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Abstrakt: Metoda kone�cn�ych diferenc�� v �casov�e dom�en�e (Finite-Di�erence Time-
Domain method - FDTD) vych�az�� z numerick�eho �re�sen�� Maxw ellov�ych rovnic
a v dne�sn�� dob�e je �casto pou�z��v�ana k simulaci optick�e ode zvy od fotonick�ych
struktur. Tato pr�ace poskytuje rychl�y �uvod do FDTD a n�ek olika nejd�ule�zit�ej�s��ch
roz�s���ren��, kter�e ji �cin�� velmi univerz�aln��. Z d�uvodu z� �sk�an�� podrobn�ej�s�� anal�yzy
fotonick�ych struktur, je zde tak�e zm��n�ena metoda matic p�r enosu (transfer ma-
trix method - TMM). K�od je nejd�r��ve otestov�an na jednoduch �y struktur�ach, kde
m�u�ze b�yt �re�sen�� porovn�ano s jin�ymi, at ' u�z numerick�ymi �ci analytick�ymi meto-
dami. Odlad�en�y k�od je pou�zit na vylep�sen�� fotonick�ych kry stal�u u�zit�ych pro
zv�y�sen�� citlivosti biosenzor�u zalo�zen�ych na zm�en�e index u lomu zkouman�e l�atky.
V neposledn�� �rad�e jsou zkoum�any vlastnosti (citlivost a Q-faktor rezonan�cn��ho
maxima) d�erovan�eho vlnovodu v jedno-, dvou- a t�r��-dimenzion�aln�� simulaci. Je
uk�az�ano, �ze i tato jednoduch�a struktura m�u�ze na poli bio senzor�u soupe�rit s kom-
plexn��mi fotonick�ymi krystaly.
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Introduction
Looking into the history, our progression is based on studying features of new
and newer materials. Step by step, ancient people learn how to use stones, iron,
bronze and many more alloys. Extremely fast development of last few decades
is based on controlling electrical properties of materials and electron behaviour
which results in extremely powerful computational machines | computers. Using
computers we can solve unthinkable problems which requires billions ofoperations
which simply cannot be solved on a paper with a common pencil. Thus, wecan
design and control many sophisticated materials, robots, cars and other gadgets
which make our living much more simple, comfortable and contribute tooverall
progress.

Now, we are able to control movement of electrons and probably the next goal
might be �guring out how to control optical properties and propagation of light
particles | photons. As we acquire this knowledge, we will be able to engineer
materials with desired optical response which could result in perfectreection of
required range of frequencies, light propagation in certain direction or even in
all-optical computers.

These revolutionary computers would use light signals instead of electronic.
The great di�erence is that photons do not produce heat while propagating in
waveguides. Therefore we could overclock our processors to higher frequencies
without any fear we will burn them. Although we had already entangled Earth
by �bre-optic cables which revolutionized the telecommunications industry, the
idea of all-optical computer is still far beyond any commercial applications. Nev-
ertheless, using sophisticated structures likephotonic crystals, we are able to
design optical analogies to well known electronic diodes, transistors, switches,
etc. On the other hand, many of them uses nonlinear approaches which require
high-power input source due to small nonlinear susceptibility coe�cient. Thus,
a lot of energy must be pumped into optical chips.

Figure 1: Schematic diagrams illustrating contrast between photonic crystals
of di�erent dimensions. Colours correspond to materials with various optical
properties. Only periodicity in all three directions can support an omnidirectional
photonic band gap. However, more complex topology, than shown here, is needed.
Taken from [1].
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Photonic crystals

Nowadays, quantum mechanics explains strange and non-trivial physical proper-
ties of crystals without any di�culty. The periodic potential in semiconductor
crystals a�ect electron motion by de�ning allowed and forbidden energy bands.
Electrons with certain energy may therefore propagate throughthe crystal al-
most like free particles in a free space. Since electrons behave as waves at these
energies, we may expect that the propagation of photons in periodic dielectric
structures would be driven by similar rules. The periodic photonic structures are
usually calledphotonic crystals(PhC). Figure 1 illustrates PhCs which are peri-
odical along one, two and three axes. These special structures a�ect propagation
of electromagnetic waves in very similar manner as semiconductor crystals a�ect
electron motion. Instead of valence and conduction bands here wede�ne here di-
electric and air bands. If we take a deeper look into the mathematical theory, we
may �nd out, that Schr•odinger's equation describing electron movement is very
similar to eigenvalue problem in electromagnetism, which follows from Maxwell's
equations. Therefore, we can �nd many problems which have analogous solution
in quantum mechanics (QM) and electromagnetism (EM) [1].

Notable di�erence between QM and EM problems is that Maxwell's equations
do not have any fundamental scale( 1) . The crucial is just ratio of structure size
and wavelength of propagating light. This makes PhCs scalable in a waythat
ordinary crystals are not. Hence, the simulations might be done in arbitrary
units and after that scaled to particular incident wavelength or characteristic di-
mensions. In QM problem is scale set via Louis de Broglie's electron wavelength,
binding energy, atom size, etc.

Figure 2: SEM photograph of

photonic crystal �bre. The solid

core of �bre is 5� m. Provided by

US Naval Research Laboratory.

The one-dimensional PhCs and dielectric mul-
tilayers have been studied since 1887 when Lord
Rayleigh showed that such structures has a 1D-
photonic band gap. This is a range of frequencies
at which the propagation of electromagnetic waves
is not allowed. Nevertheless, the term `photonic
crystal' was �rst used 100 years later in 1987 when
E. Yablonovitch and S. John published two mile-
stone papers on these periodic structures [2], [3].
Yablonovitch's main motivation was the control of
spontaneous emission, which plays a fundamental
role in the limitation of the performance of semi-
conductor lasers or solar cells. On the other hand
John suggested to use PhCs for localization and
control of photons.

After publishing these two papers, the number
of publications concerning PhCs began to grow exponentially. The �rst experi-
mental con�rmation of photonic gap has been done in microwave regime, for which
the PhCs can be fabricated more easily than for optical regime. The�rst experi-
ment at optical frequencies was demonstrated by Thomas Kraussin 1996, [4]. In

1It is not valid for dispersive materials, which a�ect light propagation a t various wavelengths
in di�erent ways.
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1998 Philip Russell et.al. developed photonic crystal �bre, which o�ered many
degrees of freedom in its design resulting in desired optical properties. Figure2
shows photograph of photonic crystal �bre from scanning electron microscope.
This �bre has a totally di�erent guiding mechanism than ordinary optical �bres
based on photonic band gap of the cladding.

The interest in materials with photonic band gap arises from their potential
applications in novel optical devices, such as �lters, waveguides, cavities, design
of more e�cient lasers, etc. One of these novel concepts might beuseful for
biosensing.

Biosensing

Many experimental optical methods and approaches like ellipsometry, interfer-
ometry, surface plasmonic resonance and other were adapted for detection of
biochemical reactions during last two decades. Biosensors are important for drug
discovery, protein or disease detection, for DNA analysis. The critical properties
are compactness, high sensitivity, simple fabrication and compatibility with other
optical or electronic elements.

Biosensors based on refractive index (RI) change detect opticalresponse of
nanostructures upon the presence of investigated medium. Two main approaches
are plasmonic and photonic structures. Plasmonic structures utilize e�ect known
as surface plasmon resonance(SPR). In principle, they sense RI changes near a
metal surface by measuring the changes of reectance due to the modi�ed cou-
pling of incident light to surface plasmons. These structures are, however, facing
critical properties like low compactness, di�cult fabrication or integration with
other optical components. The photonic structures get rid of allthese imper-
fections. In fact, these issues are actually their preferences. Photonic structures
exhibit dispersion relations which are highly sensitive on RI changes ofinvesti-
gated medium, which is applied on the surface or inside the perforated structure.
The method of monitoring RI changes is based on observing cut-o� wavelengths
(the edge of the band gap) or resonant peak position [5].

Numerical approaches

The analytical methods for the calculation of PhC's band structures have been
reported, but does not provide us full understanding of all useful features of these
exceptional materials [6]. Thus, many complementary numerical approaches have
been proposed to investigate properties of photonic crystals more precisely. Here
we briey introduce just few of them.

One of the most intuitive approaches adapted to compute optical response of
stack of homogeneous thin �lms with di�erent RI (multilayer) is Transfer matrix
method (TMM). The formalism of TMM for multilayers was �rst proposed by F.
Abel�es in 1950 [7]. It is based on numerical calculation of Fresnel equations, which
describe the reection and transmission of light from a single interface between
two media. The formalism can be derived by combining Fresnel equations with
electromagnetic �eld propagation in homogeneous layers and continuity of the
tangential components of EM �eld at the interfaces. The primary output of
TMM is reection and transmission spectrum, but dispersion relations of in�nite
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periodic structure can be obtained as well. The simplicity of TMM formalism is
compensated by the use just for one-dimensional problems.

Thus two-dimensional numerical technique called Finite element method (FEM)
was adapted to PhC modelling [8]. The FEM �nds approximate solution to
boundary value problems by dividing whole problem domain into simpler parts
called �nite elements and hence it can handle with complicated geometries with
relative ease.

The very popular method for computing the band structure of PhCs with
arbitrary variation of RI is Plane wave expansion (PWE) method whichis adapted
to solve eigenvalue problem formulated by Maxwell's equations. The method can
deal with computation of eigenfrequencies and eigenmodes of largesize problems.
However, it requires computation of eigenvalues of large matrices,which takes a
lot of computational resources (memory and time), and for scattering analysis it
can be used just with non-trivial modi�cations.

All methods mentioned above have one in common. Whether we compute
transmission spectrum or dispersion relations, we compute it for one given fre-
quency | we are talking about frequency domain methods which study behaviour
of monochromatic wave propagation. Naturally, the opposite are time domain
methods. The most used method in this �eld is Finite di�erence time domain
method (FDTD), which has been �rst proposed by Kane Yee in 1966 [9]. This
method solves Maxwell's equations in the time domain on a discrete lattice (called
Yee grid) which represents real space. Since the simulation runs in our common
space-time and does not use any abstract frequency domain, it can provide bet-
ter understanding of light propagation, for example via animated output. The
frequency output is obtained via discrete Fourier transform (DFT) for all desired
frequencies at once, if a broadband pulse is used as a source. This isvery useful
in applications where resonant frequencies are not exactly known or computation
of broadband spectrum is necessary. The other advantages of FDTD are its sim-
plicity and versatility. Basic algorithm, which uses miscellaneous extensions, can
deal with time-varying, anisotropic, lossy, dispersive and nonlinearmedia [10].

Outline of the thesis

The main aim of this work is to present complex results from 3D-FDTD simula-
tions showing biosensing potentials of holey waveguide. To understand it proper-
ly, we provide here brief theoretical introduction to FDTD theory supplemented
with model examples which inconspicuously contribute to completeness of the
holey waveguide model.

In the Chap. 1, we �rstly acquaint ourselves with numerical integration, which
is an essential and integral part of FDTD. Secondly, we derive Yee algorithm from
Maxwell's equations and provide short description of the most popular FDTD
extensions. After that, we also provide an introduction into the TMM, which
will be further used to compare and extend results obtained from FDTD.

Chapter 2 presents some simple structures where the results can be compared
with analytical solution, and thus the correctness of the simulationalgorithm is
con�rmed. We examine reection of an inhomogeneous dielectric step by TMM
and FDTD, than we take a look at a near-�eld of Gaussian pulse scattered on
a grating. After that we use characteristic equation to describe eigenmodes in
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symmetrical plane waveguide, which will be useful when modelling photonic struc-
tures. The functionality of the FDTD code in three-dimensions is demonstrat-
ed on di�raction problem using circular aperture and comparison withFresnel
di�raction.

After equipping ourselves with the appropriate theoretical tools and verifying
FDTD algorithm we attempt to propose novel photonic structureswith high po-
tential use as biosensors based on RI changes. Firstly, in Chap.3, we enhance
hexagonal PhC for biosensing by introducing additional holes in its middle row,
which represents a waveguide. Than we also show that crystal withbroken pe-
riodicity, designed originally as an optical diode, exhibit very large sensitivity
on RI changes. Secondly, in Chap.4, we subject photonic structure known as
holey waveguide to precise investigation of its parameters to show,that even such
simple structure may compete with PhCs in the area of biosensors.

Finally, we conclude our work and results.
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1. Theoretical prelude
Since the FDTD simulation is done in the common space and time, the results are
very often understandable even without any detailed description.Nevertheless,
if we want to obtain reasonable results, we should know what does the algorithm
contain and what approximations have to be done before and duringcomputation.
Before we focus on the FDTD theory, let us briey introduce the main idea of
the algorithm which is the heart of FDTD.

1.1 Numerical integration

As a model example for solving ordinary di�erential equations, we investigate
here behaviour of a classical harmonic oscillator. The particle mass ism, force
constant k and time-dependant position is denoted byx(t). The di�erential
equation governing oscillator's dynamics is

•x(t) = �
k
m

x(t)
�

_x(t) = v(t)
_v(t) = � k

m x(t)
(1.1)

To study the system numerically, we rewrote the second-order di�erential equa-
tion as two coupled �rst-order equations. The velocity of the oscillator is denoted
by v(t), and _v(t) = a(t) denotes the acceleration. To integrate these equations
we discretize continuous time-axis into many discrete pointst = t0; t1; : : :, with a
constant time-step � t = tn+1 � tn . The initial values of the oscillator are de�ned
in t = t0 as x0 and v0.

