Show simple item record

Objemy jednotkových koulí Lorentzových prostorů
dc.contributor.advisorVybíral, Jan
dc.creatorDoležalová, Anna
dc.date.accessioned2022-05-26T12:44:15Z
dc.date.available2022-05-26T12:44:15Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/172435
dc.description.abstractThis thesis studies the volume of the unit ball of finite-dimensional Lorentz sequence spaces p,q n . Lorentz spaces are a generalisation of Lebesgue spaces with a quasinorm described by two parameters 0 < p, q ≤ ∞. The volume of the unit ball Bp,q n of a general finite-dimensional Lorentz space was so far an unknown quantity, even though for the Lebesgue spaces it has been well-known for many years. We present the explicit formula for Vol(Bp,∞ n ) and Vol(Bp,1 n ). We also describe the asymptotic behaviour of the n-th root of Vol(Bp,q n ) with respect to the dimension n and show that [Vol(Bp,q n )]1/n ≈ n−1/p for all 0 < p < ∞, 0 < q ≤ ∞. Furthermore, we study the ratio of Vol(Bp,∞ n ) and Vol(Bp n). We conclude by examining the decay of entropy numbers of embeddings of the Lorentz spaces.en_US
dc.description.abstractTato práce se zabývá objemem jednotkové koule v konečnědimenzionálních Lorentzových prosto- rech p,q n . Lorentzovy prostory jsou zobecnění Lebesguových prostorů s kvazinormou popsanou dvěma parametry 0 < p, q ≤ ∞. Pro objem jednotkové koule v konečnědimenzionálním Lorentzově prostoru doposud neexistoval žádný vzorec, přestože pro Lebesguovy prostory je tato formule známá již mnoho let. Předkládáme explicitní vzorec pro Vol(Bp,∞ n ) a Vol(Bp,1 n ). Popisujeme také asymptotické chování n-té odmocniny Vol(Bp,q n ) vzhledem k dimenzi n a dokazujeme, že [Vol(Bp,q n )]1/n ≈ n−1/p pro všechna 0 < p < ∞, 0 < q ≤ ∞. Dále zkoumáme podíl Vol(Bp,∞ n ) a Vol(Bp n). V závěrečné části se věnujeme poklesu čísel entropie pro vnoření Lorentzových prostorů.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectFinite-dimensional bodiesen_US
dc.subjectentropy numbersen_US
dc.subjectinterpolationen_US
dc.subjectvolume estimatesen_US
dc.subjectLorentz spacesen_US
dc.subjectKonečnědimenzionální tělesacs_CZ
dc.subjectčísla entropiecs_CZ
dc.subjectinterpolacecs_CZ
dc.subjectodhady objemůcs_CZ
dc.subjectLorentzovy prostorycs_CZ
dc.titleVolumes of unit balls of Lorentz spacesen_US
dc.typerigorózní prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-04-26
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId247079
dc.title.translatedObjemy jednotkových koulí Lorentzových prostorůcs_CZ
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csTato práce se zabývá objemem jednotkové koule v konečnědimenzionálních Lorentzových prosto- rech p,q n . Lorentzovy prostory jsou zobecnění Lebesguových prostorů s kvazinormou popsanou dvěma parametry 0 < p, q ≤ ∞. Pro objem jednotkové koule v konečnědimenzionálním Lorentzově prostoru doposud neexistoval žádný vzorec, přestože pro Lebesguovy prostory je tato formule známá již mnoho let. Předkládáme explicitní vzorec pro Vol(Bp,∞ n ) a Vol(Bp,1 n ). Popisujeme také asymptotické chování n-té odmocniny Vol(Bp,q n ) vzhledem k dimenzi n a dokazujeme, že [Vol(Bp,q n )]1/n ≈ n−1/p pro všechna 0 < p < ∞, 0 < q ≤ ∞. Dále zkoumáme podíl Vol(Bp,∞ n ) a Vol(Bp n). V závěrečné části se věnujeme poklesu čísel entropie pro vnoření Lorentzových prostorů.cs_CZ
uk.abstract.enThis thesis studies the volume of the unit ball of finite-dimensional Lorentz sequence spaces p,q n . Lorentz spaces are a generalisation of Lebesgue spaces with a quasinorm described by two parameters 0 < p, q ≤ ∞. The volume of the unit ball Bp,q n of a general finite-dimensional Lorentz space was so far an unknown quantity, even though for the Lebesgue spaces it has been well-known for many years. We present the explicit formula for Vol(Bp,∞ n ) and Vol(Bp,1 n ). We also describe the asymptotic behaviour of the n-th root of Vol(Bp,q n ) with respect to the dimension n and show that [Vol(Bp,q n )]1/n ≈ n−1/p for all 0 < p < ∞, 0 < q ≤ ∞. Furthermore, we study the ratio of Vol(Bp,∞ n ) and Vol(Bp n). We conclude by examining the decay of entropy numbers of embeddings of the Lorentz spaces.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV