On the predictibility of Central European stock returns: Do Neural Networks outperform modern economic techniques?
Předvídatelnost středoevropských akciových výnosů: Překonají Neuronové sítě moderní ekonomické analýzy?
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/170509Identifiers
Study Information System: 2300
Collections
- Kvalifikační práce [18180]
Author
Advisor
Referee
Vošvrda, Miloslav
Faculty / Institute
Faculty of Social Sciences
Discipline
Economics
Department
Institute of Economic Studies
Date of defense
5. 9. 2006
Publisher
Univerzita Karlova, Fakulta sociálních vědLanguage
English
Grade
Excellent
Keywords (Czech)
výnosy akcií a jejich predikce pomocí neuronové sítě, optimalizační algoritmy, oceňování derivátů pomocí neuronové sítěKeywords (English)
emerging stock markets, predictability of stock returns, neural networks, optimization algorithms, derivative pricing using neural networksV této práci jsou aplikovány neuronové sítě jako neparametrická, nelineární metoda modelování na středoevropské trhy (Český, Polský, Maďarský a Německý). V prvních dvou kapitolách je definováno prognózování v kontextu klasické ekonometrické analýzy ve spojení s neuronovými sítěmi. Dále jsou prezentovány optimalizační metody použité při testování - konjugovaný gradient, Levenberg- Marquardt a genetické algoritmy, a nakonec statistické metody pro srovnání přesnosti předpovědí různých modelů a jejich ekonomickou signifikaci. V empirickém modelování je nejdřív ukázána výkonnost neuronové sítě na chaotické časové řadě Mackey-Glass. Dále následuje analýza reálných denních a týdenních časových řad středoevropských indexů pro období let 2000 až 2006, kde je ukázáno, že Neuronové sítě predikují denní výnosy DAX a týdenní výnosy PX50, BUX se signifikantně nižší chybou pomocí časových řad historických výnosů než ostatní ekonometrické metody. Podobných výsledků bylo dosaženo při predikci národního výnosu pomocí zpožděných výnosů alespoň jednoho z ostatních indexů. Dále je taky ukázáno, že s Neuronovou sítí byla dosažena ekonomická signifikace predikce denních i týdenních výnosů PX-50, BUX i DAX. Přesnost předpovědí testovaných řad se pohybuje kolem 60%, co považujeme za dobrý výsledek. V poslední kapitole je...
In this thesis we apply neural networks as nonparametric and nonlinear methods to the Central European stock markets returns (Czech, Polish, Hungarian and German) modelling. In the first two chapters we define prediction task and link the classical econometric analysis to neural networks. We also present optimization methods which will be used in the tests, conjugate gradient, Levenberg-Marquardt, and evolutionary search method. Further on, we present statistical methods for comparing the predictive accuracy of the non-nested models, as well as economic significance measures. In the empirical tests we first show the power of neural networks on Mackey-Glass chaotic time series followed by real-world data of the daily and weekly returns of mentioned stock exchanges for the 2000:2006 period. We find neural networks to have significantly lower prediction error than classical models for daily DAX series, weekly PX50 and BUX series. The lags of time-series were used, and also cross-country predictability has been tested, but the results were not significantly different. We also achieved economic significance of predictions with both daily and weekly PX-50, BUX and DAX with 60% accuracy of prediction. Finally we use neural network to learn Black-Scholes model and compared the pricing errors of...