Let's rewrite the set of equations (1.1) to make them understandable even for
computers in the most intuitive way

an+1 = �
k
m

xn ; (1.2a)

xn+1 = xn + � tvn ; (1.2b)

vn+1 = vn + � tan+1 ; (1.2c)

where the low indices stand for time steps (i.e.xn = x(n� t ) = x(tn )). When
computer proceeds this algorithm, it will evaluatea1 from the initial value x0

using (1.2a), then x1 from x0 and v0 using (1.2b), next v1 from v0 and a1 using
(1.2c), after that it will go back to the �rst equation and compute the cycle
again until we will be satis�ed with the results. The described procedure is called
Euler's algorithm.

In general, this algorithm is not very useful in practice because theerror
O(� 2

t ) cumulates in each step and solution is not stable. Figure1.1 illustrates
the phase space of the oscillator withm = 1kg, k = 1kg�s� 2, x0 = 1m, v0 = 0.
Since the motion is periodical, the trajectory in the phase space should be a closed
curve and not the spiral we have obtained. It shows the numericalsolution is not
correct.

How can we improve the algorithm to get more physical results? We compute
the Taylor expansion ofxn� 1 = x(tn � � t )
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Figure 1.1: The phase space of harmonic
oscillator. If the solution would be cor-
rect, we should see a closed curve and
not the widening spiral. This example
clearly illustrates the Euler's method is
not stable.
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t ) =

= x(tn ) � � tv(tn ) +
1
2

� 2
t a(tn ) �

1
6

� 3
t _a(tn ) + O(� 4

t ):

Adding these two equations yields

xn+1 = 2xn � xn� 1 + � 2
t an + O(� 4

t ); (1.3)

which is calledVerlet algorithm. Noting the fact that xn � xn� 1 = � tvn� 1=2 and
vn+1 =2 � vn� 1=2 = � tan we get a leapfrog method, which is in fact identical to
Verlet's

vn+ 1
2

= vn� 1
2

+ � tan ; (1.4a)

xn+1 = xn + � tvn+ 1
2
; (1.4b)

an+1 = �
k
m

xn+1 : (1.4c)

The main idea of the leapfrog algorithm is that we compute the velocityv
and the position x at di�erent grid points. We even do not know what is the
position and the velocity of the particle at the same time. Furthermore, we have
to adjust initial condition v0 to v� 1=2. It seems to be unnecessarily complicated,
but the results are more than satisfying.

Figure 1.2 compares Euler and leapfrog methods showing the evolution of
oscillator's energy in time for two di�erent time-steps � t . As the �gure indicates,
the solution obtained by Euler method is non-physical because the oscillator's
energy is diverging, although no force is acting on it. If we decreasethe time
step, we will get better behaviour but only for short times. The solution would
diverge anyway if we computed simulation for longer times. Yes, we can decrease
time step more and more but then we also have to wait longer and longer for
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Figure 1.2: Time evolution of harmonic oscillator's energy computed byEuler and
leapfrog method for di�erent � t . While the Euler method diverges, the energy
obtained from leapfrog only oscillates. The inset illustrates zoom of the �rst ten
seconds.

results, because computers are still not in�nitely fast. It is clear that this way
does not lead us to any signi�cant breakthrough.

The situation seems to be much better when leapfrog algorithm is used. En-
ergy oscillates around the correct value 0.5J but does not diverge.The smaller
� t we use, the smaller oscillations we get. Moreover, the leapfrog algorithm is
time-reversible, i.e., we can move back and forth in time without any decrease of
precision (up to numerical round-o� errors). This feature can beused to check
the sensitivity of simulation to round-o� errors.

1.2 Finite Di�erence Time Domain

Since we are about to describe light, the electromagnetic waves, weshould be-
gin with Maxwell's equations. This set of equations is named after the Scottish
physicist and mathematician James Clerk Maxwell, who formulated their early
form of those equations about 1861 [11]

r � D = � (Gauss's law), (1.5a)

r � B = 0 (Gauss's law for magnetism), (1.5b)

r � E = �
@B
@t

� M (Faraday's law of induction), (1.5c)

r � H = j +
@D
@t

(Maxwell-Amp�ere's circuital law), (1.5d)

whereE is the electric �eld, D is the electric ux density, H is the magnetic �eld,
B is the magnetic ux density, j is the current density,M is the magnetic current
density and � denotes the charge density.
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If we consider wave propagation in linear isotropic and non-dispersive mate-
rial, the constitutive relations are

D = "E; (1.6a)

B = � H ; (1.6b)

where" is permittivity and � permeability. In free space they are de�ned as

" = " r "0 = "0 � 8; 854� 10� 12F � m� 1; (1.7a)

� = � r � 0 = � 0 = 4� � 10� 7H � m� 1; (1.7b)

where" r and � r denote relative permittivity and permeability, respectively. The
electric current density j = � eE and � e is the electric conductivity. Similarly,
M = � mH , � m is the magnetic conductivity. For the simplicity, all materials will
be considered as non-magnetic, unless otherwise stated. Therefore, the refractive
index is n =

p
", since� r = 1.

1.2.1 Yee's algorithm in 3D

As the abbreviation FDTD (Finite-Di�erence Time-Domain) prompts, FDTD is
the method which solves Maxwell's equations in the time domain. The method
was �rst used by Kane Yee for analysis of two-dimensional scattering problem
of magnetic pulses from rectangular cylindrical conductors [9]. Although Yee
proposed the method in 1966, it did not gain popularity until mid-seventies when
computers became fast enough to deal with large amount of operations which
FDTD requires. In the beginning it was used in the area of microwave and
millimetre-wave research. With faster and more powerful computers the method
was applied little by little on more complex problems.

Nowadays, the FDTD is widely used to design antennas, microwave �lters,
scattering structures or even PhCs. On the other hand, FDTD is restricted to
problems, which are comparable with wavelength of propagating light. If the
objects were too small compared to wavelength (e.g. tiny quantumdots versus
visible light), it would be better to use quasistatic approximations. Ifobjects
were too large (e.g. laser beam propagating through some lenses and polarisers
placed on optical table), it would be better to use approaches based on geometrical
optics. Otherwise, we would probably require extremely large computational grid
and integration over so many time steps, that we would wait years and years for
results.

Since the FDTD is time domain simulation, we do not have to work with
such abstract terms like Brillouin zone, dispersion relations or eigensystem( 1) ,
although we will talk about periodic structures like PhCs. Instead ofthat, we
discretize the real continuous space-time into discrete counterparts. Then, ge-
ometry of the investigated problem might be easily stored into large arrays or
matrices in computer's memory. After that, we de�ne matrices of the same sizes

1Computation of dispersion relations with FDTD is possible, but similar to cracking a nut
with a sledgehammer.
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for electromagnetic �eld, which are updated in time-marching loop using Yee's
leapfrog algorithm step by step.

Instead of writing down, or even deriving, all equations and sophisticated
methods which build and improve the FDTD code, we rather refer theinquisitive
reader to the literature [10, 12, 13, 14, 15, 16]. Here we explain only the bare
essentials.

The Yee's algorithm is as follows:

1. Replace all the derivatives in Amp�ere's (1.5d) and Faraday's (1.5c) laws with
�nite di�erences. Discretize space and time so the electric and magnetic
�elds are separated in both space and time.

2. Solve the di�erence equations to obtainupdate equationsthat express the
unknown future �elds in term of known past �elds.

3. Using the update equations enumerate future magnetic �elds.

4. Using the update equations enumerate future electric �elds.

5. Repeat last two steps unless you are satis�ed with the results.

Let's see what is hidden behind theseupdate equationsin three dimensional
case. As the Yee's algorithm postulates, Amp�ere's (1.5d) and Faraday's (1.5c)
laws are the governing equations in constructing the FDTD. Breaking down the
curl of E and H we get

� � m H � �
@H
@t

= r � E =

�
�
�
�
�
�

êx êy êz

@x @y @z

Ex Ey Ez

�
�
�
�
�
�
; (1.8a)

� eE + "
@E
@t

= r � H =

�
�
�
�
�
�

êx êy êz

@x @y @z

Hx Hy Hz

�
�
�
�
�
�
: (1.8b)

Now we have to replace derivatives. We use the central di�erence formula with
the error O(� 2

x )( 2)

df (x)
dx

�
f (x + � x) � f (x � � x)

2� x
: (1.9)

For the discretization we use notation similar to the harmonic oscillator in pre-
vious chapter

Ex (x; y; z; t) = Ex ((m � 1=2) � x ; (n � 1) � y ; (p � 1) � z; q� t ) = E q
x [m; n; p];

Ey(x; y; z; t) = Ey ((m � 1) � x ; (n � 1=2) � y ; (p � 1) � z; q� t ) = E q
y [m; n; p];

Ez(x; y; z; t) = Ez ((m � 1) � x ; (n � 1) � y ; (p � 1=2) � z; q� t ) = E q
z [m; n; p];

Hx (x; y; z; t) = Hx ((m � 1) � x ; (m � 1=2) � y; (p � 1=2) � z; q� t ) = H q
x [m; n; p];

Hy(x; y; z; t) = Hy ((m � 1=2) � x ; (m � 1) � y ; (p � 1=2) � z; q� t ) = H q
y [m; n; p];

Hz(x; y; z; t) = Hz ((m � 1=2) � x ; (m � 1=2) � y ; (p � 1) � z; q� t ) = H q
z [m; n; p];

2More about other di�erence schemes, errors and precise analysisabout all this non-trivial
stu� can be �nd in [ 13].
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Figure 1.3: Arrangement of the �eld
components on the Yee cell indexed as
[m; n; p]. Red arrows denote the electric
�eld, blue arrows the magnetic one. The
relative permittivity " x is at the same
place asEx , " y at the same place asEy ,
etc. This arrangement is crucial when
deriving the updating equations (1.11).
It is also useful when sub-cell averaging
is being involved into the computer code
(section 1.2.2).

• x

• y

• z

x

y
z

Ex[m,n,p] 

Hz[m,n,p] Ey[m,n,p] 

Hx[m,n,p] 

Ez[m,n,p] 

Hy[m,n,p] 

[m,n,p]

[m+1,n+1,p+1]

where indicesm; n; p are related to positions in matrices. The arrangement of
the �elds illustrates Fig. 1.3.

In order to save the forests, we mention only one of six update equations.
This can be derived from (1.8b) after some manipulations

E q+1
x [m; n; p] =

2" x [m; n; p] � � t � e
x [m; n; p]

2" x [m; n; p] + � t � e
x [m; n; p]

E q
x [m; n; p]

+
2� t

(2" x [m; n; p] + � t � e
x [m; n; p]) � y

�
�
H q+1 =2

z [m; n; p] � H q+1 =2
z [m; n � 1; p]

�

�
2� t

(2" x [m; n; p] + � t � e
x [m; n; p]) � z

�
�
H q+1 =2

y [m; n; p] � H q+1 =2
y [m; n; p � 1]

�

�
2� t

2" x [m; n; p] + � t � e
x [m; n; p]

j n+1 =2
x [m; n; p]:

(1.11)

The " was treated as permittivity tensor. This update equation will be simpli�ed
signi�cantly if non-conducting material (� e = 0) is assumed.

This relation is very nice indeed, but what will a computer actually do if it
compiles the update equations and algorithm? Firstly, empty matrices of the
dimensions (m � n � p) for the �elds E and H are de�ned. Then, matrices of the
same dimensions for permittivity, permeability and current densitiesare de�ned.
In this step, particular geometry is involved to the computation. Ifwe want to
simulate free space, the matrices for permittivity and permeability will be �lled
only with number one, the current density matrices will be �lled with zeros. If
we want to simulate a scattering of light on a silicon ball, some values in the
permittivity matrix will be equal to 3 :52, since the refractive index of silicon is
about nSi = 3:5 for � = 1550nm [17].

The \bare-bone" code of FDTD simulation is attached in Appendix.
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1.2.2 FDTD extensions

The basic FDTD algorithm, as introduced in previous paragraphs, does not pro-
vide too valuable results. If we run the loop with the updating equations on
computer, we will get just a visual output of a spherical wave closed in a metal
box, which may scatter on some badly de�ned dielectric or magnetic object.

Here we briey describe what does the de�nition of material geometry contain,
how can we simulate in�nite space, plane waves, how can be frequency-dependent
spectra obtained from time-domain simulation, how can be the far-�eld computed
or even how can be dispersive materials simulated.

Sub-cell averaging

First of all we describe, how to build objects into the Yee grid. The �eld arrange-
ment in the Yee cell as illustrated in Fig.1.3 prompts, that building objects will
probably not so easy as it might appear.

The simplest improvement is sub-cell averaging. After creating material ge-
ometry by changing ones to" r in case of permittivity, we check and rede�ne
values at boundaries. For instance, the material component" z[m; n; p] is located
in between four Yee cells. If we consider that the material in each ofthem is
di�erent, we will rather use the average value for this cell

" z[m; n; p] =
" z[m; n; p] + " z[m � 1; n; p] + " z[m; n � 1; p] + " z[m � 1; n � 1; p]

4
:

(1.12)

The advantage of this method is that objects are modelled with better resolution
without increasing size of the Yee grid and memory requirements aretherefore
preserved.

We will obtain even better resolution if we involve the particular shapeof
modelled objects. For example, if boundary of a dielectric ball ("ball ) in free
space went through a Yee cell, the relative permittivity of this Yee cell would be

" =
Vball "ball + ( V0 � Vball )

V0
; (1.13)

where Vball and V0 is the volume of the part of the ball in particular cell and
volume of the Yee cell, respectively.

Boundary conditions

A signi�cant problem of updating equation as stated in Eq. (1.11) is to enumerate
future value E q+1

x [m; n; p] we need to know the value ofH q+1 =2
y [m; n; p � 1] and

others. The problem will occur, if we want to enumerateE q+1
x [m; n; 1]( 3) , since the

value H q+1 =2
y [m; n; 0] does not exist. Therefore we do not updateE q+1

x [m; n; 1]
and it remains zero. Electric �eld is always zero in perfect electric conductor
(PEC, � e � + 1 ). That is why the edges of the Yee grid totally reect all light
which impact them. This is a serious problem when simulation in free space
should be done.

3Notation is related to matlab, where �rst element of array has index 1.
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To simulate free space, absorbing boundary conditions (ABC) mustbe de�ned.
The most used method isperfectly matched layer(PML), which was introduced
by Jean-Pierre Berenger in 1994 [18]. The idea of original PML is to de�ne a
non-physical material at the edges which attenuates incoming waves. To model
in�nite dielectrics, dispersive, nonlinear and all other materials, so-called complex
frequency-shifted PML, known asconvolutional perfectly matched layer(CPML),
was developed.

Other method which can be used at edges of computational area are periodical
boundary conditions, which are widely used for periodical structures such as
crystals.

Total-Field/Scattered-Field (TFSF)

Objects consist of materials have been located in the grid, boundary conditions
de�ned, and now we would like to introduce light source and light propagation.
A simple point source, which produces a spherical waves, can be de�ned by
a strict condition E q[m; n; p] = f (q) placed between fourth and �fth step in
Yee's algorithm, wheref (q) is an arbitrary time-dependent function, e.g.f (q) =
sin (!q ). Nevertheless, in many cases we would like to simulate an impact of
plane wave. One can say, it's not a problem since we know the wavefronts of
spherical wave are nearly planar when investigated far from the source. It is true,
of course, but we do not want to allocate so large arrays in computer memory
and even not to wait for wave propagation.

Instead of that, we can use method known as Total-Field/Scattered-Field and
excite the plane wave directly into the Yee grid [12, Chap. 3.10]. Using TFSF
we excite many nodes of the grid and correct �elds at many others to ensure the
wave does not propagate outside the TFSF region.

Discrete Fourier transform (DFT)

Simulation in time-domain is nice, intuitive, and might help to understandwave
propagation better. Nevertheless, results in the time domain are not very use-
ful, since the real detectors are not so fast to be able even compare the theory
with experiment. Fortunately, Fourier transform which relates time-domain with
frequency-domain and vice versa exists. Because we use computers which operate
in the discrete world, we de�ne discrete Fourier transform (DFT)

F (r ; � ) �
NX

n=1

f (r ; n� t )e� i 2�t � t � � t ; (1.14)

whereF (r ; � ) is the Fourier transform of functionf (r ; t) = f (r ; n� t ). The smaller
integration step � t we use, the more accurate solution the transform produces.

When applied to FDTD, we useE(r ; t) and H (r ; t) as f (r ; t) to calculate
E(r ; � ) and H (r ; � ). In post-process we use these values to compute frequency-
dependant Poynting vectorS(r ; � )

S(r ; � ) =
1
2

E(r ; � ) � H � (r ; � ); (1.15)
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from which the power ow Pdet (� ) through some detector could be obtained easily

Pdet (� ) = <

(
X

det.

(S(r ; � ) � n) � x

)

; (1.16)

where unit vector n is normal to the detector.
For instance, transmission spectrum of a three-dimensional waveguide in di-

rection of z-axis might be obtained as

T(� ) =
P1(� )
P2(� )

; (1.17)

Pj (� ) = <

(
xmaxX

x= xmin

ymaxX

y= ymin

Sz(x; y; zj ; � )� y � x

)

; j = 1; 2 (1.18)

where xmin , xmax , ymin , ymax are edges of the waveguide and indices 1 and 2
correspond to two detectors atz-positions z1 and z2. Incident and transmitted
power ows (P1 P2) are computed there.

Near-Field to Far-Field transformation (NTFF)

FDTD is method which computes the near-�eld, i.e., the �eld in the vicinity of
scattering objects. But there are many situations (such as antenna radiation,
grating di�raction, etc.) where we would like to know, how does the scattered
�eld appears far away from the sources | in the far-�eld. One possible way is to
de�ne very large computational domain and wait years for results.Instead, the
electromagnetic �eld far away from modelled objects is usually computed using
the near-�eld to far-�eld transformation technique.

We enclose the antenna or any other scattering object into an imaginary
surface and compute equivalent surface currentsJ and M , which are determined
by E and H computed inside the enclosed area. From the surface currents we
compute electromagnetic �eld far away from the sources for all angles and selected
number of frequencies [13].

Dispersive media in FDTD

As mentioned several times above, the FDTD method is not restricted only to
linear and isotropic media.

The electromagnetic properties of materials depend more or less upon the fre-
quency. Since the FDTD is time-domain method, it is evident that someadvanced
algorithms must be used to obtain more realistic optical response ofmaterials.
There are several analytical models which describe frequency dependence of ma-
terials. Two most common are Lorentz model for dielectrics and Drude model
for metals. The leading approach used to model dispersive materialsis known as
auxiliary di�erential equation (ADE) method.

As the abbreviation prompts, the FDTD algorithm employs one additional
di�erential equation. That consists of calculation of a polarization current, which
is used to update the electric �eld with a slightly modi�ed update equations.
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1.2.3 Advanced meshes

The FDTD method as proposed above, provides e�cient numerical algorithms
for design and analysis of many structures. The main limitation of FDTD is its
restriction to orthogonal grids, which means, the computationaldomain typically
consists of a union of cubes. This causes many problems leading to smaller
accuracy when curved surfaces or tiny structures are modelled.Such situations
are common when quantum dots, small apertures or thin metal �lmshave to be
de�ned in the grid. The maximum improvement is possible when both space and
time grid re�nements are used. Many techniques have been proposed to extend
basic Yee algorithm with ine�cient staircase orthogonal meshes.

The simplest method uses more overlapping orthogonal grids with di�erent
space steps. For example, the space step around the nanoscale particle is small
enough to describe its shape, whereas the space step in homogeneous space is
bigger to obtain results in real time. These grids overlap typically about three
cells [19].

How to solve Maxwell's equations in generalize nonorthogonal coordinates
was �rst described by R. Holland in 1983 [20]. This approach was further de-
veloped up to current methods, which often uses combination of several schemes
to achieve desired results [21]. The strength limitation of the methods is, that
computational requirements grow a lot if algorithms are applied throughout the
whole computational domain. Therefore, algorithms using nonorthogonal cells
are preferred to be used only around the curved boundaries. Figure 1.4 compares
several grids, which represent di�erent approaches of grid re�nement to particular
geometry.

To ensure stability of FDTD algorithm, so-calledCourant-Friedrichs-Lewy
(CFL) condition must be ful�lled. In general form for non-orthogonal meshes it
states [22]

� t � � tmax =

8
>><

>>:

1
c
p P

i;j jgij j
general non-orthogonal grid

1
c
q

1
(� x ) 2 + 1

(� y ) 2 + 1
(� z ) 2

3D orthogonal grid
(1.19)

wheregij are the local matrix coe�cients describing the nonorthogonality ofthe
mesh. The condition simpli�es a lot when the orthogonal mesh is used.

(a) Orthogonal,
staircase

(b) Orthogonal,
triangular

(c) Nonorthogonal (d) Nonorthogonal,
triangular

Figure 1.4: Di�erent grid re�nements. The simplest case (a) was used in our
FDTD algorithm. Pictures taken from [22].
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The CFL condition provide us that the simulation is stable. Unfortunately,
it does not mean no that no errors can occur. We used the centraldi�erence
formula (1.9) with the error O(� 2

x ) to replace derivatives with �nite di�erences.
Due to this approximation, the numerical dispersion occurs. This is one of the
main sources of inaccuracy. As non-orthogonal meshes are beingemployed into
the algorithm, the numerical dispersion arises [23].

However, simulation in one dimension has a very nice feature known asa
magic time-step. When we de�ne � t = � x=c, all the errors will cancel and we
will get exact numerical solution up to round-o� errors. This is indeed very
nice but unfortunately not too useful. The condition for magic time-step can be
ful�lled only in free space, since the speed of light is dependent on thematerial. As
Fig. 1.5 illustrates, numerical dispersion will occur if light propagates in dielectric
material.

The numerical dispersion will be suppressed when better resolutionis used.
Here we de�neN � = �= � x , which is the number of points per wavelength. The
more precise our resolution is, the biggerN � is, and the smaller error caused by
numerical dispersion occurs. In general,N � should be greater then 20 if we don't
want to obtain any nonsense and greater than 50 to get more reasonable results.

The most simple case of non-uniform grid can be modelled in one dimension.
Comparison with constant spatial step is shown in Fig.1.5, where a simple in-
terface between free space and dielectric material (n = 3) is modelled. In the
case of non-uniform grid we de�ne di�erent spatial step for each node. Therefore,
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Figure 1.5: This set of �gures compare numerical dispersion in one dimension.
The Ricker pulse (second derivative of Gaussian) impacts the interface between
free space on the left and dielectric on the right. In the �rst case,grid with
constant spatial step � x and N � = 30 is used. In the second case, the adap-
tive spatial step � x (" (x)) is tested for N � = 1. Using the DFT we compute
transmission coe�cients which are compared in Fig.1.6.
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Figure 1.6: Comparison of transmission spectra for simple and adaptive spatial
step � x . Impact of numerical dispersion is clearly visible here. IfN � = 30, non-
physical results might be obtained. Nevertheless, in 1D might be thecondition
for the magic time-step ful�lled even in dielectrics. The transmission (blue) is
not exactly 0.75 because of numerical errors of DFT.

the condition for the magic time-step � x (x) = � x0 =n(x) is preserved even in di-
electrics. Then(x) is spatially dependant refractive index. As Fig.1.5 illustrates,
no numerical dispersion occurs althoughN � = 1!

The great force of magic time-step conservation shows Fig.1.6, where the
transmission spectrum of modelled interface is illustrated. Using theFresnel
equations we know, the transmission should be 0.75. We subtractT(� ) � 0:75 to
get curves shown in Fig.1.6. Please note di�erenty-axis scales. The transmission
when non-constant spatial step is applied is non-zero only becauseof numerical
errors of the DFT.

Unfortunately, the weakness of discussed method appears whennumerous
materials of particular thicknesses and refractive indices must be set into the
grid.

Let's consider set several layers with thicknessesdi and refractive indicesni

into the grid. The number of nodes in the grid, which represents thei th layer, is

X i =
di

� i
x
; where � i

x =
c
ni

� t (1.20)

is the real distance of two points in thei th layer. The relationship which de�nes
� i

x ensures the existence of the magic time-step. Putting �ix to the �rst equation
yields

X i =
ni di

c� t
: (1.21)

The fraction X i =X j therefore equalsni di =nj dj . We can reformulate it into math-
ematical statement:

Find � � 0 so the expressionni di �=n j dj � is the fraction of two integers
for all i; j . Then X i = ni di � is also integer and 1D-FDTD provides exact
numerical solution.

We will discuss this issue in Chap.2.1.
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1.3 Transfer Matrix Method

As mentioned in the introduction, FDTD is not the only one approach which can
be used to solve electromagnetic problems. In some cases it is too robust and
clumsy. Similar, or even better, results might be obtained in shortercomputa-
tional time when di�erent approach is used.

Transfer matrix method (TMM) is designed to calculate transmissionor reec-
tion coe�cients (and also �eld distribution) of layered structures. Such structures
are usually anti-reective coatings and dielectric mirrors (one-dimensional PhCs).
To explain how is the TMM working and what can we get from its formalism,
we �rst take a look at the dielectric mirrors. Secondly, we compare TMM with
1D-FDTD simulation of an inhomogeneous dielectric slab. Finally, in Chap. 4,
we investigate layered structure, which is similar to the holey waveguide, obtain-
ing very good agreement although the structures and computational methods are
di�erent.

The idea of TMM is as follows: Denote the tangential components of electro-
magnetic �eld by E01, H01 for the incident wave propagating in medium 0 close
to the interface 0-1. Similarly,E12, H12 denote components of the �eld close to
the interface 1-2, propagating in medium 1. After the calculation, which is very
similar to the derivation of Fresnel equations, we obtain following relation

�
E01

� 0H01

�
=

�
cos� 1

i sin � 1
 1

i 1 sin� 1 cos� 1

� �
E12

� 0H12

�
: (1.22)

The matrix M for j th layer of thicknessdj characterized by indexnj is therefore
de�ned as

M =
�

m11 m12

m21 m22

�
=

 
cos� j

i sin � j

 j

i j sin� j cos� j

!

; (1.23)

where

� j =
!n j dj

c
cos� j (1.24)

and

 j =
cos� j

Z j
for s-polarization; (1.25a)

 j =
1

cos� j Z j
for p-polarization; (1.25b)

Z j is the impedance and� j is the angle of refraction (can be computed using
the Snell's law).

