Hry na grafech ve vztahu k zdvihovým parametrům grafů
Hry na grafech ve vztahu k zdvihovým parametrům grafů
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/30592Identifiers
Study Information System: 49380
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Smrž, Otakar
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Discrete Models and Algorithms
Department
Department of Applied Mathematics
Date of defense
22. 9. 2009
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
V práci se zabýváme variantou tzv. hry na četníky a zloděje s nekonečně rychlým zlodějem a jejími vztahy s ostatními podobnými hrami. Srovnáváme tzv. vrtulníkovou hru charakterizující tree-width, klasickou verzi hry na četníky a zloděje a varianty s různě rychlými zloději. U varianty s nekonečně rychlým zlodějem rozebíráme její složitost a charakterizujeme všechny grafy, kde vyhrává jeden četník. Jako hlavní výsledek ukazujeme polynomiální algoritmus rozhodující hru na intervalových grafech a zodpovídáme tak otevřenou otázku z článku Fomin a kol.: On tractability of Cops and Robbers game, IFIP TCS 2008, 171-185. V důkazu polynomiality rozhodovacího problému zavádíe novou, ekvivalentní pomocnou hru na intervalové reprezentaci grafu, o jejímž rozhodování ukážeme, že je polynomiální. Ekvivalence her je dokázána technikou redukcí herních strategií.
We consider a variant of a cop and robber game with an in nitely fast robber and its relations to other similar games. We compare the helicopter game characterizing tree-width, the classical cop and robber game and its versions with various speeds of the robber. We study the complexity of the in nitely fast robber variant and give an explicit characterization of all the graphs where one cop can win. As the main result, we show a polynomial time algorithm deciding the game on interval graphs. This answers a question from the paper Fomin et al.: On tractability of Cops and Robbers game, IFIP TCS 2008, 171-185. To show the polynomiality of the game on interval graphs, we introduce a new auxiliary game on an interval representation of the graph and show the polynomiality of that game. Then we use game strategy reductions to show the equivalence of the two games.