottom of the cone. For
r, <rgo the higher waveguide should be probably modelled to achieve band gap
and clear resonant peak.

Deviation in the radius and position

It the next step, we consider small deviation in the radius and the ition of the
hole. To produce more realistic results, we assumed here also pditi@onical
holes: r, = 0:8ry. We denote here hole with letterH and assign it parameters
ro for radius and x, for exact position. A deviation from its exact and desired
shape might be de ned as

H(rx)= Hlro(1+ );Xo(1+ )I; (4.3)
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where is a random number lying in interval ( ; m), which is limited by
maximal deviation . The value , 100% is therefore maximal percentual
deviation from the right shape. The results are presented in the Ba 4.2 Ten
simulations were done for,, = 5% and ,, = 10% to obtain some reasonable
statistical results. The table also compares parameteSand Q when no deviation
is present and even when holes are perfectly cylindrical.

To summarize the results the Tab4.2 shows, we can say that the deviation
error up to 5% does not a ect sensitivity neither Q-factor too much and the
emphasis should be put especially to the cylindrical shape of holes.

Taking in account that resonant peak is at position  4:3a, diameter of holes
is 0.72a, maximum deviation is ,, = 5%, we want to observe peak at 1550nm,
we get that sizes of the holes should not di er more than 13nm.

m=0 m=0
1 2 3 4 5 6 7 8 9 10 mean ro=0:8rg | ro=rp

S [ 181 210 175 177 205 196 205 145 150 150180 24)
= 5o, = =
m=5% | 5| 95103 96100112 87 90 87 84 d2 (95 9) || o1& | S22l

S 150 192 210 183 160 228 134 270 180 111183 46)
= 0 = =
m=10%1 | 67 61 72 85 54 72 66 66 61 83(69 10) | 104 | Q712

Table 4.2: Comparison of sensitivity andQ-factor when deviation of holes from
accurate position and radius is present with the case when conicaldaperfectly
cylindrical holes at appropriate position are assumed.
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Conclusion

In attempt to simulate light scattering and propagation through plotonic nanos-
tructures the complex three dimensional FDTD code has been wrih. We have
started with discretization of Maxwell's equations to make them reaable for
computers, and after some more manipulations we have obtained-caled up-
date equations which form the core of Yee's algorithm.

Numerous extensions have been added to our code to obtain freqay-de-
pendent transmission spectra, to simulate free space, or to obh&e plane wave
propagation. The code has been tested using simple model simulasidike grid
scattering or di raction on circular slit, where reasonable agreemewith di erent
numerical or even analytical approaches has been achieved. Weéhalso shown
that using non-constant spatial step (the simplest case of noribbgonal grid) the
magic time-step might be achieved in one-dimension even if dielectric taaals
are considered. That lead us to exact numerical solution up to rodro errors.

Brief introduction to the transfer matrix method has been providd to com-
pare results with FDTD and to analyse photonic structures more gcisely. TMM
has been demonstrated upon the Bragg mirror.

Using our debugged FDTD code we have computed transmission Sp&c
of W1-type hexagonal PhC and proposed slightly modi ed geometrjor en-
hanced sensitivity of biosensing devices. The sensitivity has beenrgased from
120nm/RIU to 400nm/RIU.

We have also found out that chirped PhC, originally proposed as opétdiode,
might be used for biosensing, since it exhibits very strong sensitivign refractive
index changes § = 820nm/RIU).

Finally, we have shown that even much more simple structure than Es,
known as holey waveguide, may exhibit important features like bandag and
resonant modes. We have assumed silicon waveguide situated on3i@, bu er.
Several blocks of holes (called supercells) have been perforated the waveg-
uide, separated by defect spacing. The internal periodicity of sepcells caused
the presence of photonic band gap, whereas violation of periodicligtween su-
percells induced resonant modes which might be visible in transmissigrestrum
as narrow peaks.