For a structure composed ofN layers, where each layer is described by its
own matrix M j , we get the following relation
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�
E01

� 0H01

�
= M1M2 : : : MN

�
EN;N +1

� 0HN;N +1

�
: (1.26)

Finally, if we compute transfer matrix M = M1M2 : : : MN , we can easily
obtain reection and transmission coe�cients

r =
 0m11 +  0 tm12 � m21 �  tm22

 0m11 +  0 tm12 + m21 +  tm22
; (1.27)

t? =
2 0

 0m11 +  0 tm12 + m21 +  tm22
; (1.28)

tk =
Z t

Z0

2 t

 0m11 +  0 tm12 + m21 +  tm22
: (1.29)

1.3.1 Bragg mirror

In the previous sub-section we have de�ned all necessary theoryand now we can
calculate optical response of the dielectric mirror, also know as theBragg mirror.

The typical Bragg mirror consists of a stack of thin dielectric layersof alter-
nating refractive indices. The refractive index pro�le is illustrated inFig. 1.7a.
Incidence half-space is air. Alternating layers of SiO2 (nL = 1:46) and TiO2

(nH = 2:4) are deposited on the glass substrate, which �lls half-space of trans-
mittance. In order to produce constructive interference in the light reected from
the interfaces and destructive interference in the corresponding transmitted light,

Figure 1.7: The Bragg mirror
composed of bilayers made of
SiO2 (nL = 1:46) and TiO2

(nH = 2:4) deposited on the
glass substrate (ns = 1:52).
(a) illustrates the refractive
index pro�le and (b) com-
pares the reectance spectra
for 4 and 10 bilayers comput-
ed using TMM formalism. As
�gure (b) indicates, for more
bilayers we obtain broader re-
gion whereR � 1. What will
happen with spectrum when
non-zero angle of incidence is
considered, depicts Fig.1.8.
If we assumed theoretical mir-
ror composed of in�nite num-
ber of bilayers, we would get
transmittance and reectance
spectra as Fig.1.9 shows.
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the optical thicknesses of layers are chosen as� 0=4. Wavelength of interest is cho-
sen as� 0 = 550nm. The reectance spectra for 4 and 10 bilayers are compared
in Fig. 1.7b. The angle of incidence� = 0.

As Fig. 1.7b indicates, the more bilayers we deposit on the glass substrate,
the broader region whereT � 1 we obtain. Coatings of current mirrors are often
composed of several tens, or even hundreds of layers to achievedesired behaviour.
Nevertheless, the optical sensitivity increases with the number oflayers and even
small manufacturing perturbations may completely destroy the mirror features
[24].

When using mirrors in experiments, we may often require high reectance for
whole range of incident angles. Look at the Fig.1.8 to see, what happens with the
spectrum when non-zero angle of incidence� is present. High reectance regions
shift, and some wavelengths which were totally reected for� = 0 might pass
trough without any losses (� = 650nm, � � 33:5°). When designing dielectric
mirror, we are probably most interested in regions whereR � 1 for all incident
angles� .

Figure 1.8: The dependence of the reectance spectrum of the Bragg mirror with
ten bilayers (see Fig.1.7b) on the angle of incidence� . For � � 90° we getR = 1
for all wavelengths. Please note, that for all wavelengths between � (480{590)nm
the mirror perfectly reects at all angles of incidence. This is very useful when
designing a mirrors. The s-polarized light was assumed when calculating this
�gure.

1.3.2 In�nite Bragg mirror

We restrict ourselves to a theoretical considerations for a while, and investigate
what happens when the mirror is composed of in�nite number of layers.

For the sake of simplicity, we assign alpha to zero. Since the optical thicknesses
nj dj of both layers are� 0=4, the � j = �= 2. Therefore, according to (1.23), the
transfer matrix of bilayer is
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Mbl =
�

0 i
 H

i H 0

� �
0 i

 L

i L 0

�
=

�
� nL

nH
0

0 nH
nL

�
; (1.30)

where indicesL and H stands for low and high refractive index. For a mirror
composed ofN bilayers we have to calculate theN th power of the matrix Mbl .
Since the matrix is diagonal, the exponentiation is very easy

M = M N
bl =

�
� nL

nH
0

0 nH
nL

� N

=
�

(� nL =nH )N 0
0 (nH =nL )N

�
: (1.31)

Finally, using (1.27) we can evaluate the reection coe�cient r and reectivity R

r =

�
� nL

nH

� N
� ns

�
� nH

nL

� N

�
� nL

nH

� N
+ ns

�
� nH

nL

� N ; (1.32)

R =

2

6
4

1
ns

�
nL
nH

� 2N
� 1

1
ns

�
nL
nH

� 2N
+ 1

3

7
5

2

: (1.33)

It is obvious, that R N !1���! 1. Nevertheless, it is important to notice that the
result was calculated just for wavelength� 0 = 550nm. Our goal is to computeR
for all wavelengths.

For � 6= � 0 the condition � j = �= 2 is not longer valid. Thus also the matrix
Mbl is not diagonal. It leads us to linear algebra and eigensystem. Using the
eigenvalues and eigenvectors we �nd the basis in whichMbl is diagonal. Then,
the powerM N

bl can be done easily. Unfortunately, the result lim
N !1

M N
bl (� ) diverge

in many cases and therefore we cannot evaluater . We can deal with this problem
as follows:

r �nal (� ) = lim
N !1

r
�
M N

bl (� )
�

: (1.34)

To summarize, �rstly we �nd eigensystem ofMbl , secondly we power the matrix
to a general powerN , then we compute reection coe�cient r , which depends on
N , from elements of matrixM N

bl and �nally we compute the limit ( 1.34). Since
the in�nity is not computer-size number for most programs, we used Mathematica
software tool which can deal with it. The limit (1.34) does not converge for every
wavelength. It may also oscillate or even diverge in some special cases. The result
of our e�ort is demonstrated in Fig. 1.9.

As can be seen, the limit oscillates quite often. Therefore, we plotted maxima
and minima and coloured the area between. This area corresponds to all possible
solutions. The regions whereR < 0 (or T > 1) are non-physical. In these cases
the formalism of TMM fails, since it is not design for in�nite space as wellas not
for very thick layers. To ensure the result is correct, we can see the regions where
R = 1 correspond to Fig.1.7b nicely.
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Figure 1.9: Thought experiment where in�nite number of bilayers is assumed.
The limit ( 1.34) converges only for wavelengths in bang gaps. We plot maximum
and minimum of R (T) and colour the area between for all wavelengths where
the limit oscillates. It means, the solution can lie anywhere in �lled area.

1.3.3 Dispersion relations

The photonic crystals do not have to be some extra special structures. As
shown above, even the Bragg mirror composed of many layers exhibits such a
phenomenon as band gaps. It is simply one-dimensional PhC. We knowPhCs
have band structure and band gaps. To show it analytically we can start with
Maxwell's equations, construct operators, and similarly as in quantum mechanics
compute dispersion relations which appears due to periodical permittivity (see
[1] for more details). Instead of this long procedure we show here, how can be
dispersion relations obtained from introduced transfer matrix formalism.

We consider a medium with permittivity, which is homogeneous inxy-planes
and periodical inz direction. The period is � = d1+ d2, whered1;2 are thicknesses
of two alternating layers with refractive indicesn1;2. The permittivity is therefore
de�ned as

"(z) =
�

"1 for n� < z < n � + d1

"2 for n� + d1 < z < (n + 1)�
; " (z) = "(z + �) : (1.35)

When calculating dispersions relations in crystals, we describe a particle prop-
agating through a periodical potential by a periodical wave function using the
Bloch theorem( 4) . This theorem is applicable also in electromagnetic theory. It
states, the electromagnetic �eld is periodical due to periodical permittivity [ 25]

EK (x; y; z) = EK (z)e� iKz e� i (kx x+ ky y) ; (1.36)

4The theorem was postulated independently several times and is alsoknown as Floquet's
theorem.
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where EK (z) = EK (z + �) is periodical function and K is known as the Bloch
wave number. Using the notation we de�ned in the beginning of TMM, we can
state (do not confuse quantum numberK with interface index N )

EN;N +1 (z) = EN � 1;N (z + �) = e� iK � EN � 1;N (z): (1.37)

We used the periodicity of electric �eld �rst, and then Bloch's theorem. When
applying Bloch's theorem also on magnetic intensity, using (1.26), and moving
imaginary exponential to the other side in (1.37), we can write

�
m11 m12

m21 m22

� �
EN;N +1 (z)
HN;N +1 (z)

�
=

�
EN � 1;N (z)
HN � 1;N (z)

�
= eiK �

�
EN;N +1 (z)
HN;N +1 (z)

�
: (1.38)

First and third part of the relation give us an eigenproblem. TheeiK � is the
eigenvalue of the transfer matrixM . Solving this problem we have to deal with
quadratic equation. According to the de�nition of M (1.23) we know m11m22 �
m12m21 = 1 and 1

4 (m11 + m22)
2 � 1. This gives us �nally the dispersion relations

cos (K �) =
1
2

(m11 + m22): (1.39)

The dispersion relations (1.39) are shown in Fig.1.10 for the same parame-
ters as used to describe Bragg mirror. Wide photonic band gap appears between
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Figure 1.10: Dispersion relations (1.39) computed for parameters of the Bragg
mirror as illustrated in Fig. 1.7a. Band gaps are compared here with reectance
spectrum of Bragg mirror with 10 bilayers. Band gaps, which appearhere, are in
absolute agreement with band gaps which can be read from Fig.1.9.
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470{650nm and many others are visible at lower wavelengths. Band gaps shown
in Fig. 1.9 and Fig. 1.10are in absolute agreement.

For this simple one-dimensional case the derivation of dispersion relations
was not too hard. If we would like to investigate optical properties of more
complicated structures like three dimensional PhC made of spheres, we would
need to satisfy ourself only with a numerical solution. Nevertheless, even some
special 3D cases can be partially solved analytically [26].
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2. Veri�cation of the FDTD code
In previous chapter we introduced FDTD algorithm, described its advantages and
weaknesses and formulated TMM. To be sure our code does produce reasonable
results, we are going to test it on various simple structures where the analytical
solution exists or where it can be compared with other numerical approaches.

For illustrative purposes, we start with the simplest case | one dimensional
problem.

2.1 Inhomogeneous dielectric step

In this section we compare FDTD with TMM. Since we use grid with non-constant
spatial step, we can expect the results should be very similar.

We consider an inhomogeneous dielectric step which illustrates Fig.2.1. The
half-space of incidence is �lled with air (n1 = 1) and the half-space of transmit-
tance is �lled with material of refractive index n2 = 4. The interface between
free space and material is not a step but refractive index varies linearly from n1

to n2 at distanceL.
If L is zero, we will use Fresnel equations and evaluate reection coe�cient

as R = 0:36. But sinceL � 0, the situation is not so clear.

 1

 4

 n

 0  L  z

Figure 2.1: Refractive index pro-
�le of inhomogeneous dielectric slab.
The continuous function (red line)
is approximated by staircase pro�le
(dashed black line). For better read-
ability, the number of layers N illus-
trated here is only 10. In simulations
we useN = 100. The incident light
propagates in free space and then im-
pacts the inhomogeneity.

We use staircase approximation for refractive index pro�le to model this con-
tinuous structure. In TMM language it means, we de�neN = 100 layers of
uniform thicknessesd = L=N with varying refractive indices and stack them one
on the other. This is denoted in Fig.2.1 by dashed lines. In FDTD, the numbers
in permittivity array change analogically.

The reectance spectra are compared Fig.2.2. We �rst describe the pro�le
of general reectance spectrum as shown in the inset. It is intuitive, that for
L � � , the incoming wave will feel something like a simple step rather than
continuous change and reects like from an ordinary interface. But if L � � ,
the wave will not feel any signi�cant changes of the refractive index and passes
completely through. The last region, whereL � � , corresponds to Fabry{P�erot-
like interferometer. The wave partially oscillates inside the slab, whichis the
analogy of reectance of planparallel desk.

As we mentioned above (in Sec.1.2.3), we can get an exact numerical solution
with one-dimensional FDTD when we use the magic time-step. That can be
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Figure 2.2: The comparison of reectance spectra of the inhomogeneous dielec-
tric slab obtained from TMM and FDTD. The pro�le of spectrum in the inset
corresponds more or less to the intuitive idea, where very long wavelengths feel
a simple step, whereas extremely short wavelengths do not feel almost any sig-
ni�cant change of RI. The di�erence of reectance spectra illustrates weakness of
non-constant spatial step in 1D-FDTD and not ideal approximationof continuous
change of RI.

achieved even in dielectric materials if non-constant spatial step is used. The
question is, why Fig.2.2 shows non-zero di�erence between FDTD and TMM?
The error is not in TMM but really in FDTD.

De�nition of layers in TMM is very simple since the input parameters are
only thickness and refractive index of the particular layer. In FDTDwe must be
much more careful.

At the end of Sec.1.2.3we formulated the way, in which the resolution must
be de�ned to obtain exact results of multilayered models. In this case (N = 100,
n1 = 1, n2 = 4) we unfortunately �nd out, the inhomogeneous interface should
be modelled with very large number of grid points (24750). To get results in
real time, we reduce this number and get imperfect result due to incorrect layer
thicknesses. Since the limitsL � � and L � � should be correct even in this
approximation, we get the biggest di�erence forL � � .

The noise in the very right area of the reectance spectrum (in Fig.2.2)
corresponds to oscillations in particular layers. IfN � 100, the numerical noise
will disappear.

