This thesis studies the volume of the unit ball of finite-dimensional Lorentz sequence spaces $\ell_n^{p,q}$. Lorentz spaces are a generalisation of Lebesgue spaces with a quasinorm described by two parameters $0 < p, q \leq \infty$. The volume of the unit ball $\mathbf{B}_n^{p,q}$ of a general finite-dimensional Lorentz space was so far an unknown quantity, even though for the Lebesgue spaces it has been well-known for many years. We present the explicit formula for $\operatorname{Vol}(\mathbf{B}_n^{p,\infty})$ and $\operatorname{Vol}(\mathbf{B}_n^{p,1})$. We also describe the asymptotic behaviour of the *n*-th root of $\operatorname{Vol}(\mathbf{B}_n^{p,q})$ with respect to the dimension *n* and show that $[\operatorname{Vol}(\mathbf{B}_n^{p,q})]^{1/n} \approx n^{-1/p}$ for all $0 , <math>0 < q \leq \infty$. Furthermore, we study the ratio of $\operatorname{Vol}(\mathbf{B}_n^{p,\infty})$ and $\operatorname{Vol}(\mathbf{B}_n^{p,\infty})$ we conclude by examining the decay of entropy numbers of embeddings of the Lorentz spaces.