Simplied 1D model has provided us very detailed behaviour of resoma
modes upon the size of defect spacing, refractive index of senseedium and
also upon the number of layers. Keeping in mind these results, we bawmodi ed
geometry parameters of 2D model to achieve high sensitivity arf@-factor. The
highest sensitivity we achieved has beeés 500nm/RIU and Q-factor Q  1000.
The most realistic model of holey waveguide has been simulated usifig+rBDTD.
The best properties for biosensing should be obtained when waveetguis not lying
upon any bu er but is situated in the air like a bridge. When fabricated sensi-
tivity about 300nm/RIU should be measured andQ-factor about 500 or maybe
even more should be achieved by increasing number of holes in supksc

In conclusion, the study of simpli ed one-dimensional model is veryseful
to understand the behaviour of main physical properties of the ak structure.
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More precise and accurate simulation using three-dimensional métias shown,
that relying only on 1D or even 2D model might lead us to overestimat of
crucial physical properties. According to our simulations, the hojewaveguide
may de nitely compete with more complex PhCs in the biosensing eld. he
fabrication should be focused on perforating cylindrical and not oaal holes,
and the smallest resolution about 13nm should be required.
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List of Abbreviations

ABC
ADE
CFL
CPML
DFT
EM
FD
FDTD
FWHM
NTFF
PhC
PML
PWE
RI
RIU
QM
SPR
TESF
TMM

Absorbing Boundary Conditions
Auxiliary Di erential Equation
Courant-Friedrichs-Lewy condition
Convolutional PML

Discrete Fourier transform
Electromagnetism

Fresnel Di raction

Finite Di erence Time Domain
Full Width At Half Maximum.
Near-To-Far-Field transformation
Photonic Crystal

Perfectly Matched Layer

Plane Wave Expansion
Refractive Index

Refractive Index Unit

Quantum Mechanics

Surface Plasmon Resonance
Total-Field/Scattered-Field
Transfer Matrix Method

69






Appendix: Bare-bone FDTD
code

Here is the matlab code of bare-bone FDTD simulation. Gaussian puliseexcited
at node 30 of total 100 and the update equations are integratedey 500 time-
steps afterwards.

% Bare-bone FDTD simulation

1

2 clear all; clc; close all; % clear workspace

3

4 epsO = 8.854187817e-12; % permittivity of free space

s mu0 = 4+pi*le-7; % permeability of free space

6 C = 1/sgrt(mu0 = eps0); % speed of light

7

g dx = 10e-9; % 10 nanometers between each two nodes
o dt = dx/c; % Courant-Friedrichs-Lewy condition

10

u sizeX = 100; % number of nodes, real size is sizeX * dx
12 Ez = zeros(sizeX,l); % allocate empty array for electric field
13 Hy = zeros(sizeX-1,1); % allocate empty array for magnetic field
14

15 width = 10; % temporal width of Gaussian pulse

16 delay = 5 *width; % temporal delay of Gaussian pulse

17

18 animFig = figure; % open figure for animated output

19

20 maxTime = 500; % number of time-steps

21 for time = 1 : maxTime % time marching loop

22

23 % update magnetic field using update equation

24 for i =1 : sizeX-1

25 Hy(i) = Hy(i)+(2 »dt/dx)/(2  *mu0)* (Ez(i+1)-Ez(i));

26 end

27

28 % update electric field using update equation

29 for i = 2 : sizeX-1

30 Ez(i) = Ez()+(2 »dt/dx)/(2  +eps0) = (Hy(i)-Hy(i-1));

a1 end

32

33 % excite Gaussian pulse into the Yee grid at node 30

34 arg = (time-delay)/width;

35 Ez(30) = exp(-arg  *arg);

36

37 % plot animation

38 figure(animFig); % activate animation figure
39 plot(Ez); % plot electric field

40 axis([1 sizeX -2 2]); % set limits

a pause(0.01); % slow down the animation
42

43 end

The printed version of this work is accompanied by a CD, where full FLD
code is recorded.
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