After analysing inhomogeneous dielectric slab we can shamelessly saythe
TMM is more powerful approach than FDTD in the case of one-dimensional
structures. Nevertheless, simple TMM method, as formulated here, cannot be
applied to higher dimensions. We will use TMM once again in Sec.4.1, where we
will investigate behaviour of resonance peak in holey waveguide-like structure.
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2.2 Gaussian beam

The excitation of the incident light into the Yee grid can be done in many, many
ways. In the simplest case we can excite only one node (i.e.E q

z [m; n] = f (q),
where f (q) is an arbitrary time-dependent excitation function), which leads to
the point source with spherical wavefronts. If we want to simulatepropagation
of plane waves, we will have to use a little bit more complex method calledTFSF
described in Sec.1.2.2.

Besides the spherical and plane waves we can, of course, simulate any arbi-
trary pulse or whatever we want (e.g. Gaussian beam modulated in time with a
Gaussian pulse).

The shape of Gaussian beam (spatial distribution) can be obtained by precise
excitation of several nodes which lie in the line, whereas the Gaussianpulse is
provided by time-dependent functionf (q) as mentioned above. It is very use-
ful to demonstrate, how is the focused laser beam di�racted on a grating, or to
demonstrate interaction of a pulsed Gaussian beam with a gainy medium [27].

We remind parameters of Gaussian beam now. If the light propagates along
the z-axis, the electric �eld is described as [28]:

E(r; z) = E0
w0

w(z)
e

� r 2

w 2 ( z )
� ik

�
z� r 2

2R ( z )

�
+ i� (z)

ei !t ; where (2.1a)

E0 = jE(0; 0)j is the maximum amplitude;

r =
p

x2 + y2 is the radial distance from the axis of the beam;

w(z) = w0

s

1 +
�

z
zR

� 2

is the radius at which the amplitude drops to
1
e

;

w0 = w(0) is the waist size;

zR =
�w 2

0

�
is the Rayleigh distance;

R(z) = z
�
[1 +

� zR

z

� 2
�

is the radius of curvature of the wavefronts;

� (z) = arctan
z
zR

is the Gouy phase shift:

If we compute E(r; z) everywhere in the two-dimensional space, we will obtain
�eld distribution as shown in Fig. 2.3. The �gure depicts Gaussian beam which
has w0 = 1:5� , where � is an arbitrary wavelength. Diagonal (source) line indi-
cates, where is the �eld computed in FDTD simulation. Changing the angle � we
can easily excite Gaussian beam at di�erent angles using just one rowof nodes
in the Yee grid.

What happens if such beam hits a grating? It di�racts, as we know. After
some straightforward calculations we can derive so-called grating equation, which
describes di�racted angle maxima [29]:

d(sin � i + sin � m ) = m�; (2.2)
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Figure 2.3: Using the equation for Gaussian beam (2.1a) we can easily compute
the spatial distribution of the electric �eld. The waist size isw0 = 1:5� . The
source line corresponds to the source line in Fig.2.4, where Ez is calculated in
FDTD simulation.

where d is the grating period, � i is the angle of incidence,� m are the angles
at which the di�racted light will have maxima, m indicates order of particular
maximum and � is wavelength of incident light.

Figure 2.4 depicts time-integrated intensity of the Gaussian beam which im-
pacts the grating. Grating period isd = 1:5� , height of pitch is 0.2� and angle
of incidence� i = 60°. Putting these parameters into the grating equation (2.2)
we obtain three di�racted maxima � m = � 60°; � 11:5°; 27:9° for m =0,1,2. These
angles are designated by broken lines. According to the results we can say, the
two-dimensional FDTD works correctly (meaning that the propagation of �elds
is reasonable). Using FDTD simulation we calculate only the near-�eld.Never-
theless, in experiments we are more interested in things which can beobserved
in the far-�eld, i.e., far away from grating compared to light wavelength. The
near-to-far-�eld transformation can be done in FDTD using a bit more compli-
cated analysis of di�racted light. As a result we would obtain radiatedintensity
for each angle [13, Chap.9].

Using this technique we can investigate the �eld decomposition nearby a grat-
ing as well as di�racted angle maxima when computing just one single simulation.
Some di�erent and more complicated grating pro�les (sinus, blazed)can be as-
sumed.

To obtain results as shown in Fig.2.4 we used grid of sizes 1100� 700 nodes
and 20 points per wavelength.

If we would like to do an experimet, we could use DVD (the track pitch is
740nm) as the grating and laser with� = 493nm as incident light. If we would
tilt DVD at the angle of 60°, we should see these three di�erent di�racted angle
maxima computed above.
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Figure 2.4: Time-integrated intensity of the Gaussian beam which is excited at
the source line (as is illustrated in Fig.2.3) and at the angle of 60° impacts the
grating. The beam is focused on the grating surface where single pitches can be
seen. Grating period is 1.5� , height of pitch is 0.2� . Considering grating equation
(2.2) we obtain angles -60°, -11.5° and 27.9° for m=0,1,2. These three maxima
are designated by the broken lines.

2.3 Waveguide modes

As mentioned in the introduction, integrated optics and waveguidesare currently
being used worldwide and provide us very fast communication. To show that
behind the data transfer via waveguides is something more than lightbulb ick-
ering, we examine here eigenmodes of a plane symmetrical waveguide.

We consider here the symmetrical plane waveguide which is made of material
parameters"1, � 1 and thicknessd. Waveguide lies inyz-plane and is perpendic-
ular to x-axis. Surrounding of the waveguide is characterized by parameters "2

and � 2. In next paragraph, we look for even transverse magnetic (TM) modes
(Ex , Hy, Ez), which are propagating along thez-axis.

Maxwell's equations (1.5) together with assumption that the electromagnetic
�eld is harmonic inside the waveguide and exponentially attenuated outside lead
to following formulae [30, 31]:

E (1)
x =

�
!" 1

Ae cos (�x ) E (2)
x =

�
!" 2

Ae cos (�d )e�  (jx j� d) ; (2.3a)

H (1)
y = Ae cos (�x ) H (2)

y = Ae cos (�d )e�  (jx j� d) ; (2.3b)

E (1)
z = i

�
!" 1

Ae sin (�x ) E (2)
z = i

x
jxj

�
!" 2

Ae cos (�d )e�  (jx j� d) ; (2.3c)
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where Ae is an amplitude, ! is an angular frequency,� =
p

! 2"1� 1 � � 2,  =p
� 2 � ! 2"2� 2 and � = N !

c = kz is a propagation constant of the guided wave.
E�ective refractive index is given by N = n1 sin� , where � is the incident angle
under which the light impacts waveguide interfaces. Furthermore,if we assume
that the tangential �eld components Ex and Hy must be continuous at the inter-
faces (i.e. H (1)

y (� d) = H (2)
y (� d) and E (1)

z (� d) = E (2)
z (� d)), we obtain so-called

characteristic equationfor TM modes in symmetrical waveguide

tan �d =
"1

"2


�

for even modes; (2.4a)

tan �d = �
"2

"1

�


for odd modes: (2.4b)

These equations must be considered when waveguides are designed. Analytical
solution is not available, therefore we solve it numerically. Equations (2.4a) are
plotted in Fig. 2.5 for di�erent wavelengths propagating in the same waveguide
of thicknessd. Intersections designated by dots mark all correct solutions. For
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Figure 2.5: Graphical solution of characteristic equation for TM modes in sym-
metrical waveguide (Eq. (2.4a)) made of silicon (n1 =

p
"1 = 3:47). Red (blue)

lines designate even (odd) modes. Intersections with black tangents are the so-
lutions. For � � 6:65d, we have one solution and the waveguide is single-mode.
For 6:65d � � � 3:32d, we get one even and one odd guided mode. For better
readability the negative part of the �gure is stretched more than the positive
part.
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wavelengths greater than� = 6:65d we have only one available solution, which
means the waveguide allows propagation of only one mode | it is single-mode
waveguide. Theoretically, the waveguide can guide light of any arbitrarily small
frequency. We say, the cut-o� frequency is zero. If we decrease wavelength
(increase frequency), we will obtain more solutions and the waveguide is called
multi-mode.

We choose� = 3:33d. According to characteristic equation (2.4a) we get one
even and one odd mode. Since we know�d from numerical solution, we can
compute spatial distribution of Ex , Hy and Ez from Eq. (2.3a)( 1) . The �eld com-
ponents are depicted in Fig. (2.6).

(a) Ex , even mode. (b) H y , even mode. (c) Ez, even mode.

(d) Ex , odd mode. (e) H y , odd mode. (f) Ez, odd mode.

Figure 2.6: Field distribution of even and odd eigenmodes, which can propagate in
planar symmetrical waveguide (TM polarization). The thickness of the waveguide
is d and the wavelength of light is� = 3:33d. No other modes can propagate under
considered conditions.

Implementing eigenmodes to FDTD simulation is quite similar as exciting the
Gaussian pulse in previous case. We have to de�ne thicknessd, wavelength � ,
and using Eq. (2.3a) we excite the eigenmode to the Yee grid. We will discuss this
issue later in Chap.4, where we will investigate behaviour of the holey waveguide.

Similar analytical description, as partially expressed here, is also possible for
asymmetric plane waveguides (very similar), optical �bres with radial symmetry
(Bessel functions), hollow metallic waveguides, and some other special cases. In
Sec.4.3 we will design silicon rectangular waveguide on SiO2 wafer. Unfortu-

1When solving characteristic equation (2.4a), we do not look for � but for e�ective refractive
index N . When we know N , we can express� as well as very easily.
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nately, for dielectric waveguides of rectangular cross section anyexact analytic
solution does not exist [32] and approximation techniques must be used [33].

2.4 3D di�raction

We do not want to settle only with at two dimensional cases but also move for-
ward to the more realistic third dimension. One of the simplest three dimensional
structures is certainly light di�raction on a circular aperture.

Figure 2.7: Time-integrated inten-
sity of a plane wave which prop-
agates in x-direction and di�racts
on a metallic plate with the cir-
cular aperture. Diameter of the
aperture is d = 8� . Points per
wavelengthN � =10, grid dimensions:
300� 200� 200.

We consider a plane wave which impacts metallic plate with the circular aper-
ture. Time-integrated intensity of such simulation is depicted in Fig.2.7. Cross-
section of electric �eld is shown in Fig.2.8.

Analytical solution which describes the near-�eld could be hardly expressed.
Using some approximations, we can compute di�racted angle maxima for the far-
�eld where the Airy disc could be detected. Since near-to-far-�eldtransformation
is no implemented, we have to use some another approach to describe the near-
�eld right behind the aperture.

The Fresnel di�raction (FD) integral, which is an approximation of Kirchho�-
Fresnel di�raction integral and describes waves in the near �eld, isde�ned as [34]

Figure 2.8: Ey at a distance of 12.6�
behind the circular aperture com-
puted with FDTD. Diameter of the
aperture is d = 8� . Since the po-
larized light was used, slight radial
asymmetry is present. The horizon-
tal cross-sections of the electric �elds
in the middle (Ey(x; 100� y ; 126� z))
obtained from FDTD and FD are
compared in Fig.2.9.
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E(x; y; z) =
z
i�

+ 1ZZ

�1

E(x0; y0; 0)
r 2

eikr dx0dy0; (2.5)

whereE(x0; y0; 0) is the aperture andr =
p

(x � x0)2 + ( y � y0)2 + z2. Analytical
solution of the integral (2.5) is known for few simplest geometries. Therefore, we
will use only numerical description.

Using the Fresnel propagation we can calculate �eldE(x; y; z0), where z0 =
12:6� is the distance from aperture to the shade or detector. Using FDTD we
compute three-dimensional �eld behind the aperture. If we calculate cross-section
at some distancez0, we get two dimensional �eld as Fig.2.8 illustrates. If we
select horizontal cross-section in the middle of this two-dimensional �eld, we will
get one-dimensional dependence of electric �eld upon thex-axis. This result is
compared in the Fig.2.9 with FD.

Small di�erences (max.10%) could be attributed to the small resolution used in
FDTD ( N � =10). Due to such small resolution we get large numerical dispersion,
which leads to inexact results. When using FD (2.5) we do not consider polarized
light, which is used in FDTD. Involving all these aspects we can say, weachieved
reasonable agreement between FDTD and FD.
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Figure 2.9: Comparison of results from FDTD simulation and Fresnel di�raction.
Figure compares the cross-sections of the electric �eld pro�les ata distance of
12.6� behind the circular aperture. The inset demonstrates the result of subtrac-
tion, i.e. FDTD-FD.
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3. Photonic crystals
With respect to the motivation of this thesis we focus on following structures,
which might be interesting for biosensing applications. In this chapter we propose
two-dimensional photonic crystals for enhanced sensitivity of biosensing devices.
In the next chapter we will continue even to three-dimensional simulation of pho-
tonic structure known as holey waveguide.

The photonic nanostructures we propose here are designed for enhanced sen-
sitivity of biosensing devices. These structures are usually made ofsilicon on
insulator bu�er (SiO 2) with refractive indices nSi = 3:47 and nSiO2 = 1:44. We
tune these structures at� = 1550nm due to waveguide compatibility( 1) . The
main features of investigated structures are the signi�cant changes in optical
response upon the presence of investigated medium. We can detect either the
position band of the gap edge (cut-o� wavelength) or position of some resonant
peak inside the band gap. Figure3.1 shows dispersion relations of a PhC with
hexagonal lattice. As can be seen, even small variation of refractive index sig-
ni�cantly changes optical band structure. More theory about resonant peaks is
described in Sec.4.1.
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Figure 3.1: Dispersion relations of a
two-dimensional hexagonal PhC (TEz

polarization). Band gap is clearly
visible here. As refractive index of
applied medium changes, signi�cant
shift of the band gap edge could be de-
tected. The bigger shift of the edge is
detected, the better sensitivity (shift
of the edge in nanometres per refrac-
tive index unit) we get. The y-axes
represents energy (i.e. frequency) and
not wavelength as in Fig.1.10. There-
fore, the continuum of bands appears
at the top and not at the bottom. Let-
ters �, K and M represent di�erent
points in the �rst Brillouin zone.

Two main properties we analyse here are the sensitivityS and quality Q.
The sensitivity is measured in nanometres per refractive index unit (nm/RIU).

It tells us, how many nanometres will the peak position or band gap edge shift if
the refractive index of investigated medium will change by one. In this and next

1It means that edge of band gap or resonant peak is at position about 1550nm.
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chapter we compute sensitivity from two spectra when refractiveindex of sensed
medium is 1.3 and 1.35.

The peak quality, or just Q-factor, represents the width of a resonant peak.
The greaterQ is, the narrower peak we detect. TheQ-factor of a peak at position
� 0 as de�ned as

Q =
� 0

FWHM
; (3.1)

where FWHM is full width at half maximum. An equivalent statement is that a
resonator can performQ oscillations before its energy decreases down toe� 2� �
0:2% of its original value.

Here we computeQ-factor of the resonant peak when refractive index of in-
vestigated medium is set tonM = 1:3.

In the following, we perform studies mostly on two-dimensional structures
which lie in xy plane. We classify here two modes, TEz and TMz. Transverse
electric contains Ex , Ey, Hz �eld components (p-polarization) and transverse
magnetic Hx , Hy and Ez �eld components (s-polarization). Since Maxwell's
equations are decoupled for these two polarizations, we can investigate them
independently. Please note here that modes TEz (TM z) de�ned above in terms
of the 2D plane normal correspond to the conventional TM (TE) modes respec-
tively. These were de�ned in Sec.2.3 with respect to the propagation direction
along a common waveguide.

3.1 Hexagonal photonic crystal

The �rst structure is based on a hexagonal PhC waveguide where the middle row
of holes is omitted to create the waveguide (so called W1-type PhC).The geom-
etry is depicted in Fig. 3.2. The lattice constant isa and diameter of cylindrical
holes isd1 = 0:65a. The crystal consists of 17 times 18 holes, which can be �lled

Figure 3.2: Geometry of hexagonal PhC. The lattice constant isa and hole di-
ameterd1 = 0:65a. Additional holes shifted ofa=2 are added into the middle row
to increase the sensitivity. Diameter of these holes isd2 = 0:76a. The crystal
consists of 17� 18 holes. The polarization of incident light is TEz and pulse is ex-
cited in the waveguide. Detector which detects transmitted light is placed inside
the output waveguide.
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Figure 3.3: Transmission spectrum of hexagonal PhC with additionalholes/rings
added into the middle row to increase sensitivity. The sensitivity of original
structure (empty middle row) was 120nm/RIU.

with a variable medium. The basic idea and parameters were taken from [35].
Good agreement of transmission spectra was achieved when same structure was
simulated.

Nevertheless, to increase sensitivity we added additional holes shifted of a=2
with diameter d2 = 0:76a into the waveguide. The original sensitivity (when
no holes were in the middle row) was 120nm/RIU and here we obtainS =
400nm/RIU.

If we suppose a bit more modi�ed structure with rings (inner diameter d3 =
0:32a) instead of holes in the middle row, we will getS = 445nm/RIU. But rings
with inner diameter 125nm are de�nitely much more harder to fabricate than
holes.

To obtain transmission spectrum as Fig.3.3 shows, TEz polarization is used.
The resolution of Yee grid is high enough to obtain results with good quality.
The lattice constant a consists of 37 points, i.e.a = 37� x . The diameter of holes
is therefore represented by 24 grid points. Resolution inx and y direction is the
same, � x = � y .

The last �gure here, Fig. 3.4, demonstrates the spatial electric �eld intensity
decomposition for broadband incident pulse. It can be seen, that some energy
of pulse is dissipated in the crystal (it corresponds to wavelengthswhich are in
the band gap) but lot of energy is transmitted through the crystal to the output
waveguide. Figure also shows that the �eld is localized in holes �lled with sensed
medium, which enhances the sensitivity. When no holes were added in the middle
row, the light did not interact with the medium intensively and the sensitivity on
RI changes decreased.

If we want to examine a resonant peak instead of the band gap edge, we will
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Figure 3.4: Spatial decomposition of electric �eld intensity. The �eld islocalized
in holes containing sensed medium and hence very high sensitivity on RIchanges
is observed.

create a resonant cavity inside the crystal. The simplest one can becreated by
removing one hole from the middle row. After that, the resonant peak should
appear inside the band gap.

3.2 Chirped photonic crystal

To create an optical analogue of the well known and widely used electronic diode,
the chirped photonic crystal was proposed [36]. Here, the violation of periodicity
is used to create an asymmetrical light propagation. Due to unique crystal geom-
etry, the intensity distribution on the output of the crystal is highly dependent
on the direction of light propagation. Such structure can be used inall-optical
computers as a diode. Furthermore, this chirped PhC also behavesas biosensor
with a very good sensitivity.

The geometry of PhC with violated periodicity is depicted in Fig.3.5. As
�gure shows, this is an inverted structure. Instead of holes we use dielectric rods
here. The sensed medium is applied on the chip and ows between columns. The
lattice constant a is preserved in direction perpendicular to light propagation but
changes in the parallel direction. Distance between rows is linearly increasing
from 0:5a to 3a. The crystal consists of 11� 10 columns. Since the structure is

Figure 3.5: Geometry of the inverted chirped PhC. Instead of holeswe use di-
electric rods here and sensed medium ows between them. The distance between
rows linearly increases from 0:5a to 3a, radius of holes is constantr = 0:3a.
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Figure 3.6: Transmission spectrum of chirped PhC as depicted in Fig.3.5. As
insets indicate, di�erent peaks exhibit di�erent sensitivity.

inverted, TMz polarization is used to observe band gap( 2) . Resolution of the grid
is the same as in previous structure,a = 37� x .

Transmission spectrum of the inverted chirped PhC is displayed in Fig.3.6.
Due to violated periodicity, many resonant peaks appear in the bandgap, which
is more or less conserved. As �gure and insets indicate, di�erent peaks exhibit
di�erent sensitivity. Really high sensitivity ( S = 820nm/RIU) is achieved in the
case of one resonant peak. This high value again corresponds to very good light
con�nement as illustrated in Fig. 3.7.

The only fault here are very smallQ-factors. Although peak position changes
rapidly when compound with di�erent refractive index is applied, we willnot be
able to recognize peak position precisely since the spectral line is toobroad. The
sensitivity is therefore not so high as we calculated here. TheQ-factor could be
probably improved by increasing number of periods.

Instead of improving this crystal we are going to analyse much simpler struc-
ture with comparable properties in the following chapter.

Figure 3.7: Electric �eld intensity in chirped PhC.
Due to very good light con�nement high sensitivity
is achieved.

2TE z-polarized light is concentrated in low-" regions, whereas TMz -polarized in high-" re-
gions. Due to low concentration factors of TEz �eld components in dielectric rods we observe
absence of the band gap. See [1] for further information.
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4. Holey waveguide
Complex structures like PhCs described in the previous chapter canexhibit many
phenomenal properties like bandgaps, narrow resonant peaks, asymmetrical light
propagation or even nonlinear behaviour. These complicated structures are not
usually easy to fabricate | and we are even not talking about three-dimensional
PhCs which, more or less, still resist to our sophisticated fabrication methods.

In this chapter we propose quite simple and small photonic nanostructure,
which is very easy to fabricate, very easy to implement into complex photonic
chips, and as a biosensor exhibits comparable properties as advanced PhCs. This
structure is based on a system presented in [37].

We take a simple dielectric waveguide and perforate it with periodic sequence
of holes. The index-guided modes propagate along the waveguide without any
losses, but the important photonic band gap appears in the transmission spectrum
because of a defect in this periodic structure. This is done by separating two holes
a bit more that others.

The very important thing is that we separate two holes a bit more. Inthis
way we create a defect in the periodic sequence. As we will see, this defect will
be responsible for resonant modes with the frequency inside the band gap.

4.1 One-dimensional case

Before we present our results of three-dimensional model it is useful to take look
at a structure analogical to holey waveguide in one-dimension. Although we can
obtain exact solution from 1D-FDTD we solve this simple structure viatransfer
matrix method.

The refractive index pro�le (Fig. 4.1) represents the cross-section of the holey
waveguide along the propagation axis (x-axis in Fig. 4.18). Except of di�erent
medium in half-space of incidence and transmittance there is one very important
di�erence to note. In the middle, there is a defect which violate the periodici-
ty. This defect is responsible for a very important phenomenon called resonant
modes.

nM

3.47

 0  1  2  3  4  5  6 z/a

n

a d 2r

Figure 4.1: Refractive index
pro�le of one-dimensional ho-
ley waveguide. Periodicitya,
defect spacingd and \hole ra-
dius" r are de�ned in the �g-
ure. Refractive index of inves-
tigated medium isnM .

4.1.1 Resonant modes

The periodicity of PhC induces its band structure. No modes are allowed to have
their frequencies within the band gaps. But what happens when lightwith band
gap frequency impacts the face of the periodic structure?
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The situation is very similar to total reection. The light is exponentially
attenuated in the structure and is called an evanescent mode. Since all real
wavevectors were used to construct dispersion relations, the wavevector K must
be therefore complex (see (1.36)) and �eld is exponentially attenuated below the
surface.

But if the evanescent mode is compatible with the structure and symmetry
of a given crystal defect, it will propagate throughout the structure similarly to
the electron tunnelling through potential barrier. The transmission of such mode
can be very high, up toT = 1.

If we had an in�nite PhC and we excited the resonant mode (eigenmode) right
inside the defect, inside a resonant cavity, it could not propagate anywhere. We
call it as localized mode. If the crystal was really in�nite and no dispersion was
present, the localized mode would stay inside the cavity forever | it would have
an in�nite lifetime and in transmission spectrum would be� -function.

However, we are still not able to fabricate any in�nite structures and disper-
sion more or less occurs everywhere due to absorption, scattering centres and
inhomogeneities. Instead of� -function we therefore detect broadened Lorentzian
peaks at � 0. The width of peaks is represented byQ-factor (3.1) as de�ned in
Chap. 3.

4.1.2 Transmission spectra
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Figure 4.2: Transmission of 1D ho-
ley waveguide | PhC with defect.
Defect spacingd = 0:76a, r = 0:36a.

Due to the crystal defect we expect detec-
tion of resonant peak, which is supposed to
be inside the band gap. In the following,
we are going to investigate behaviour of the
1D holey waveguide | simple PhC, where
a is constant andd changes,nM = 1. The
�nal result is illustrated in Fig. 4.6. To un-
derstand it properly, we describe it step by
step.

We set r = 0:36a, hence d > 0:72a,
angle of incidence is zero. Simple trans-
mission ford = 0:76a shows Fig.4.2. Res-
onant peak is clearly visible in the middle
of band gap. Let's move on and investigate dependence of peak position upon
d. Several transmission spectra for di�erentd are shown in Fig.4.3. As �gure
shows, the peaks move to the right (lower energies) with increasingd. Until peak
disappears on the right, new peak separates from the left, travel to the right and
so on.

Full dependence of transmission spectra on defect spacingd is depicted in
Fig. 4.4. The transmission spectra are plotted horizontally, one on the other. If
d is small, only one resonant peak appears in the band gap. We may call itas
the �rst peak. As d increases, the second peak separates from the left and so
on. The biggerd is, the steeper lines signifying resonant peaks are. For very
high d we would obtain many resonant peaks in the band gap. This example is
demonstrated in Fig.4.5, whered = 2:5a. If d = a and thus no defect is present
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in the structure, no clear resonant peak is inside the band gap. Furthermore, we
can see that the resonant peaks are the narrowest for� � 3:1a | somewhere
around the �rst third of their travel throughout the band gap.
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Figure 4.3: Several transmission spectra for di�erent defect spacing d. When d
increases, the resonant peak moves to the right. Until it disappears, new peak
separates from the left and starts its travel throughout the band gap.

Figure 4.4: Set of transmission spectra in rows for various defect spacings d.
Travels of resonant peaks throughout the band gap can be easily read from this
�gure. If d is small, just one resonant peak is inside the band gap. Ifd is large,
many peaks appear in the band gap. Note, that any clear resonantpeak appears
in the band gap whend = a. In this situation no defect is present in the periodic
structure.
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Figure 4.5: Transmission spectrum
for d = 2:5a. Four resonant peaks
are inside the band gap.
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4.1.3 Resonant modes analysis

We �nally come to the desired Fig.4.6 which shows properties (sensitivity and
Q-factor) of individual peaks upon parameterd. We can call it d-spectrum. In
the interval d 2 (0:72; 1)a are properties of the �rst peak, in intervald 2 (1; 1:9)a
are properties of the second peak and so on. Since there are fourresonant peaks
in the band gap ford = 2:5 (see Fig.4.5), more blue and red lines representing
sensitivity and quality are in Fig. 4.6 for d = 2:5. The results in Fig. 4.4 and
Fig. 4.6 do not correspond precisely. This is because Figs.4.3{ 4.5 are calculated
for nM = 1 and Fig. 4.6 for nM = 1:3.

As the Fig. 4.6 with resonant peak properties shows, the best sensitivity is
obtained whend � 0:72a, or when d is slightly bigger than a. Unfortunately,
the Q-factors of the peaks are quite small at these defect spacings, hence the
actual sensitivity to refractive index changes is small as well. We cansay, that
for d � 1; 2 we can get good sensitivity as well as highQ-factor.
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Figure 4.6: Properties of several resonant peaks. In intervald 2 (0:72; 1)a are
properties of the �rst peak, in interval d 2 (1; 1:9)a are properties of the second
peak and so on. Sensitivity is the highest when peak "appears" in theleft side
of band gap, butQ-factor is the worst at the same time. Blue lines, which rep-
resentQ-factors, are a bit noisy due to resolution of corresponding transmission
spectrum from which theQ-factor was estimated.
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One can see that some parts ofQ-factor curves ind-spectrum are a bit noisy.
It happens when theQ-factor is very high and not good enough resolution of
transmission spectrum is used to estimateQ-factor.

4.1.4 Di�erent number of holes in supercell

In previous paragraphs we assumed structure with two blocks (wecall them
supercells) separated by the defect spacing. Each supercell consisted of three
\holes". We can mark this structure as 2� 3. This nomenclature is used also in
the next section, Sec.4.2.

The next �gure here, Fig. 4.7, demonstrates how is theQ-factor of resonant
peak increasing when crystal consist of two supercells but di�erent number of
\holes". The dependence is clearly exponential.
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Figure 4.7: Exponential dependence
of resonant peak quality on the num-
ber of \holes". When real structure
is supposed, the dependence will not
be exponential but saturates atQr

(see equation (4.1)). Defect spacing is
d = 1:4a and \hole" radius r = 0:36a.

The high quality corresponds to long lifetimeQ( 1) of light which is trapped
inside the defect. In real structures we unfortunately do not obtain so nice expo-
nential dependence. The lifetimeQ includes two di�erent decay channels. The
light decays from the cavity into the crystal with lifetime Qc. Except of that,
it also radiates outside the crystal sample (i.e., to the surrounding medium, to
the substrate when 2D photonic crystal is assumed, outside the waveguide, etc.)
with lifetime Qr . Therefore we get [16]

1
Q

=
1

Qc
+

1
Qr

: (4.1)

When Qc ! + 1 , the Q saturates atQr . Due to inhomogeneities and �nite size
of samples we cannot actually achieve in�nite lifetime, we cannot stopthe light
in the cavity and we cannot detect� -function in transmission spectrum.

The last thing we investigate here is the dependence of the transmission spec-
trum on the refractive index nM . We described sensitivity of several peaks in
previous paragraphs and visualized it in Fig.4.6. Here we investigate a behaviour
of only one peak, the second one, ford = 1:4a. The result is depicted in Fig.4.8.
Transmission spectra are plotted horizontally, one on the other, similarly as in

1From Fourier trasform it is clear that with higher Q-factor the lifetime of resonant mode is
longer. Therefore, let us mark theQ-factor and corresponding lifetime with the same letterQ.

49



Fig. 4.4. If nM = 1, the peak position is about 4:1a. As the refractive index in
\holes" changes, the peak moves to the right. As �gure shows, the Q-factor of
the peak decreases for highernM . If nM = 3:47, the transmission must be exactly
one because the crystal becomes a homogeneous medium.

To conclude our e�orts so far, we will bring our focus to the regiond 2 (1; 1:6)a
when simulating higher dimensional structures, since we expect onlyone resonant
peak in band gap and high sensitivity. TheQ-factor might be probably increased
by adding additional holes.

Figure 4.8: Transmission spectrum as a function of the refractive index nM . De-
fect spacing isd = 1:4. The behaviour of the second peak is depicted here. In
accordance with Fig.4.4, the peak position is about 4.1a for nM = 1. The trans-
mission is one for all wavelengths whennM = 3:47, because crystal transforms to
homogeneous medium.

4.2 Two-dimensional case

We have done quite a lot of studies on one-dimensional system and now is good
time to do a step forward to the second dimension. Before we will investigate
complex three-dimensional structure, we compute parameters of 2D model with
the hope of determining main physical properties.

The geometry of our model is depicted in Fig.4.9. Since the 2D case is
assumed, we do not model any SiO2 bu�er and we set in�nite height of waveguide,
h ! 1 . In contrast to 1D system, where normal incidence was modelled, we have
to choose particular polarization of the incident light. To observe band gap and
resonant peaks we choose TEz polarization here (Ex , Ey , Hz).

The transmission spectrum of this 2D holey waveguide is very similar totrans-
mission spectrum obtained from TMM, Fig.4.2. These spectra together with 3D
case are compared in detail in the next section, Sec.4.3. We focus to enhance-
ment of parameters like sensitivity andQ-factor via geometry modi�cations now.
The goal is obvious | �nd d, r and number of holes which maximize bothS and
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Q. The resolution is set asa = 50� x .

Figure 4.9: This picture illus-
trates 3D model, where the
silicon waveguide of heighth
is placed on SiO2 bu�er. Here
we suppose only 2D waveg-
uide in vacuum or sensed
medium. De�nition of peri-
od a, defect spacingd = 1:4a
and hole radiusr = 0:36a re-
main unchanged and width is
de�ned as w = 1:2a.

4.2.1 Even and odd eigenmodes

Before we start with structure modi�cations, we take a look at eigenmodes prop-
agating through the waveguide. The theory of eigenmodes in planarsymmetric
waveguide was briey mentioned in Sec.2.3 and hence we know how to excite
particular mode into the waveguide in FDTD. We used broadband pulse(sinus
modulated with Gaussian pro�le, � = 4a) to obtain wide transmission spectrum.
Since the parameters (polarization and ratio wavelength/thickness) of waveguide
and incident light are de�ned as before, we know that only two modes(even
and odd) can propagate through the waveguide. See Fig.2.6, where the �eld
distribution of these modes is depicted.

The comparison of optical response of the even and odd mode is illustrated
in Fig. 4.10. Figure 4.10adepicts magnetic light intensities integrated over very
long time (till stored energy in the defect becomes negligible,t = 105� t ), whereas
Fig. 4.10bcompares transmission spectra,nM = 1:3.

(a) Magnetic light intensity integrated over
very long time. Top: even mode, bottom: odd
mode.
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(b) Transmission spectra of
even and odd mode propagating
through the holey waveguide.

Figure 4.10: Even mode has much of its power concentrated inside the holes but
�eld of odd mode is distributed in the surrounding dielectric. This factexplains
the big di�erence in the transmission spectra. The resonant peak at � � 4:3a
in (b) corresponds to the trapped light inside the defect which mightbe clearly
visible in (a), top.
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The spectrum obtained for even mode exhibit very nice and broad band gap
with a resonant peak in the middle. No resonance nor the band gap is visible
when odd mode propagates through the waveguide. Therefore, all further simu-
lations we excite the �rst even mode to the grid.

4.2.2 Q-factor determination

Since we use time domain simulation, determination of high-quality peaks might
be not as easy as with TMM. If the resonant peak is very narrow, the light is
trapped in the cavity for a very long time and radiation to surrounding is very
slow. To determineQ-factor of such resonant peak exactly, we would have to
integrate Maxwell's equation over very long time. Therefore, we usehere slightly
di�erent and more accurate way to computeQ-factor [37]:

Q =
!E
P

= �
!E

dE=dt
) E � exp

�
�

!
Q

(t � tD )
�

; (4.2)

whereE is stored energy,! is the resonant frequency,P = � dE=dt is the dissi-
pated power andtD is the time when exponential decay of stored energy starts.
In FDTD it means, we compute the stored energy in every time step and in post-
process we �t the data with the exponential function. The result isshown in
Fig. 4.11. The �rst part corresponds to the light pulse excitation, reection and
dispersion. When the light is scattered and only resonant mode remains in the
defect cavity, slow exponential decay of stored energy is started. The last part
of decay corresponds to non-physical processes | the numerical errors caused by
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Figure 4.11: Exponential decay of energy trapped in the defect. After the ex-
citation, which corresponds to the �rst part, the resonant modestarts its slow
exponential decay. Last part corresponds to numerical errors. Computed Q-
factors areQmax = (131:4 � 0:1) and Qmin = (131:3 � 0:2).
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Figure 4.12: Transmission spectrum
of holey waveguide. Resonant peak in
the middle of band gap has Lorentzian
shape. Using the �t we can calculate
Q-factor asQRP = (125 � 1).

non-zero reectance of PML boundaries, round-of error and others. With respect
to the logarithmic scale, these errors might be con�dently neglected.

Part of transmission spectrum containing focused to resonant peak is in the
Fig. 4.12. According to the theory [1], the pro�le of the peak is Lorentzian. By
�tting computed data we can estimateQ-factor asQRP = (125� 1). The Q-factor
obtained from energy decay isQED = (131:4 � 0:1). These two values are very
close. SinceQRP is computed from transmission spectrum, which is obtained via
Fourier transform which requires integration over time from zero to in�nity, we
may expect QRP � QED , which is true. If we do the same procedure for more
narrow peaks, we will get bigger and bigger di�erence.

The observation the process of energy decay as shown in Fig.4.11 is useful
even for other purposes than estimation ofQ-factor. If we zoom to short time
period, we will see oscillations of the energy stored in the defect (asthe inset in
Fig. 4.11shows). The period of oscillations is 152�t . Using the relation � = cT
we get the wavelength of oscillating mode� = 4:31a, which exactly corresponds
to the position of resonant peak in transmission spectrum, Fig.4.10b. Why is
it useful? If there are more resonant modes, we will apply Fourier transform to
oscillations in energy decay and calculate wavelengths of oscillating modes even
without calculating transmission spectrum! This might be very useful when high-
Q mode with unknown resonant frequency is present. The determination of the
position of such high-Q peak using only transmission spectrum might be very
di�cult and tedious.

We use the de�nition of Q-factor (4.2) to determine exponential dependence
as investigated before (Fig.4.7). Parameters liked or r remain unchanged but
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Figure 4.13: Dependence ofQ-factor
upon the number of holes in one of
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then Q-factor saturates at value about
1100.
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number of holes in each of two supercells is changed. The clear exponential func-
tion is not present here. Instead, as can be seen in Fig.4.13, the formula (4.1)
describes this behaviour better. TheQ-factor saturates around valueQr � 1150
due to the leakage of radiation to surrounding medium. Therefore,Q-factor can-
not be increased by adding more and more holes keeping only two supercells.

4.2.3 Geometry modi�cations

In the following, we considerd = 1:1a, r = 0:36a and three supercells each of
three holes, 3� 3 | unless otherwise stated.

First of all, we estimate what happens withS andQ when the spacing between
holes a and radius r are changed( 2) . The changes are illustrated in Figs.4.14.
As Fig. 4.14ashows, even higher sensitivity than 600nm/RIU might be obtained.
Unfortunately, the Q-factor as well as clearance of the resonant peak rather de-
creases with growingr . Considering these two �gures (Figs.4.14a, 4.14b) we
decided to keepa = a0 and r = 0:36a0.
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Figure 4.14: Dependences of the sensitivity andQ-factor on period a and hole
radius r are changed. Even higher sensitivity than 600nm/RIU can be achieved
unless we are not too interested in highQ-factor. Note that each point in (a) was
obtained by running two simulations (two di�erent RIs).

The next step is to observe what happens if the spacing between supercells,
i.e. defect spacingd, varies. Comparison ofS, Q and transmission spectra is
illustrated in Fig. 4.15. Here it is worth to compare the properties of the second
peak in Fig.4.6with properties shown in Fig.4.15a. Although the geometries vary
quite a lot and totally di�erent approaches were used to obtain this behaviour,
the dependences ofS and Q upon d are very similar. Here we decided to set
defect spacing asd = 1:1a.

The very useful feature for biosensor is linear dependence of resonant peak
position upon the refractive index of sensed mediumnM (that also means constant
sensitivity). Many peaks for varying RI are shown in Fig.4.16b. Obviously, the
peak is being wider and wider when RI increases since there is lower contrast

2In this part we denote a0 as the main, unchanged parameter (i.e.,d = 1 :1a0, w = 1 :2a0,
r = 0 :36a0) and a as the spacing between holes in supercell.
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Figure 4.15: Pro�les of sensitivity andQ-factor in (a) are nearly the same as in
one-dimensional case (see Fig.4.6). The resonant peak pro�les are compared in
(b). Two resonant peaks appear for higherd. Considering these both �gures we
chosed = 1:1a for further simulations.

between refractive index of silicon and sensed medium. Almost perfect linear
function is displayed in Fig.4.16a.

The last parameters we change here, in two dimensional holey waveguide,
are the number of supercells and number of holes in each of them. The results
are shown in Figs.4.17. It is obvious that Q-factor grows when more holes are
perforated into the waveguide. The other notable thing is that sensitivity is not
growing with more holes, but saturates about 500nm/RIU. Therefore, adding
more holes is useful only if higherQ-factor has to be obtained.

Nevertheless, with increasing number of supercells the number of resonant
peaks in the band gap increases as well. This fact is also demonstrated in Tab. 4.1,
where columns indicate number of supercells and rows number of holes in each
supercell. For simplest determination of the peak position is the bestonly one
resonant peak.
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Figure 4.16: These �gures demonstrate linearity of resonant peakposition up-
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biosensing.
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Figure 4.17: Dependence ofS and Q upon the number of holes. As can be
seen,Q-factor increases with number of holes, whereas sensitivity saturates at
� 500nm/RIU. Figure on the right compares transmission spectra ofwaveguide
with ten supercells with three holes for two di�erent refractive indices. Five
resonant peaks are present. TheQ-factor was computed from the narrowest peak
using de�nition ( 3.1).

HnS 2 3 4 5 6 7 8 9 10 12 15 17 20
2 1 1 1 1 2 2 2.5 3 3 4 5 6 8
3 1 1 1.5 2 3 3 4 4 5 6 8 9 11
4 1 1 2 3 4 4 4 5 5 6
5 1

Table 4.1: Number of resonant peaks in the band gap for di�erent number of
supercells and holes. Columns indicate number of supercells and rowsnumber
of holes in each supercell. For instance, eleven peaks will be in the band gap, if
twenty supercells of 3 holes (together 20� 3 = 60 holes) are in the waveguide.
The non-integer numbers indicate, there is one additional peak withcertain ra-
tio. The empty cell means that no simulation was done for these parameters or
transmittance was too small.
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4.3 Three-dimensional case

In this section we compare results of alln-dimensional cases (n=1,2,3) and inves-
tigate behaviour of 3D silicon holey waveguide situated in the air and ona SiO2

bu�er. At the end we simulate how fabrication deviations can a�ect physical
properties of the modelled structure.

Analogically as before, we set widthw = 1:2a, height h = w, defect spacing
d = 1:4a, hole radiusr = 0:36a, refractive index of silicon waveguidenSi = 3:47
and SiO2 bu�er nSiO2 = 1:44. The even TEz mode is excited in theyz-plane for
x = 8� x and the transmitted light is detected in the middle point in the end of
the waveguide( 3) .

Figure 4.18: The �gure shows
relative permittivity of silicon
holey waveguide situated on
the SiO2 bu�er. The reso-
lution of Yee grid is set to
a = 19� x and holes are there-
fore represented by 14 cells.
Note that edges have di�erent
colour due to sub-cell averag-
ing.

4.3.1 Comparison of 1D, 2D and 3D results

Since the calculation of the band gap and peak position were actually done, we
may start with the transmission spectrum. The four spectra are compared in
Fig. 4.19. The �rst one is obtained from the TMM where normal incidence on
the layered structure (Fig.4.1) is assumed. The second spectrum is assigned to
2D-FDTD and the third and fourth to 3D-FDTD where the waveguideis situated
in the air (or sensed medium) and on the SiO2 bu�er, respectively.

The spectra are more or less very similar. As might be expected, theband gap
is the narrowest for 3D case and the widest for 1D case since the periodicity is the
most ideal in 1D structure. Due to the same reason, evenQ-factor of resonant
peak decreases with complexity of the geometry. Since the positionof the peak is
highly sensitive on defect spacing, we attribute varying position of the resonant
peak mainly to the not ideal resolution of the grid in FDTD.

Figure 4.20 compares transmission spectra of 3D holey waveguide on SiO2

bu�er for several di�erent heights. Position of resonant peak slightly varies, but
main physical properties of the structure remain more or less unchanged. Peaks
are not very high because simulations were not computed for su�ciently long
time and lots of energy remained trapped in the defect.

3The light was also detected in the whole waveguide cross-section andvery similar results
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(nM = 1).

 0

 0.05

 0.1

 0.15

 0.2

 3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9  4

tr
an

sm
is

si
on

l /a

0.4w

0.6w

0.8w

1.0w

1.2w

1.4w

1.6w

1.8w

2.0w

2.2w

Figure 4.20: Comparison of transmission spectra of 3D holey waveguide on SiO2

bu�er for di�erent heights h when nM = 1. The peak position varies, but other
properties like sensitivity andQ-factor remain unchanged. In our simulations we
set h = w.

With respect to results from lower-dimensional simulations we try todecrease
defect spacing to achieve higher sensitivity. Unfortunately, theQ-factor of reso-
nant peak decreases very fast until it completely disappears. Thedependence of
S and Q is illustrated in Fig. 4.21, where is the d-spectrum compared with TMM
and 2D-FDTD. Very similar behaviour of the physical properties is observed.

Now we compareQ-factor dependence on number of holes in one supercell for
all n-dimensional cases (n = 1; 2; 3). The comparison is showed in Fig.4.22. Very
fast exponential growth can be seen in one-dimensional case. Themore complex
structure is considered, the smallerQ-factor of resonant peak is observed.

were obtained. To decrease large computational time we detectedlight just in one point.
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4.3.2 Fabrication deviation

Although nanotechnology industry is growing in tremendous rate and uses high-
ly sophisticated methods like lithography, 3D printing, ion or electronbeams
and many others, certain deviations from the desired accurate structure are still
present. Therefore, we examine properties of our model with some particular
deviations.

Conical and cylindrical holes

First of all, we compute sensitivity andQ-factor when conical instead of cylindri-
cal holes are perforated into the waveguide. The conical shape ofholes is often
investigated since it is common shape of fabricated holes and it might leads to
decrease or failure of desired physical properties [38].

Here we denoter0 = 0:36a as the top radius andr2 as the bottom radius of
the cone. The sensitivity andQ-factor are in the Fig. 4.23a, the transmission
spectra in the Fig. 4.23b. As �gures show, the smallerr2 is (the more conical
holes are), the smaller values ofS and Q we obtain and the band gap is more and
more violated. Therefore, the fabrication process should be de�nitely focused on
ideal cylindrical hole perforation.

 150

 200

 250

 0.4  0.6 0.7 0.8 0.9  1

 20

 40

 60

 80

 100

 120

se
ns

iti
vi

ty
 [n

m
/R

IU
]

Q
-f

ac
to

r

r2/r0

S

Q

(a) Sensitivity and Q-factor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 3  3.5  4  4.5  5

tr
an

sm
is

si
on

l /a

r2=1.0r0
r2=0.8r0
r2=0.6r0
r2=0.4r0

(b) Transmission spectra.

Figure 4.23: The (a) shows sensitivity andQ-factor when conical holes are
present. Here,r0 is the top radius andr2 is radius at the bottom of the cone. For
r2 < r 0 the higher waveguide should be probably modelled to achieve band gap
and clear resonant peak.

Deviation in the radius and position

It the next step, we consider small deviation in the radius and the position of the
hole. To produce more realistic results, we assumed here also partially conical
holes: r2 = 0:8r0. We denote here hole with letterH and assign it parameters
r0 for radius and x0 for exact position. A deviation from its exact and desired
shape might be de�ned as

H (r; x ) = H [r0(1 + � ); x0(1 + � )]; (4.3)
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where � is a random number lying in interval (� � m ; � m ), which is limited by
maximal deviation � m . The value � m � 100% is therefore maximal percentual
deviation from the right shape. The results are presented in the Tab. 4.2. Ten
simulations were done for� m = 5% and � m = 10% to obtain some reasonable
statistical results. The table also compares parametersS andQ when no deviation
is present and even when holes are perfectly cylindrical.

To summarize the results the Tab.4.2 shows, we can say that the deviation
error up to 5% does not a�ect sensitivity neitherQ-factor too much and the
emphasis should be put especially to the cylindrical shape of holes.

Taking in account that resonant peak is at position� � 4:3a, diameter of holes
is 0:72a, maximum deviation is � m = 5%, we want to observe peak at 1550nm,
we get that sizes of the holes should not di�er more than 13nm.

� m = 0 � m = 0
1 2 3 4 5 6 7 8 9 10 mean r2 = 0 :8r0 r2 = r0

� m = 5%
S 181 210 175 177 205 196 205 145 150 152(180� 24)

S=185 S=221
Q 95 103 96 100 112 87 90 87 84 92 (95 � 9)

� m = 10%
S 150 192 210 183 169 228 134 270 180 111(183� 46)

Q=104 Q=121
Q 67 61 72 85 54 72 66 66 61 83 (69 � 10)

Table 4.2: Comparison of sensitivity andQ-factor when deviation of holes from
accurate position and radius is present with the case when conical and perfectly
cylindrical holes at appropriate position are assumed.
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Conclusion

In attempt to simulate light scattering and propagation through photonic nanos-
tructures the complex three dimensional FDTD code has been written. We have
started with discretization of Maxwell's equations to make them readable for
computers, and after some more manipulations we have obtained so-called up-
date equations which form the core of Yee's algorithm.

Numerous extensions have been added to our code to obtain frequency-de-
pendent transmission spectra, to simulate free space, or to observe plane wave
propagation. The code has been tested using simple model simulations like grid
scattering or di�raction on circular slit, where reasonable agreement with di�erent
numerical or even analytical approaches has been achieved. We have also shown
that using non-constant spatial step (the simplest case of nonorthogonal grid) the
magic time-step might be achieved in one-dimension even if dielectric materials
are considered. That lead us to exact numerical solution up to round-o� errors.

Brief introduction to the transfer matrix method has been provided to com-
pare results with FDTD and to analyse photonic structures more precisely. TMM
has been demonstrated upon the Bragg mirror.

Using our debugged FDTD code we have computed transmission spectra
of W1-type hexagonal PhC and proposed slightly modi�ed geometryfor en-
hanced sensitivity of biosensing devices. The sensitivity has been increased from
120nm/RIU to 400nm/RIU.

We have also found out that chirped PhC, originally proposed as optical diode,
might be used for biosensing, since it exhibits very strong sensitivityon refractive
index changes (S = 820nm/RIU).

Finally, we have shown that even much more simple structure than PhCs,
known as holey waveguide, may exhibit important features like band gap and
resonant modes. We have assumed silicon waveguide situated on theSiO2 bu�er.
Several blocks of holes (called supercells) have been perforated into the waveg-
uide, separated by defect spacing. The internal periodicity of supercells caused
the presence of photonic band gap, whereas violation of periodicitybetween su-
percells induced resonant modes which might be visible in transmission spectrum
as narrow peaks.

Simpli�ed 1D model has provided us very detailed behaviour of resonant
modes upon the size of defect spacing, refractive index of sensedmedium and
also upon the number of layers. Keeping in mind these results, we have modi�ed
geometry parameters of 2D model to achieve high sensitivity andQ-factor. The
highest sensitivity we achieved has beenS � 500nm/RIU and Q-factor Q � 1000.
The most realistic model of holey waveguide has been simulated using 3D-FDTD.
The best properties for biosensing should be obtained when waveguide is not lying
upon any bu�er but is situated in the air like a bridge. When fabricated, sensi-
tivity about 300nm/RIU should be measured andQ-factor about 500 or maybe
even more should be achieved by increasing number of holes in supercells.

In conclusion, the study of simpli�ed one-dimensional model is very useful
to understand the behaviour of main physical properties of the real structure.
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More precise and accurate simulation using three-dimensional model has shown,
that relying only on 1D or even 2D model might lead us to overestimation of
crucial physical properties. According to our simulations, the holey waveguide
may de�nitely compete with more complex PhCs in the biosensing �eld. The
fabrication should be focused on perforating cylindrical and not conical holes,
and the smallest resolution about 13nm should be required.
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List of Abbreviations
ABC Absorbing Boundary Conditions
ADE Auxiliary Di�erential Equation
CFL Courant-Friedrichs-Lewy condition
CPML Convolutional PML
DFT Discrete Fourier transform
EM Electromagnetism
FD Fresnel Di�raction
FDTD Finite Di�erence Time Domain
FWHM Full Width At Half Maximum.
NTFF Near-To-Far-Field transformation
PhC Photonic Crystal
PML Perfectly Matched Layer
PWE Plane Wave Expansion
RI Refractive Index
RIU Refractive Index Unit
QM Quantum Mechanics
SPR Surface Plasmon Resonance
TFSF Total-Field/Scattered-Field
TMM Transfer Matrix Method
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Appendix: Bare-bone FDTD
code
Here is the matlab code of bare-bone FDTD simulation. Gaussian pulseis excited
at node 30 of total 100 and the update equations are integrated over 500 time-
steps afterwards.

1 % Bare-bone FDTD simulation
2 clear all; clc; close all; % clear workspace
3

4 eps0 = 8.854187817e-12; % permittivity of free space
5 mu0 = 4* pi * 1e-7; % permeability of free space
6 c = 1/sqrt(mu0 * eps0); % speed of light
7

8 dx = 10e-9; % 10 nanometers between each two nodes
9 dt = dx/c; % Courant-Friedrichs-Lewy condition

10

11 sizeX = 100; % number of nodes, real size is sizeX * dx
12 Ez = zeros(sizeX,1); % allocate empty array for electric field
13 Hy = zeros(sizeX-1,1); % allocate empty array for magnetic field
14

15 width = 10; % temporal width of Gaussian pulse
16 delay = 5 * width; % temporal delay of Gaussian pulse
17

18 animFig = figure; % open figure for animated output
19

20 maxTime = 500; % number of time-steps
21 for time = 1 : maxTime % time marching loop
22

23 % update magnetic field using update equation
24 for i = 1 : sizeX-1
25 Hy(i) = Hy(i)+(2 * dt/dx)/(2 * mu0)* (Ez(i+1)-Ez(i));
26 end
27

28 % update electric field using update equation
29 for i = 2 : sizeX-1
30 Ez(i) = Ez(i)+(2 * dt/dx)/(2 * eps0) * (Hy(i)-Hy(i-1));
31 end
32

33 % excite Gaussian pulse into the Yee grid at node 30
34 arg = (time-delay)/width;
35 Ez(30) = exp(-arg * arg);
36

37 % plot animation
38 figure(animFig); % activate animation figure
39 plot(Ez); % plot electric field
40 axis([1 sizeX -2 2]); % set limits
41 pause(0.01); % slow down the animation
42

43 end

The printed version of this work is accompanied by a CD, where full FDTD
code is recorded.
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